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Abstract
The power–duration relationship describes the time to exhaustion for exercise at different intensities. It is believed to be 
a “fundamental bioenergetic property of living systems” that this relationship is hyperbolic. Indeed, the hyperbolic (a.k.a. 
critical-power) model which formalises this belief is the dominant tool for describing and predicting high-intensity exercise 
performance, e.g. in cycling, running, rowing or swimming. However, the hyperbolic model is now the focus of a heated 
debate in the literature because it unrealistically represents efforts that are short (< 2 min) or long (> 15 min). We contribute 
to this debate by demonstrating that the power–duration relationship is more adequately represented by an alternative, power-
law model. In particular, we show that the often-observed good fit of the hyperbolic model between 2 and 15 min should 
not be taken as proof that the power–duration relationship is hyperbolic. Rather, in this range, a hyperbolic function just 
happens to approximate a power law fairly well. We also prove mathematical results which suggest that the power-law model 
is a safer tool for pace selection than the hyperbolic model and that the former more naturally models fatigue than the latter.

Keywords  Power-duration relationship · Performance prediction · Hyperbolic · Critical speed · Critical velocity · Pacing

Introduction

The power–duration relationship

The power–duration relationship describes the time to 
exhaustion for exercise at different intensities. Knowledge 
of this relationship is crucial to athletes and coaches, e.g. for:

•	 fitness assessment—i.e. in order to inform training, ath-
letes (and their coaches) want to quantify and track their 
fitness level;

•	 performance prediction—i.e. in order to select race and 
pace strategies, athletes want to predict their potential 
over distances or durations that may not have recently 
been performed. For instance,

–	 runners want to know their best possible finish time 
in a marathon from only a recent half-marathon per-
formance (i.e. without running the full distance);

–	 cyclists want to know if they can sustain a particular 
power output for a given distance or duration (e.g. 
needed at the final climb of a race).

In this work, we focus on the endurance sports: running, 
cycling and rowing, although we stress that our results are 
not limited to these activities and may even be relevant in 
other settings, e.g. functional capacity testing in clinical 
populations.

Unfortunately, an individual’s power–duration relation-
ship is unknown and must be estimated from available data 
with the help of mathematical models that formalise this 
relationship. A number of such models have been proposed 
in the literature. Amongst these are two which were both 
originally used to model world-record performances across 
different athletes (and even animals) but which are nowadays 
also used to describe the power–duration relationship within 
individual athletes.

•	 Hyperbolic (a.k.a. critical power) model. The hyper-
bolic model (Hill 1925, 1993; Monod and Scherrer 1965; 
Jones et al. 2010)–illustrated in Fig. 1–asserts that the 
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power–duration relationship is hyperbolic.1 The power 
asymptote is called critical power. The model is thus also 
called the critical-power model.

•	 Power-law (a.k.a. Riegel) model. The power–law model 
(Kennelly 1906)–illustrated in Fig. 2–asserts that the 
power–duration relationship follows a power law. It was 
popularised in running by Riegel (1977, 1981) and is 
thus often termed the Riegel model.

Recent debate about the critical‑power paradigm

The hyperbolic (a.k.a. critical-power) model is thought to 
describe and predict endurance performance during high-
intensity exercise (i.e. exercise classed as “severe”) “with 
startling precision” (Poole et al. 2016). It is ubiquitous in 
cycling (Leo et al. 2022a), where it is implemented in popu-
lar online exercise analytics platforms; but it is also widely 
used for training prescription and performance prediction 
in other endurance sports, such as running (Kranenburg and 
Smith 1996; Nimmerichter et al. 2017), rowing (Hill et al. 
2003), swimming (Wakayoshi et al. 1992; Petrigna et al. 
2022) as well as walking and skating (Hill 1925). Addition-
ally, it has been applied to intermittent sports, such as foot-
ball, hockey and rugby (Okuno et al. 2011) in order to opti-
mise the length of recovery needed between exercise bouts 
(Fukuda et al. 2011). The model has also been suggested as 

Fig. 1   Equivalent relationships between power, duration and work under the hyperbolic (a.k.a. critical-power) model. Note that the power output 
approaches the critical power CP > 0 in Panels a and b as duration and work increase

Fig. 2   Equivalent relationships between power, duration and work 
under the power-law (a.k.a. Riegel) model. Note that the power output 
approaches 0 in Panels a and b as duration and work increase. This 

is in contrast to the hyperbolic (a.k.a. critical-power) model in Fig. 1 
where it approaches critical power CP > 0

1  More precisely, as discussed in the next section, this hyperbolic 
relationship is assumed to exist for exercise intensities in a limited 
range which is termed the “severe” intensity domain.



509European Journal of Applied Physiology (2024) 124:507–526	

1 3

a tool for anti-doping (Puchowicz et al. 2018) and for assess-
ing the effectiveness of nutritional supplements (Fukuda 
et al. 2010; Stout et al. 1999). The hyperbolic model has 
even been employed to measure exercise capacity in horses 
and mice (Lauderdale and Hinchcliff 1999; Billat et al. 
2005). Indeed, the hyperbolic shape of the power–duration 
relationship which the model formalises is considered to 
be a “fundamental bioenergetic property of living systems” 
(Jones et al. 2019).

However, in recent decades, doubts have been repeat-
edly raised about validity of the hyperbolicity assumption 
(see Dotan 2022a, and references therein). In particular, it 
is widely known that the model behaves unrealistically for 
exercise durations that are short (e.g. less than 2 min) or long 
(e.g. more than 15 min);

•	 over short durations, the hyperbolic model would imply 
that an elite runner like Eliud Kipchoge can sustain over 
650 km/h over one second or instantaneously “teleport” 
over 175 m.

•	 over long durations, the hyperbolic model would imply 
that runners can complete ultra-marathons at essentially 
the same average velocity as half-marathons.

This debate about the hyperbolic model has recently 
intensified with the publication of the papers by Dotan 
(2022a), Gorostiaga et al. (2022b) and the ensuing discus-
sions (Burnley 2022a, b; Black et al. 2022; Broxterman et al. 
2022; Triska and Karsten 2022; Marwood and Goulding 
2022; Altuna and Hopker 2022; Lindinger 2022; Abdalla 
et al. 2023; Dotan 2022b, c; Gorostiaga et al. 2022a, c, 
2023).

Contributions

We show that the power–duration relationship should not 
be presumed to be hyperbolic. Rather it is more adequately 
described by the power-law model; and that doing so 
resolves both the above-mentioned controversies about the 
critical-power paradigm.

Specifically, our novel contributions, both empirical and 
theoretical, are threefold:

•	 Contribution I: Fit over different durations. In the sec-
tion: “Contribution I: Fit over different durations”, we 
compare the fit of the power-law and hyperbolic models 
in the context of (a) the case studies of elite athletes from 
Jones and Vanhatalo (2017), Jones et al. (2019) and (b) 
additional large data sets of runners, rowers and cyclists, 
and demonstrate that:

–	 for exercise durations inside the 2–15 min range (for 
which the hyperbolic model is thought to be valid) 

the power-law model fits just as well as the hyper-
bolic model;

–	 for exercise durations outside the 2–15 min range 
(for which the hyperbolic model predicts perfor-
mances that are physically impossible), the power-
law model still exhibits realistic behaviour.

	   This suggests that the good performance of the hyper-
bolic model in the 2–15 min range cannot be taken as 
evidence for the hypothesis that the power–duration 
relationship is hyperbolic. Rather, the power–duration 
relationship is more adequately described by a power law 
and the hyperbolic model just happens to approximate 
the power-law model reasonably well in the 2–15 min 
range.

•	 Contribution II: Implications for pacing. In the sec-
tion: “Contribution II: Implications for pacing”, we prove 
a mathematical result which suggests that the power-law 
model has more realistic implications about pacing than 
the hyperbolic model. That is, the power-law model 
implies that athletes will only achieve their best possible 
finish time in a time trial if they race at the highest con-
stant velocity that they can sustain until the finish line; 
and over-pacing is always detrimental. In contrast, the 
hyperbolic model implies that the safest optimal pacing 
strategy is to sprint off as quickly as possible and then 
“hold on” until crossing the finish line. Thus, the power-
law model is consistent with the pacing recommended 
by coaches and observed in elite athletes whereas the 
hyperbolic model is not.

•	 Contribution III: Modelling fatigue. In the section: 
“Contribution III: Modelling fatigue”, we demonstrate 
that, unlike the hyperbolic model, the power-law model is 
automatically consistent with the empirical observation 
that the power–duration curve moves downwards as the 
athlete becomes fatigued during prolonged exercise. We 
also explain why the often-made assumption that critical 
power decreases with fatigue is contradictory.

Related literature

The finding that the power–duration relationship is more 
adequately modelled by a power law than a hyperbolic 
function has already been demonstrated in running (Hinck-
son and Hopkins 2005; Zinoubi et al. 2017; Girardi et al. 
2022) and swimming (Osiecki et  al. 2014).2 Even in 

2  A power law was also suggested as an alternative to the hyperbolic 
model in Housh et al. (1989); Gorostiaga et al. (2022b) but without 
establishing the link to the existing literature on the power-law model; 
and, importantly, Gorostiaga et al. (2022b) only used the power-law 
to model world-record performances across different athletes which 
is different from our goal of modelling the power–duration relation-
ship within individual athletes.
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cycling, where the hyperbolic model and variations thereof 
dominate the literature, Coakley (2015, Chapter 5) and 
Passfield et al. (2013) suggested that;

“[the] power law is better than the [critical-power] 
model for predicting cycling endurance performance 
across a wider range of exercise intensities.”

However, these studies do not appear to have had 
much impact on the above-mentioned debate surrounding 
the utility of the critical-power paradigm because they 
were purely empirical and based only on small sample 
sizes (between 8 and 15 individuals). In contrast, our 
evidence includes three large studies of 5805 cyclists, 
2571 runners, and seasons’ best times from 3244 rowing 
ergometer sessions, as well as formal (i.e. mathematical) 
derivations.

Power–duration models

Power–duration models are functions which assert a relation-
ship between an exercise duration T and a highest power P(T) 
that can be sustained over that duration. Throughout this work, 
we focus mostly on this power–duration relationship P = P(T) . 
However, by simple algebra, this is always equivalent to, e.g. a 
particular power–work relationship P = P(W) which character-
ises the highest constant power which the athlete can continu-
ously generate until some work W > 0 has been done; or to a 
particular work–duration relationship W = W(T) which gives 
the maximum amount of work that can be performed over dura-
tion T . All of these relationships can be inverted, e.g. T = T(P) 
is the time to exhaustion for some constant power output P.

Power metres are available on cycling and rowing ergom-
eters and use of mobile power metres is now widespread in 
cycling, making it feasible to estimate and directly work 
with the power–duration relationship. However, for run-
ning, we will use “velocity” (V) as a proxy for “power” 
(P) and “distance” (D) as a proxy for “work” (W) . This is 
commonly done in the literature and is justified if the con-
ditions throughout the activity are relatively constant, e.g. 
flat course, no significant amount of wind and negligible air 
resistance/friction.

We stress that P(T) (likewise V(T) ) must be understood 
as the intensity that an athlete can sustain over a duration 
T  and does not model the initial acceleration (or the fatigue 
that occurs during the “acceleration phase”). Therefore, a 
cyclist’s observed maximal power output over one second will 
be below P(T = 1 s) . Similarly, a runner’s observed average 
velocity in a 100-m sprint will be below V(D = 100 m) . How-
ever, these effects become negligible over longer durations 
or distances.

Hyperbolic (a.k.a. critical‑power) model

The model

The hyperbolic model (Hill 1925; Monod and Scherrer 
1965) (see also Jones et al. 2010, and references therein) 
assumes the following power–duration relationship which 
is also illustrated in Fig. 1a:

for parameters W �,CP > 0 and exercise durations T > 0 . 
That is, (1) posits that athletes can continuously generate 
power P

hyp
(T) > CP for at most T  seconds at which point 

they are exhausted. The parameters CP and W ′ are inter-
preted as follows.

•	 Critical power CP.  The additive constant CP > 0 , 
called critical power, was originally interpreted as the 
power that could be sustained “for a very long time 
without fatigue” (Monod and Scherrer 1965). However, 
this interpretation is no longer meaningful as the rela-
tionship in (1) is nowadays assumed to only be valid for 
exercise durations T  that are not too long and not too 
short (we discuss this in the section “Range of validity” 
subsec ref).

•	 Finite work capacity W ′. Multiplying both sides of 
(1) by T  shows that athletes exercising at some con-
stant power output P > CP will have generated a total 
amount of work equal to W �

+ T ⋅ CP by the time they 
reach exhaustion. Thus, the parameter W ′ is inter-
preted as representing a finite “tank” of exercise capac-
ity “above CP ” available to the athlete. As discussed 
below, this interpretation still holds even if the power 
output P > CP is not constant.

Simple algebra implies that the power–duration rela-
tionship from (1) (Fig. 1a) can be equivalently written as 
a power–work relationship (Fig. 1b) and work–duration 
relationship (Fig. 1c). A full list of such equivalent rela-
tionships is given in Supplementary Information A.1.1. 
Finally, as discussed, we sometimes (e.g. in running) work 
with velocity (V) and distance (D) instead of power (P) and 
work (W) . In this case, we write D′  instead of W ′ and CV 
(“critical velocity”) instead of CP.

Range of validity

The hyperbolic model, i.e. the relationship from (1), is 
nowadays assumed to only hold for exercise in the so-
called “severe-intensity domain”, i.e. for exercise during 

(1)P = P
hyp

(T) =
W

�

T
+ CP,
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which V̇O2max is attained (Jones et al. 2019). More for-
mally, the hyperbolic model is assumed to be valid for 
exercise durations T  such that P

L
< P

hyp
(T) < P

U
, where 

P
L
 and P

U
 are the lower and upper boundaries of the severe 

intensity domain. Unfortunately, the requirement that the 
model should apply only to “severe” exercise is impracti-
cal. This is because this requirement typically leaves the 
range of validity of the hyperbolic model (i.e. the dura-
tions T  or powers P for which the model is applicable) 
ill-defined for the following reasons:

•	 Unclear boundaries. The boundaries P
L
 and P

U
 of the 

“severe” domain differ across individuals and are typi-
cally unknown. As a result, it is not always clear which 
data points (i.e. which power–duration measurements 
or race results) one can include or exclude when fitting 
the model or even for which race distances the model is 
allowed to make performance predictions. For instance, 
it is not clear whether the model applies to a 5-km run or 
a 20-min cycle ride.

•	 Circular reasoning. The requirement that the model 
should only be applied to “severe” exercise can also 
quickly become circular because the lower boundary of 
the severe domain, P

L
 , is defined as being equal to the 

value of the parameter CP from the hyperbolic model, 
i.e. P

L
∶= CP . In other words, we should fit the hyper-

bolic model solely to exercise intensities above CP but 
we only know the value of CP after fitting the model to 
data. This circular reasoning is not merely a philosophi-
cal issue because the parameters W ′ and CP of the hyper-
bolic model are highly sensitive to the range of durations 
(and powers) of the data points used (Bishop et al. 1998; 
see also Dotan 2022a and references therein). In par-
ticular, as we include data points over longer and longer 
durations, the estimate of CP decreases. The only way to 
avoid this circular reasoning is to estimate P

L
= CP by 

other means but there is no simple alternative.3
•	 Unbounded endurance. Even if P

L
 and P

U
 were known 

exactly, assuming that the hyperbolic model is valid 
for all durations T  such that P

L
< P

hyp
(T) < P

U
 is still 

impractical. This is because the model would then for-
mally imply that power outputs slightly above P

L
= CP 

could be sustained “for a very long time without fatigue”. 
For instance, the model would predict that a cyclist with 
P
L
= CP = 300  and W �

= 25, 000 would be able to sus-
tain 300.1 J/s for over 70 h. However, this is no longer 

accepted in the literature (Vanhatalo et al. 2011; Poole 
et al. 2016).

For these reasons, we follow Jones et al. (2019) in assum-
ing that the hyperbolic model is valid for exercise durations 
T  between 2 and 15 min. We note that the literature con-
siders the 2–15 min range not as being strict but rather as 
being a “guide” in the sense that exercise durations up to 20 
or even 25 min can sometimes still be included. However, 
throughout this work, we will use 15 min, whenever pos-
sible, because:

1.	 Knowing that the model can sometimes still work over 
durations longer than 15 min does not lead to a practi-
cally useful rule for deciding to which efforts the model 
can or cannot be applied.

2.	 None of our findings would change qualitatively if we 
chose, say, 2–20 or 2–25 min. In fact, our results in the 
section “Contribution I: Fit over different durations” 
suggest that 2–15 min is actually the best-case scenario 
for the hyperbolic model: its errors (compared with the 
power-law model) quickly increase outside this range.

Estimation

The parameters of the hyperbolic model are commonly esti-
mated via linear regression by exploiting the fact that in (1), 
P is (affine) linear in 1∕T  . To keep the presentation simple, 
we adopt this approach throughout this work (except for 
some of the panels in Fig. 4). However, none of our results 
would change qualitatively if we used the more sophisticated 
non-linear weighted least-squares approaches (potentially 
based on the power–work relationship) advocated in Patoz 
et al. (2021). The estimation requires data from a sufficiently 
large number of maximal efforts (i.e. efforts to exhaustion) 
over different distances or durations with a time to exhaus-
tion between 2 and 15 min (Karsten et al. 2015).

Rate‑of‑exertion interpretation

Solving (1) for 1∕T  as in Gordon (2005) implies that, under 
the hyperbolic model, the athlete’s rate of exertion when 
generating some power P ≥ CP is given by

Thus, the accumulated fatigue after exercise duration t is:

ratehyp(P) ∶=
P − CP

W �
.

(2)Fatigue
t
∶=

t

�
0

ratehyp(P⟨s⟩) ds =
∫ t

0
(P⟨s⟩ − CP) ds

W �
,3  In cycling, it has been suggested that at least the lower boundary 

P
L
 can be estimated using a 3-min all-out test (Vanhatalo et al. 2007). 

However, this test is very arduous on athletes and is known to often 
overestimate CP (McClave et al. 2011; Nicolò et al. 2017).
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where P⟨s⟩ ≥ CP denotes the instantaneous power out-
put at time s . That is, at the start of the activity, the ath-
lete is assumed to be rested ( Fatigue0 = 0 ). The athlete is 
exhausted (and has to drop power output down to at most 
CP ) at the first time T  such that Fatigue

T
= 100 %.

Equation  2 shows that exhaustion occurs when the 
amount of work generated “above” CP , ∫ T

0
(P⟨t⟩ − CP) dt , 

equals W ′ . Therefore, an often-used equivalent interpreta-
tion is that Balancet ∶= 1 − Fatiguet ∈ [0, 1] is the remaining 
balance (measured as a proportion of W ′ ) of the athlete, i.e. 
athletes start with a full “ W ′ tank” ( Balance0 = 1 ) and they 
reach exhaustion at the first time T  such that they have fully 
emptied this tank ( BalanceT = 0).

Power‑law (a.k.a. Riegel) model

The model

The power-law model goes back to at least Kennelly (1906), 
Lietzke (1954) (see García-Manso et al. (2005), Vandewalle 
(2018) and references therein). It was popularised by Riegel 
(1977, 1981), especially in the long-distance running com-
munity where it implies a widely used rule-of-thumb for 
finishing-time prediction (see, e.g. Runner’s World Maga-
zine 2013). It also forms the basis of the more sophisticated 
predictors from Blythe and Király (2016) and Vickers and 
Vertosick (2016). The latter is implemented by the websites 
Slate (Aschwanden 2014) and FiveThirtyEight (Aschwanden 
2016).

The power-law model assumes the following power–dura-
tion relationship illustrated in Fig. 2a. For parameters S > 0 , 
0 < E < 1 and any duration T > 0:

That is, (3) posits that athletes can continuously generate 
power P

pow
(T) > 0 for at most T seconds at which point they 

are exhausted.
As with the hyperbolic model, simple algebra allows us 

to convert (3) (Fig. 2a) into an equivalent power–work rela-
tionship (Fig. 2b) and work–duration relationship (Fig. 2c). 
A full list of such equivalent relationships is given in Sup-
plementary Information A.2.1. The role of the parameters S 
and E are visualised in Fig. 3. Specifically:

•	 Speed parameter S. The speed parameter S > 0 governs 
the vertical scaling of the power-duration curve. It is also 
the power that a cyclist can sustain for one second or the 
velocity that a runner can sustain for one second.

•	 Endurance parameter E. The endurance parameter 
0 < E < 1  governs how quickly the power–duration 

(3)P = P
pow

(T) = STE−1.

curve in Fig. 3 decays (smaller values of E correspond to 
a quicker decay). Its reciprocal, F = 1∕E > 1 , was termed 
fatigue factor by Riegel (1981). Throughout this work, 
we will sometimes switch between F and E = 1∕F to 
simplify the presentation; Riegel (1981) also gave val-
ues for F in different sports and different demographic 
groups (derived from world-record performances across 
different athletes, i.e. these may not be optimal for indi-
vidual athletes).

The power-law model has been independently discovered 
many times in the literature. For instance, Hinckson and 
Hopkins (2005), Laursen et al. (2007) applied it to running 
but called it the log–log model because it implies affine–lin-
ear relationships between the log-duration or log-work and 
log-power; Pinot and Grappe (2011) found it to perform well 
in cycling.

Finally, García-Manso et al. (2012), Blythe and Király 
(2016) have noted that there are systematic patterns in the 
residuals when fitting the power-law model to world-record 
performances in running. However, we stress that this con-
siders the power–duration (or velocity–duration) relationship 
averaged across different athletes. In contrast, our work is 
concerned with modelling this relationship within individual 
athletes and we agree with Broxterman et al. (2022) that “[d]
etermining the speed–duration relationship across athletes 
(…) whilst interesting, is fundamentally different from deter-
mining this relationship within an athlete”. Indeed, Blythe 
and Király (2016) found that the power-law model performs 
better for the latter based on 1,417,432 performances of 
164,746 runners (a subset of which we analyse in the next 
section), stating “(…) although world-record performances 
are known to obey a power law (…), there is no reason to 
suppose a priori that the performance of individuals is gov-
erned by a power law. Striking is that the power-law derived 
is considerably more accurate when considered in log-
distance–log-speed coordinates than the power-law which 
applies to world-record data.”

Fig. 3   Role of the speed parameter S and the endurance parameter E
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Range of validity

As we will show in the next section, the power-law model 
describes exercise capacity well across a wide range of dura-
tions. In particular, unlike the hyperbolic model, the power-
law model is not restricted to predicting only those power 
outputs that fall into a particular range (e.g. into a particu-
lar exercise-intensity domain). This makes the power-law 
model much easier to use and more widely applicable than 
the hyperbolic model. Of course, there are some obviously 
“silly” edge cases that should be avoided such as applying 
the model to durations T longer than an individual’s lifespan. 
We also reiterate our comment from the section “Hyperbolic 
(a.k.a. critical-power) model” that observed performances 
over short efforts (e.g. 100 m sprints) will be below what 
the model predicts because the model describes the power 
or velocity that can be sustained over a particular duration or 
distance and thus does not account for the initial acceleration 
(whose impact in short races is substantial).

Estimation

The power-law model can again be easily estimated via lin-
ear regression by exploiting the fact that by (3), log(P) is 
(affine) linear in log(T) . In this case, exp(intercept) is an 
estimate of S and (slope + 1) is an estimate of E . To keep 
the presentation simple, we adopt this approach through-
out this work. However, none of our results would change 
qualitatively if we used linear regression based on the fact 
that log(P) is (affine) linear in the log-work log(W) or if we 
used more sophisticated non-linear least-squares approaches 
such as those advocated for the hyperbolic model in Patoz 
et al. (2021).

Note that at least two data points must be available to 
estimate both model parameters. If only one data point is 
available, e.g. when predicting a marathon finish time from 
a single recent half-marathon result, it can be preferable to 
fix E (equivalently: F = 1∕E ) to a suitable default value. 
For instance, consider the popular calculator from Runner’s 
World Magazine (2013) which predicts the finish time T  in 
a race over distance D from the finish time T0 in a previous 
race over some other distance D0 as

This calculator is obtained from (3) by fixing F = 1.06 
(see Supplementary Information A.2.2 for details).

In other words, this calculator predicts the finish time 
using a power-law model in which the only the speed param-
eter, S , is estimated (from a single previous race result) 
whilst the endurance parameter is fixed to F = 1.06.

T = T0

(
D

D0

)1.06

.

Of course, the endurance parameter E (equivalently: the 
fatigue factor F ) is likely to be different for different ath-
letes as shown in Blythe and Király (2016), Zinoubi et al. 
(2017) (otherwise, we could expect some athletes to simul-
taneously hold world records over both short and long race 
distances); and even for a given athlete, the parameter E 
likely varies over time, e.g. with (de-)training (otherwise, 
faster 5-km run performance would automatically imply 
an improved marathon prediction). Hence, setting E to a 
default value incurs a bias. Therefore, if sufficiently many 
data points (e.g. recent race results) are available, it is 
typically preferable to estimate both S and E (based on all 
data) rather than using methods like the calculator from 
Runner’s World Magazine (2013).

Rate‑of‑exertion interpretation

We end this section by showing that we can derive a simi-
lar “rate-of-exertion” interpretation for the power-law 
model as for the hyperbolic model. Solving (3) for 1∕T  
implies that the athlete’s rate of exertion when generat-
ing some power P ≥ 0 implied by the power-law model 
is given by

Thus, the accumulated fatigue after exercise duration 
t  is:

where P⟨s⟩ ≥ 0 denotes the instantaneous power out-
put at time s . That is, at the start of the activity, the ath-
lete is assumed to be rested ( Fatigue0 = 0 ). The athlete is 
exhausted (and has to drop power output down to 0 ) at the 
first time T  such that Fatigue

T
= 100 %.

A g a i n ,  w e  c a n  e q u i v a l e n t l y  i n t e r p r e t 
Balancet ∶= 1 − Fatiguet ∈ [0, 1] as a remaining “balance” 
(as a proportion of 1∕S1∕(1−E) ) of the athlete. Importantly, 
(4) shows that this balance decreases faster than linearly 
in the power output, P . This contrasts with the hyperbolic 
model whose balance decreases only linearly in P (more 
accurately: linearly in P − CP ). For this reason, no fixed 
work capacity (i.e. “ W ′-tank”) interpretation is possible 
for the power-law model.

To our knowledge, the rate-of-exertion interpretation 
of the power-law model is novel. In section “Contribution 
II: Implications for pacing”, we employ this construction 
to prove a mathematical statement which suggests that the 

(4)ratepow(P) ∶=
(
P

S

)1∕(1−E)

.

(5)Fatigue
t
∶=

t

∫
0

ratepow(P⟨s⟩) ds,
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power-law model has more realistic pacing implications 
than the hyperbolic model. In section “Contribution III: 
Modelling fatigue”, we employ this construction to show 
that, consistent with empirical evidence, the power–dura-
tion curve implied by the power-law model moves down-
wards as the athlete becomes more fatigued.

Contribution I: Fit over different durations

It is well known that the hyperbolic model adequately 
describes exercise capacity over durations that are not too 
short and not too long, e.g. around 2–15 min, but exhibits 
unrealistic behaviour outside this range (see, e.g. Vandewalle 
et al. (1997); Jones et al. (2019); Pallarés et al. (2020)). In 
this section, we empirically show that the good fit of the 
hyperbolic model for exercise durations in the 2–15 min 
range does not mean that the power–duration relationship 
is hyperbolic. Rather, the power–duration relationship can 
be much better described by a power law and the hyperbolic 
model just happens to approximate the power-law model 
reasonably well in the 2–15 min range. We first demonstrate 
this result in the context of the case studies of elite run-
ners from Jones et al. (2019), Jones and Vanhatalo (2017). 
We then show similar results in large-data studies of rec-
reational runners, rowers and cyclists. Finally, we explain 
why the problems of the hyperbolic model become even 
more apparent when combining it with a different functional 
form over long durations, e.g. as done in the so-called omni 
power–duration models from Puchowicz et al. (2020).

Case study from Jones et al. (2019)

Here, we reproduce the case study of Eliud Kipchoge from 
Jones et al. (2019). We fit the hyperbolic model to Eliud 
Kipchoge’s personal records for races in the 2–15 min range 
( D�

≈ 176.29 m , CV ≈ 6.23 m∕s ) and compare the results 
with the power-law model fitted to all of Eliud Kipchoge’s 
personal records in different events (including indoor events) 
up to marathon distance ( S ≈ 9.57 m∕s , E ≈ 0.94).4 The 
data was obtained from World Athletics (2021), however, 
for completeness, we provide Kipchoge’s personal records, 
e.g. 00:13:11 (5 km); 00:59:25 (half marathon) and 02:01:39 
(marathon), in Supplementary Information B.2.

The results are shown in Fig. 4 which replicates all four 
panels from Jones et al. (2019, Fig. 5). It illustrates that, for 

Eliud Kipchoge’s data, the hyperbolic model predicts unre-
alistically high velocities for durations shorter than 2 min 
or longer than 15 min, whereas the power-law model still 
predicts realistic velocities over a wide range of durations:

•	 Short durations. If we were to apply the hyperbolic 
model to shorter exercise durations, it would imply that 
Eliud Kipchoge can

–	 sustain more than 650 km/h over 1 s (85 km/h over 
10 s)5;

–	 instantaneously “teleport” over D�
≈ 176  metres 

(see the non-zero intercept in Fig. 1c; Proposition 3 
in Supplementary Information B.1 gives a formal 
proof);

	   In contrast, the power-law model implies that Eliud 
Kipchoge can

–	 only sustain less than 35 km/h over 1 s (30 km/h over 
10 s)—well below the top speeds of elite sprinters;

–	 not cover any non-zero distance instantaneously (see 
the zero intercept Fig. 2c; Proposition 4 in Supple-
mentary Information B.1 gives a formal proof).

•	 Long durations. If we were to apply the hyperbolic 
model to longer exercise durations, it would imply that 
Eliud Kipchoge can run ultra-marathons at essentially 
the same average velocity as half-marathons. In con-
trast, the power-law model implies that the velocity 
which Eliud Kipchoge can sustain over some duration/
distance goes to zero as the duration/distance increases.

Interestingly, in Fig. 4, the hyperbolic and power-law 
models give very similar behaviour for exercise durations 
in the 2–15 min range. Later in this section, we show that 
this holds for wider populations.

Case study from Jones and Vanhatalo (2017)

We now reproduce the case study from Jones and Van-
hatalo (2017), i.e. we fit the hyperbolic model to the 
personal records over different events (including indoor 
events) up to marathon distance of Haile Gebrselassie 
and 11 other elite runners. The data were again obtained 
from World Athletics (2021). We apply the hyperbolic 

4  As we explain in  the subsection “Range of validity” in section 
"Hyperbolic (a.k.a. critical-power) model" we only fit the hyperbolic 
model to the 2–15 min range. Supplementary Information B.2 illus-
trates the compromise in fit when the model is applied to all dura-
tions.

5  The problem with the hyperbolic model is not that P
hyp

(T) goes to 
infinity as T goes to zero (because this is also the case for P

pow
(T) ), 

but that P
hyp

(T) goes to infinity too quickly.
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Fig. 4   An extended and 
modified version of Jones et al. 
(2019, Fig. 5, Panels a–d) 
showing the hyperbolic (a.k.a. 
critical-power) model fitted 
to Eliud Kipchoge’s personal 
records. As in Jones et al. 
(2019), the hyperbolic model 
is fitted only to the personal 
records in the 2–15 min range 
(filled circles); the power-law 
(a.k.a. Riegel) model is fitted 
to all personal records up to 
marathon distance (filled circles 
and filled rectangles). Note that 
the power-law model behaves 
similarly to the hyperbolic 
model inside the 2–15 min 
range but exhibits more realistic 
behaviour outside this range

Fig. 5   Haile Gebrselassie’s personal records in different events. Fig-
ure. 5a, extends Jones and Vanhatalo (2017, Fig. 2) to include races 
shorter than 1500 m and longer than 15,000 m. As in Jones and Van-
hatalo (2017) the hyperbolic (a.k.a. critical-power) model is only 
fitted to the personal records in the 1500–15,000  m range (filled 

circles); the power-law (a.k.a. Riegel) model is fitted to all personal 
records up to marathon distance (filled circles and filled rectangles). 
The figure shows that the power-law model exhibits realistic behav-
iour over all durations up to marathon distance
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model to all races with distances between 1500 m and 
15,000  m which corresponds to exercise durations of 
around 3.6–41.6 min for Haile Gebrselassie. Clearly, this 
does not match the 2–15 min exercise duration range for 
which the hyperbolic model is thought to be valid but is 
done to match the analysis carried out in Jones and Van-
hatalo (2017). We compare the results with the power-
law model (fitted to all personal records up to marathon 
distance).6 For completeness, we provide Gebrselassie’s 
personal records, e.g. 00:12:39 (5000 m); 00:58:55 (half 
marathon) and 02:03:59 (marathon), in Supplementary 
Information B.3.

The first panel in Fig. 5 extends Jones and Vanhatalo 
(2017, Fig. 2) and shows that the power-law model fits 
well for Haile Gebrselassie’s personal records over differ-
ent durations. For clarity, we have added the second panel 
which shows the same results but using the velocity–dura-
tion relationship.

Figure 6 compares the fit of both models for the group 
of 12 male elite athletes (which include Eliud Kipchoge 
and Haile Gebrselassie) considered in Jones and Vanhatalo 
(2017, Table 1). A more formal numerical comparison of 
the errors of both models given in Table 3 in Supplemen-
tary Information B.3.

Large‑data study in running

In the remainder of this section, we show that the above find-
ings generalise to wider populations. First, we fit both mod-
els to race results from (mostly recreational) runners col-
lected by Blythe and Király (2016) from the database power​
of10.​info. After removing athletes with too few records in 
the 2–15 min range (see Supplementary Information B.5 
for details), we are left with race results for 2571 runners. 
For each of these, we fit both the hyperbolic and power-law 
models and compare the average error across all athletes, 
where error is defined as the average relative difference 
between observed and predicted velocities as in Puchowicz 
et al. (2020) (see Supplementary Information B.4). Figure 7 
shows this error averaged across all athletes for each model. 
This error is similar for both models for exercise durations 
between 2 and 15 min but worse for the hyperbolic model if 
we include efforts shorter than 2 min or longer than 15 min.

Large‑data study in rowing

Next, we fit both models to rowing-ergometer data avail-
able from www.​nonat​hlon.​com. Specifically, the data con-
tain self-reported seasons’ bests (for seasons from 2002 to 
2022) in the form of finish times over fixed distances 500 m, 
1 km, 5 km, 6 km, 10 km, 21.0975 km (half marathon) and 
42.195 km (marathon) as well as distances covered over 
fixed durations 30 min and 60 min. In total, we were left 
with 3244 athlete seasons after removing all athlete seasons 
with less than three measurements between 2 and 20 min 
(see Supplementary Information B.6 for details). We stress 
that we selected 20 min instead of 15 min as the minimum 
upper bound on the duration ranges because (a) only 506 
athletes in the data set have at least three efforts in the 
2–15 min range; (b) none of these have efforts shorter than 
2 min; (c) all of these are “slow” athletes whose time over 
500 m is above 2 min (i.e. focussing only on these athletes 
might incur a selection bias). We again fit both models to the 
data. The results are shown in Fig. 8 which again illustrates 
that the power-law model describes the data better than the 
hyperbolic model over a wide range of durations.

Large‑data study in cycling

We now show (in Fig. 9) the same analysis as in the sec-
tion “Large-data study in running” but applied to an open 
data set of 5805 cyclists from Golden Cheetah (www.​golde​
nchee​tah.​org). For each athlete, we extracted the best aver-
age power output for a range of different durations from 
their training and racing history. It is well known that it is 
difficult to fit these models on racing and training data as it 
is unclear whether the data corresponds to truly maximal 
efforts (Puchowicz et al. 2018; Leo et al. 2021, 2022b). To 
alleviate this, we removed some efforts that could not have 
been maximal as well as outliers which are likely to be due 
to power-metre malfunctions (see Supplementary Informa-
tion B.7 for more details). The results shown in Fig. 9 again 
illustrate that the power-law model describes the data better 
than the hyperbolic model over a wide range of durations.

Piecewise‑defined models

To permit more realistic predictions outside the 2–15 min 
range without abandoning the critical-power paradigm, it has 
been proposed to combine (variants of) the hyperbolic model 
for durations shorter than some threshold T

∗
> 0 with differ-

ent functional forms for durations longer than T
∗
 (Péronnet 

and Thibault 1989; Puchowicz et al. 2020; Luttikholt and 
Jones 2022) (see Fig. 10, and Supplementary Information 
B.8 for a more formal treatment). However, such “piecewise-
defined” models introduce other drawbacks:

6  Again, as we explain in the subsection "Range of validity" in sec-
tion "Hyperbolic (a.k.a. critical-power) model" we only fit the hyper-
bolic model to the 2–15 min range. Supplementary Information B.3 
illustrates the compromise in fit when the model is fit to all durations.

https://powerof10.info/
https://powerof10.info/
http://www.nonathlon.com
http://www.goldencheetah.org
http://www.goldencheetah.org
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Fig. 6   Personal records of the elite runners considered in Jones and 
Vanhatalo (2017, Table  1). As in Jones and Vanhatalo (2017), the 
hyperbolic (a.k.a. critical-power) model is only fitted to data in the 
1500–15,000  m range (filled circles); the power-law model (a.k.a. 
Riegel) is fitted to all personal records up to marathon distance (filled 

circles and rectangles). Note that both axes are on the log-scale for 
clarity. The figure again shows that the power-law model exhibits 
realistic behaviour over all durations up to marathon distance (see 
Table 3 in Appendix B.3 for a more formal comparison of the fit of 
each model)

Fig. 7   Relative error of the hyperbolic (a.k.a. critical-power) model 
vs the power-law (a.k.a. Riegel) model for 2571 runners. Errors are 
calculated as observed vs predicted relative velocities. The error bars 
represent standard errors. The figure illustrates that both models pro-
vide a similar fit for exercise durations in the 2–15 min range but that 
the power-law model provides a better fit outside this range

Fig. 8   Relative error of the hyperbolic (a.k.a. critical-power) model 
vs the power-law (a.k.a. Riegel) model for 3244 athlete seasons in 
rowing. The errors and error bars are calculated as in Fig. 7. The fig-
ure again illustrates that the power-law model describes the data more 
adequately than the hyperbolic model over a wide range of durations 
longer than 2 min (note that results for 1–20 min are inconclusive due 
to the overlapping error bars)
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•	 They require an increased number of unknown param-
eters so that a large number of data points (e.g. from 
arduous critical-power tests or previous races) are needed 
to avoid overfitting—and a number of these data points 
must be from efforts longer than T

∗
 . Additionally, the 

threshold T
∗
 is difficult to choose but its choice affects 

the other model parameters, e.g. CP and W ′ (Puchowicz 
et al. 2020).

•	 They posit a power–duration relationship that is actually 
no longer hyperbolic for exercise intensities above CP (or 
above a similar threshold), i.e. they are not compatible 
with the assumption that athletes have a fixed amount of 
work, W ′ , that they can generate above CP.

•	 They imply a power–duration relationship with unrealis-
tic properties:

–	 For sufficiently long durations, the power–duration 
curve from Péronnet and Thibault (1989), Puchowicz 
et al. (2020) can become negative.

–	 The models from Péronnet and Thibault (1989), 
Puchowicz et al. (2020), Luttikholt and Jones (2022) 
have a “kink” in the power curve as shown in Fig. 10.

The final point connects to our findings from earlier in 
this section, that the hyperbolic model fits power–duration 
(or similar) data reasonably well for exercise durations T  
which are not too short (e.g. at least 2 min) and not too 
long (e.g. at most T

∗
= 15 min). However, as we saw, this is 

only because the hyperbolic function approximates a power 
law reasonably well in this range. Indeed, the fact that the 
hyperbolic assumption is problematic becomes immediately 
apparent in Fig. 10. Here, the need for reconciling the pos-
ited hyperbolic shape over durations T ≤ T

∗
 with the fact 

that the power–duration curve should approach zero as T  
increases (as no exercise intensity can be maintained “for a 
long time without fatigue”) causes a “kink”.

Whilst this kink could be easily smoothed out, this would 
still leave a power–duration curve with turning/inflection 
points.7 Indeed, unless T

∗
 is trivially small, any model which 

combines a hyperbolic curve (below T
∗
 ) with another curve 

that decays to zero for long durations (above T
∗
 ) must exhibit 

such a kink, turning/inflection point or discontinuity. To 
our knowledge, there is no empirical evidence for the exist-
ence of such artefacts8 and this again calls the “hyperbolic” 
assumption into question.

We end this section by comparing, in Fig. 11, the out-
of-sample prediction error of the power-law model with the 
out-of-sample prediction error of all of the above mentioned 
piecewise-defined models, and additionally the three-param-
eter critical-power model (Morton 1996).

Contribution II: Implications for pacing

In this section, we show that the power-law (a.k.a. Riegel) 
model has realistic pacing implications in the sense that 
it implies that over-pacing (e.g. running or riding off too 
quickly) is detrimental to the overall finish time in a race. 

Fig. 9   Relative error of the hyperbolic (a.k.a. critical-power) model 
vs the power-law (a.k.a. Riegel) model for 5805 cyclists. Errors are 
calculated as observed vs predicted relative powers. The error bars 
represent standard errors. The figure shows that errors are similar 
for exercise durations in the 2–15 min range but that the power-law 
model has smaller errors than the hyperbolic model outside this range

Fig. 10   Power–duration relationship of the so-called omni power–
duration models (OmPD, Om3CP and OmExp; with the same thresh-
old T

∗
= 30 min) from Puchowicz et al. (2020) for the data from Leo 

et al. (2022a, Fig. 4) (filled circles)

7  Unless it is smoothed out very heavily but then we would end up 
back with, essentially, a power law.
8  We stress that whilst the data in Fig.  10 exhibit some kinks, e.g. 
at 3, 7 and 12  min, these should not be taken as evidence of kinks 
in the underlying power–duration relationship. Rather, most of the 
other data points likely come from sub-maximal efforts. Indeed, 3, 7 
and 12 min are often-recommended test durations for the hyperbolic 
model (Karsten et al. 2015). Note also that these data were “mined” 
from training history so that multiple points may correspond to the 
same activity and then cannot all represent maximal efforts.
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This is in contrast to the hyperbolic (a.k.a. critical-power) 
model which implies that the safest optimal pacing strategy 
is to sprint off as fast as possible and then “hold on”.

Throughout this section, we assume that we want to gen-
erate some power W  over the shortest possible duration. 
Consider the following constant (“even”) pacing and vari-
able (“uneven”) pacing strategies9:

•	 ������� Generate power P > 0 continuously over dura-
tion T > 0 such that exhaustion occurs at time T  at which 
point work W  has been accumulated, i.e. T ⋅ P = W .

•	 ������� Generate power P1 > 0 until some work 
0 < W1 < W has been accumulated, i.e. maintain P1 over 
the duration T1 ∶= W1∕P1 . Subsequently, maintain the 
highest possible power P1 > 0 which allows further work 
W2 ∶= W −W1 to be accumulated, i.e. maintain P2 over 
the duration T2 ∶= W2∕P2 , where P2 is chosen such that 
exhaustion occurs when work W = W1 +W2 has been 
accumulated, i.e. at time T1 + T2.

Recall that under the assumptions made in  the sec-
tion “Power–duration models”, we can replace “work” by 
“distance” and “power” by “velocity”. For instance, when 
running a 5-km race, the Strategy ������� implies running 
continuously at the highest possible constant velocity that 
can be sustained over D = 5000 m ; Strategy ������� implies 
running parts of the distance at different velocities, e.g. run-
ning the first D1 = 1000 m at some velocity V1 and then run-
ning the remaining D2 = D − D1 = 4000 m at the velocity V2 
which is chosen such that exhaustion occurs when crossing 
the finish line.

Impossibility of over‑pacing under the hyperbolic 
model

Under the hyperbolic model, any pace selection which 
ensures that (a) W ′ is completely depleted by the end of the 
activity (see subsection “Rate-of-exertion interpretation” in 
the section "Hyperbolic (a.k.a. critical-power) model"; (b) 
the power output never drops below CP , is optimal. In prin-
ciple, athletes could just “burn through” their W ′ tank (see 
subsection “Rate-of-exertion interpretation” in the section 
"Hyperbolic (a.k.a. critical-power) model" in the first sec-
ond of the activity and then complete the rest of the activ-
ity at CP . In other words, overpacing is impossible in the 

Fig. 11   Out-of-sample relative predictive error for each piecewise-
defined model vs the power-law model for the running dataset 
from the section  "Large-data study in running". For each athlete, we 
fitted the models to the same six randomly chosen race results and 
predicted average velocities of the remaining races. Note that the 
piecewise-defined models often could not be fitted as they require a 

certain minimum number of data points above and below T
∗
 . When-

ever this happened, we excluded the corresponding athlete to ensure 
that both models in each panel are applied to exactly the same data. 
This figure illustrates that the piecewise-defined models discussed in 
this section suffer from overfitting (at least for the small sample sizes 
that are typically available)

9  To simplify the presentation, we consider a variation in pace over 
only two segments. However, all results remain valid for piecewise-
constant pacing strategies with more than two segments.
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hyperbolic model; athletes only ever need to worry about 
“under-pacing” i.e. accidentally dropping the power output 
below CP . Thus, since CP is unlikely to be known exactly 
to the athlete, the hyperbolic model implies that the safest 
optimal pacing strategy is starting as fast as possible (to 
avoid the risk of dropping the power output below CP ) and 
then simply “holding on”.

This result was already proved in Fukuba and Whipp 
(1999). For completeness, Proposition 1 (proved in Sup-
plementary Information C.1) repeats their result here in 
the setting described above. It shows that in the hyperbolic 
model,10 ������� and ������� strategies both lead to the same 
optimal finishing time as long as P1 ≥ CP , i.e. as long as the 
athlete does not start out too slowly under ������� . The solid 
red line in Fig. 12 visualises Proposition 1 in the context of 
a hypothetical 5-km race (i.e. with power replaced by veloc-
ity and work replaced by distance–see “Hyperbolic (a.k.a. 
critical-power) model”).

Proposition 1  (Fukuba and Whipp 1999) For some 
work W > W

′, let T , P as well as (P
i
, T

i
,W

i
) for i ∈ {1, 2} 

be as in Strategies ������� and �������, with P1 ≠ P, then:

1.	 if P1 ≥ CP, then T1 + T2 = T;
2.	 if P1 < CP, then T1 + T2 > T .

Optimality of even pacing under the power‑law 
model

We now present our main result in this section: Proposition 2 
(proved in Supplementary Information C.2) shows that in the 
power-law model, the “even pacing” strategy, ������� , yields 
better finishing time than the “uneven pacing” strategy, �������
. That is, pacing is crucial in the power-law model: any devia-
tion from the optimal constant pace leads to an increase in the 
finishing time (and overpacing is worse than “under-pacing”). 
The blue line in Fig. 12 visualises the result of Proposition 2. 
To our knowledge, Proposition 2 and its proof (which uses our 
new “rate-of-exertion” interpretation of the power-law model 
presented in subsection “Rate-of-exertion interpretation” of 
the section "Power-law (a.k.a. Riegel) model") are novel.

Proposition 2.  For some work W > 0, let T , P as well as 
(P

i
, T

i
,W

i
) for i ∈ {1, 2} be as in Strategies ������� and 

�������. Then the finish time under �������, T1 + T2, grows 
as the difference between the initial and the optimal even 

power output, ||P1 − P||, increases. In particular, T1 + T2 > T  
whenever P1 ≠ P.

Pacing results in context

We end this section by putting the pacing implications of the 
hyperbolic and power-law models in the context of existing 
research. To ensure that the goal of “winning a race” can 
be used as a proxy for the goal of “minimising the amount 
of time needed to generate a fixed amount of work” which 
we analysed above, we restrict our attention to, essentially, 
time trials that have standard conditions, e.g. constant course 
topography and insignificant wind speeds, constant tempera-
ture/humidity and the absence of tactics/drafting or other 
psychological factors that might interact with pacing. We 
also assume that the race is long enough such that the impact 
of initial acceleration or the waste of kinetic energy at the 
end of the race is negligible (de Koning et al. 2011). Under 
these assumptions, it is thought that the optimal performance 
in a race is achieved through an even-pacing strategy (Abbiss 
and Laursen 2008). For instance:

•	 Running. In long-distance running, even pacing is opti-
mal under models based around physics (Keller 1974). 
Additionally, the previously mentioned online running 
finish time predictors (e.g. Runner’s World Magazine 
2013; Aschwanden 2014) are motivated by the idea an 
even pace is critical to achieving the best possible per-
formance for a given fitness level. Empirically, faster 

Fig. 12   Illustration of Propositions 1 and 2 on a hypothetical 5-km 
race by Eliud Kipchoge. The lines show Kipchoge’s best possible 
finish times according to the hyperbolic (a.k.a. critical-power) and 
power-law (a.k.a. Riegel) model if he maintains the velocity given 
on the first axis over the first kilometre. The model parameters are 
as estimated in the section “Case study from Jones et al. (2019)”; the 
dotted line represents critical velocity. The figure illustrates that the 
power-law model considers over-pacing to be dangerous whilst the 
hyperbolic model does not

10  This shortcoming is even worse under a generalisation of the 
hyperbolic model known as the three-parameter critical-power model 
(Morton 1996) under which an all-out pacing strategy would be 
uniquely optimal as shown in Morton (2009).
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finishing times are also positively correlated with more 
even pacing strategies (e.g. Hoffman 2014; Keogh et al. 
2020). Finally, even pacing is also recommended by most 
coaches (e.g. Galloway 2007; Pfitzinger and Douglas 
2009) and observed in elite athlete performances. For 
instance, the 5-km-split times in Eliud Kipchoge’s sub-
2-h marathon in 2019 were 00:14:12 ( ± 2 s).

•	 Cycling. In cycling, even pacing strategies are consid-
ered to be favourable under the assumptions made above 
(Foster et al. 1993; de Koning et al. 1999; Atkinson and 
Brunskill 2000; Atkinson et al. 2003; Ham and Knez 
2009); see Coakley and Passfield (2018) for a review and 
further references. Under the controlled conditions of a 
60-min world record attempt, the cyclist in Padilla et al. 
(2000, Fig. 2) chose a relatively even pace.

We stress again that the assumptions made in this section, 
and by extension, the optimality of even pacing, may not 
hold in very short races where the impact of initial accel-
eration and wasted kinetic energy at the end as well as of 
other, e.g. physiological or psychological factors, are non-
negligible. For instance:

•	 In a physics-based model from de Koning et al. (1999), 
fast starts are optimal in 1000 m track cycling events. 
However, in longer, e.g. 4000 m events, it is optimal to 
transition to even pacing after a fast start over the first 
few seconds.

•	 Bishop et al. (2002) observed that fast starts over the first 
few seconds (again followed by a transition to constant 
pace) correlated with improved performance in 2-min 
kayak ergometer tests.

•	 Fast starts were observed to correlate with improved per-
formance in 3-min efforts in a study of seven cyclists 
from Bailey et al. (2011). However, this effect was not 
observed in 6-min efforts.11

In summary, the literature appears to be consistent with 
the power-law model’s implication that athletes should 
implement an even pacing strategy (except during the initial 
acceleration phase which can make up a significant propor-
tion of the effort during short races, e.g. sprints) but not 
consistent with the hyperbolic model’s implication that ath-
letes never need to worry about over-pacing (all under the 
assumptions made above).

Contribution III: Modelling fatigue

It has been found that the power–duration curve moves 
downwards as prolonged exercise causes the athlete to 
fatigue (Leo et al. 2021). This behaviour is not captured 
by the hyperbolic (a.k.a. critical-power) model as shown in 
Fig. 13. To circumvent this problem, it has been suggested 
that the parameter CP decreases with fatigue (Spragg et al. 
2022). In this section, we demonstrate that the power-law 
(a.k.a. Riegel) model implies a power–duration curve that 
naturally shifts downwards as the athlete becomes more 
fatigued without any additional modelling efforts.

Fatigued power–duration relationship

Assume that an athlete exercises at some constant intensity 
P > 0  for some duration t ≥ 0 . If exhaustion has not yet set 
in at time t  , then we may be interested in the power–dura-
tion relationship of this already partially fatigued athlete. 
We call this the fatigued power–duration relationship. The 
specific form of the fatigued power–duration relationship 
depends on the chosen model for the fresh (i.e. non-fatigued) 
power–duration relationship. Figure 13 illustrates that the 
hyperbolic and power-law model imply a quite different 
behaviour of the fatigued power–duration relationship of a 
cyclist who has already exercised at power output P = 407 
[J/s] for t = 0, 45, 55 or 60 min. The model parameters are 
W

�
= 25, 500 , CP = 400 , F = 1.05 , and S is chosen such 

that the time to exhaustion at power output P is the same in 
both models. Figure 13 illustrates the following (where t is 
measured in seconds):

•	 Hyperbolic model. Under the hyperbolic model, the 
fatigued power–duration relationship again follows a 
hyperbolic model but with W ′ replaced by

•	 Power-law model.  Under the power-law model, the 
fatigued power–duration relationship again follows a 
power-law model but with S replaced by

The result in (6) follows directly from the subsection 
“Rate-of-exertion interpretation” in the section "Hyperbolic 
(a.k.a. critical-power) model"; the result in (7) is a conse-
quence of the novel “Rate-of-exertion interpretation” of the 
power-law model which we introduced in the subsection 
“Rate-of-exertion interpretation” in the section "Power-law 
(a.k.a. Riegel) model". More details are given in Supplemen-
tary Information D.

(6)W
�
− t(P − CP).

(7)
(
S1∕(1−E) − tP1∕(1−E)

)1−E
.

11  Fast starts were also observed to correlate with an increased time 
to exhaustion in a study of another seven cyclists from Jones et  al. 
(2008). However, although fast, slow and even starters accumulated 
the same amount of work over the initial two minutes, the protocol 
was not identical for these three conditions afterwards. That is, fast 
starters may have had a longer time to exhaustion simply because 
they continued to slow down beyond two minutes whereas the even 
starters had to keep their (already relatively fast) pace.
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Problems of the “critical power decreases 
with fatigue” hypothesis

The behaviour of the hyperbolic model shown in Fig. 13 (i.e. 
the implication that an athlete can always maintain power 
output equal to at least CP even when heavily fatigued) con-
tradicts empirical evidence and it has therefore been argued 
that CP and W ′ should be treated as dynamic quantities that 
diminish with fatigue (Clark et al. 2019; Spragg et al. 2022). 
However, assuming that CP varies with exercise-induced 
fatigue has two drawbacks.

•	 Not inherent in the model. This assumption requires 
additional modelling and data-collection efforts.

•	 Logical contradiction. This assumption is also con-
tradictory because if CP decreases with exercise (spe-
cifically: with exercise-induced fatigue) then the power–
duration relationship is actually no longer hyperbolic 
(neither for a fresh nor for a fatigued athlete), i.e. the 
notion of a “rested” or “fatigued” critical power is not 
even well defined. To our knowledge, this problem has 
not been pointed out or addressed in the literature.

In contrast, for the power-law model, Fig. 13 illustrates that 
the power–duration curve is naturally scaled downwards as the 
athlete becomes more fatigued. Crucially, this is inherent in 
the model, i.e. it does not lead to any logical contradictions and 
no additional data-collection or modelling efforts are needed.

Conclusions

We have demonstrated, both empirically and theoretically, 
that the power–duration relationship is more adequately rep-
resented by the power-law (a.k.a. Riegel) model than by the 

hyperbolic (a.k.a. critical-power) model. In particular, our 
work highlights the following.

1.	 The power-law model fits power–duration data, e.g. in 
cycling or rowing, and race results in running better than 
the hyperbolic model over a wide range of exercise dura-
tions or race distances.

2.	 The power-law model is applicable to a wide range of 
exercise intensities, durations or distances. In contrast, 
the hyperbolic is restricted to a very limited range of 
durations, i.e. between 2 and around 15–25 min.

3.	 The power-law model only has two parameters, just like 
the hyperbolic model, and is just as easy to fit.

4.	 The power-law model appears to be a safer tool for pace 
selection than the hyperbolic model (except in short 
sprint races) because it accounts for the fact that over-
pacing, e.g. sprinting off on the first kilometre of a long-
distance race, is detrimental to the overall performance.

5.	 The power-law model implies that the power–dura-
tion relationship changes with fatigue in a manner that 
appears to be in closer agreement with empirical evi-
dence than the fatigued power–duration relationship 
implied by the hyperbolic model.

We stress that we do not claim that the power-law model 
is “correct”. Indeed, both models likely constitute gross 
simplifications of reality. For instance, Blythe and Király 
(2016) found that it can be improved by including addi-
tional (individual) correction factors. However, given the 
choice between the hyperbolic model and the power-law 
model, Points 1–5 above leave very little reason for choos-
ing the former over the latter for fitness assessment or per-
formance prediction in athletes. The only exception is the 
modelling of intermittent exercise because, as discussed 

Fig. 13   Fatigued power–duration relationship implied by the hyper-
bolic (a.k.a. critical-power) and power-law (a.k.a. Riegel) models for 
a cyclist who has already exercised 0, 45, 55 or 60 min at constant 

power output P = 407 J/s. The figure illustrates the downward shift of 
the power–duration curve under the power-law model (but not under 
the hyperbolic model) as the athlete becomes more fatigued
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below, the power-law model cannot easily incorporate 
recovery.

Implications for the notion of “critical power”.

It is important to recognise that the term “critical power” 
(similarly: “critical velocity” or “critical speed”) can refer 
to two notions which are, in principle, distinct:

•	 ������� The power asymptote of the hyperbolic model, 
i.e. the parameter CP.

•	 �������� A threshold which is thought to separate distinct 
physiological responses, and by extension, the “heavy” 
from the “severe” exercise intensity domain.

Note that critical power in the sense of ������� only 
exists because the power–duration relationship is modelled 
by a hyperbolic function—it does not exist if the data are 
modelled via a power law which, our work suggests, is the 
more appropriate functional form. In this precise sense, criti-
cal power could be called a “mathematical artefact” as is fre-
quently done by its critics (e.g. Gorostiaga et al. 2022b). The 
same applies to finite work capacity above critical power, 
W

′ . Athletes and coaches should keep this in mind when 
assessing the meaningfulness of CP and W ′ as metrics for 
fitness assessment.

We stress that the previous interpretation only con-
cerns ������� . �������� , i.e. the notion of critical power 
as a “physiological threshold” is, in principle, a separate 
concept. Nonetheless, despite being a physiological thresh-
old, �������� is not easily determined from physiological 
measurements. Instead, it is commonly argued that �������� 
coincides with ������� so that it can be identified by fit-
ting the hyperbolic model to power–duration measurements. 
Implicit in this practice is the assumption that the changes 
in physiological responses which separate the “heavy” from 
the “severe” exercise intensity domain manifest themselves 
in a “levelling off” of the power–duration curve towards 
�������� as durations increase towards, say, 15 or 20 min. 
However, our work suggests that this is not the case. Indeed, 
if it was the case, the hyperbolic model would fit better than 
the power-law model for durations up to 15 or 20 min.

Implications for training prescription

Athletes and coaches often use critical power/velocity (in the 
sense of ������� ) to select training intensities. We stress that 
setting training intensities is still possible if we instead use 
the power-law model. In fact, this is consistent with existing 
practice. For instance:

•	 In cycling, training intensities are often based on the 
power that an athlete can sustain for some specific dura-
tion (e.g. 60 min in the case of FTP);

•	 In running, training velocities are often based on the 
velocity that the runner can sustain over some specific 
distance (e.g. “5-km pace”, “marathon pace” or “half-
marathon pace”).

In both cases, the power-law model gives a straightfor-
ward and principled way of estimating the required powers/
velocities, e.g. it allows athletes to easily calculate how fast 
an individual athlete’s “marathon pace” actually is.

Limitations

The power-law model also has two limitations (though the 
first is shared by the hyperbolic model):

1.	 The power-law model assumes that athletes have to 
come to a complete stop from one second to the next 
when reaching the limit implied by the power–duration 
curve (i.e. when their “fatigue” in (5) reaches 1). For 
instance, the power-law model cannot explain the grad-
ual decrease in power output observed in a three-minute 
all-out test (Burnley et al. 2006, Fig. 3A) (however, nei-
ther can the hyperbolic model). This property may also 
mean that the penalty for over-pacing shown in Fig. 12 
is too harsh.

2.	 Unlike the hyperbolic model, the power-law model can-
not easily be extended to incorporate recovery (such as 
in Morton and Billat 2004) due to lack of a “critical 
power” threshold below which recovery can be assumed 
to occur. We could, of course, easily add a positive con-
stant to (3) as in Tsai (2015) to obtain such a threshold 
but this would again imply that there exists a non-zero 
power output which can be sustained for a “very long 
time without fatigue”.

We are currently developing a new model which retains 
the advantages of the power-law model whilst resolving both 
Limitations 1 and 2 (Finke et al. n.d.).

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s00421-​023-​05274-5.

Acknowledgements  We are very grateful to Dr Mark Burnley for valu-
able comments on an initial version of the manuscript. We would like 
to thank Dr Peter Leo for providing the power-duration data used in 
Fig. 10.

Author contributions  JD: Conceptualisation, software, formal analy-
sis, data curation, visualisation, drafting, reviewing, and editing. AF: 
Conceptualisation, methodology, formal analysis, visualisation, draft-
ing, reviewing, and editing. RF: Conceptualisation, drafting, reviewing, 
and editing.

https://doi.org/10.1007/s00421-023-05274-5


524	 European Journal of Applied Physiology (2024) 124:507–526

1 3

Funding  No sources of funding were used to assist in the preparation 
of this article.

Availability of data and material  All data sets used in this manuscript 
are publicly available. The running data used in “Large-data study in 
running” is available at the following links https://​figsh​are.​com/​artic​
les/​thepo​werof​10/​34082​02, https://​figsh​are.​com/​artic​les/​Ful_​code_​to_​
Predi​ction_​and_​Quant​ifica​tion_​of_​Indiv​idual_​Athle​tic_​Perfo​rmance_​
of_​Runne​rs_/​34082​50. The rowing data set used in “Large-data study 
in rowing” is available from www.​nonat​hlon.​com. The cycling data set 
used in “Large-data study in cycling” is available from https://​github.​
com/​Golde​nChee​tah/​OpenD​ata. Preliminary version of this work has 
been deposited on bioRxiv https://​doi.​org/​10.​1101/​2022.​08.​31.​506028.

Code availability  The code to produce the figures in this paper is avail-
able at the following link (https://​github.​com/​jonah​d99/​PL_​vs_​CP).

Declarations 

Conflict of interest  The authors declare no conflicts of interest.

Ethics approval  Not applicable.

Consent to participate  Not applicable.

Consent for publication  Not applicable.

Open Access   This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

Abbiss CR, Laursen PB (2008) Describing and understanding 
pacing strategies during athletic competition. Sports Med 
38(3):239–252

Abdalla LHP, Greco CC, Denadai BS (2023) Critical power: evidence-
based robustness. Scand J Med Sci Sports 33(1):99–100

Altuna A, Hopker J (2022) Commentary on “Over 55 years of critical 
power: fact or artifact.” Scand J Med Sci Sports 32(3):636–637

Aschwanden C (2014) Introducing Slate’s marathon time predictor. 
http://​www.​slate.​com/​artic​les/​sports/​sports_​nut/​2014/​10/​runni​ng_​
calcu​lator_​intro​ducing_​slate_s_​marat​hon_​time_​predi​ctor_a_​bet-
ter.​html. Accessed 27 Jan 2022

Aschwanden C (2016) Tell us two things and we’ll tell you how fast 
you’d run a marathon. https://​fivet​hirty​eight.​com/​featu​res/​tell-​us-​
two-​things-​and-​well-​tell-​you-​how-​fast-​youd-​run-a-​marat​hon/. 
Accessed 15 June 2022

Atkinson G, Brunskill A (2000) Pacing strategies during a cycling 
time trial with simulated headwinds and tailwinds. Ergonomics 
43(10):1449–1460

Atkinson G, Davison R, Jeukendrup A, Passfield L (2003) Science and 
cycling: current knowledge and future directions for research. J 
Sports Sci 21(9):767–787

Bailey SJ, Vanhatalo A, Dimenna FJ, Wilkerson DP, Jones AM (2011) 
Fast-start strategy improves VO2 kinetics and high-intensity exer-
cise performance. Med Sci Sports Exerc 43(3):457–467

Billat VL, Mouisel E, Roblot N, Melki J (2005) Inter-and intras-
train variation in mouse critical running speed. J Appl Physiol 
98(4):1258–1263

Bishop D, Jenkins DG, Howard A (1998) The critical power function is 
dependent on the duration of the predictive exercise tests chosen. 
Int J Sports Med 19(02):125–129

Bishop D, Bonetti D, Dawson B (2002) The influence of pacing strat-
egy on VO2 and supra-maximal kayak performance. Med Sci 
Sports Exerc 34(6):1041–1047

Black MI, Simpson LP, Goulding RP, Spragg J (2022) A critique 
of “a critical review of critical power.” Eur J Appl Physiol 
122(7):1745–1746

Blythe DA, Király FJ (2016) Prediction and quantification of indi-
vidual athletic performance of runners. PLoS ONE 11(6):1–16

Broxterman RM, Craig JC, Kirby BS (2022) Critical power: over 
95 years of evidence and evolution. Scand J Med Sci Sports 
32(5):933–934

Burnley M (2022a) Critical power is the severe intensity domain 
boundary, not a power output that can be maintained “for 
a very long time without fatigue.” Eur J Appl Physiol 
122(7):1741–1742

Burnley M (2022b) Flawed analysis and erroneous interpretations of 
the critical power concept: response to Mr. Dotan. Eur J Appl 
Physiol 123:211–213

Burnley M, Doust JH, Vanhatalo A (2006) A 3-min all-out test to deter-
mine peak oxygen uptake and the maximal steady state. Med Sci 
Sports Exerc 38(11):1995–2003

Clark IE, Vanhatalo A, Thompson C, Joseph C, Black MI, Blackwell 
JR, Wylie LJ, Tan R, Bailey SJ, Wilkins BW et al (2019) Dynam-
ics of the power-duration relationship during prolonged endurance 
exercise and influence of carbohydrate ingestion. J Appl Physiol 
127(3):726–736

Coakley SL (2015) Individualised methods of prescribing exercise in 
cycling. PhD thesis, University of Kent

Coakley SL, Passfield L (2018) Cycling performance is superior for 
time-to-exhaustion versus time-trial in endurance laboratory tests. 
J Sports Sci 36(11):1228–1234

de Koning JJ, Bobbert MF, Foster C (1999) Determination of optimal 
pacing strategy in track cycling with an energy flow model. J Sci 
Med Sport 2(3):266–277

de Koning JJ, Foster C, Lucia A, Bobbert MF, Hettinga FJ, Porcari JP 
(2011) Using modeling to understand how athletes in different 
disciplines solve the same problem: swimming versus running 
versus speed skating. Int J Sports Physiol Perform 6(2):276–280

Dotan R (2022a) A critical review of critical power. Eur J Appl Physiol 
122(7):1559–1588

Dotan R (2022b) Crystallization of the critical power controversy: 
response to Black et al. Eur J Appl Physiol 122(7):1747–1748

Dotan R (2022bc) Unwarranted manipulation of the critical 
power concept: response to Dr. Burnley. Eur J Appl Physiol 
122(7):1743–1744

Finke A, Drake J, Ferguson RA (n.d.) EFRT: A model for tracking 
exercise, fatigue and recovery (Manuscript in preparation)

Foster C, Snyder A, Thompson NN, Green MA, Foley M, Schrager M 
(1993) Effect of pacing strategy on cycle time trial performance. 
Med Sci Sports Exerc 25(3):383–388

Fukuba Y, Whipp BJ (1999) A metabolic limit on the ability to make up 
for lost time in endurance events. J Appl Physiol 87(2):853–861

Fukuda DH, Smith AE, Kendall KL, Dwyer TR, Kerksick CM, Beck 
TW, Cramer JT, Stout JR (2010) The effects of creatine loading 
and gender on anaerobic running capacity. J Strength Cond Res 
24(7):1826–1833

https://figshare.com/articles/thepowerof10/3408202
https://figshare.com/articles/thepowerof10/3408202
https://figshare.com/articles/Ful_code_to_Prediction_and_Quantification_of_Individual_Athletic_Performance_of_Runners_/3408250
https://figshare.com/articles/Ful_code_to_Prediction_and_Quantification_of_Individual_Athletic_Performance_of_Runners_/3408250
https://figshare.com/articles/Ful_code_to_Prediction_and_Quantification_of_Individual_Athletic_Performance_of_Runners_/3408250
http://www.nonathlon.com
https://github.com/GoldenCheetah/OpenData
https://github.com/GoldenCheetah/OpenData
https://doi.org/10.1101/2022.08.31.506028
https://github.com/jonahd99/PL_vs_CP
http://creativecommons.org/licenses/by/4.0/
http://www.slate.com/articles/sports/sports_nut/2014/10/running_calculator_introducing_slate_s_marathon_time_predictor_a_better.html
http://www.slate.com/articles/sports/sports_nut/2014/10/running_calculator_introducing_slate_s_marathon_time_predictor_a_better.html
http://www.slate.com/articles/sports/sports_nut/2014/10/running_calculator_introducing_slate_s_marathon_time_predictor_a_better.html
https://fivethirtyeight.com/features/tell-us-two-things-and-well-tell-you-how-fast-youd-run-a-marathon/
https://fivethirtyeight.com/features/tell-us-two-things-and-well-tell-you-how-fast-youd-run-a-marathon/


525European Journal of Applied Physiology (2024) 124:507–526	

1 3

Fukuda DH, Smith AE, Kendall KL, Cramer JT, Stout JR (2011) The 
determination of critical rest interval from the intermittent critical 
velocity test in club-level collegiate hockey and rugby players. J 
Strength Cond Res 25(4):889–895

Galloway J (2007) The positives of negative splits. https://​www.​runne​
rswor​ld.​com/​train​ing/​a2079​0534/​learn-​how-​to-​run-​negat​ive-​
splits/. Accessed 21 Dec 2021

García-Manso JM, Martín-González JM, Dávila N, Arriaza E (2005) 
Middle and long distance athletics races viewed from the perspec-
tive of complexity. J Theor Biol 233(2):191–198

García-Manso J, Martín-González J, Vaamonde D, Da Silva-Grigoletto 
M (2012) The limitations of scaling laws in the prediction of per-
formance in endurance events. J Theor Biol 300:324–329

Girardi M, Gattoni C, Sponza L, Marcora SM, Micklewright D (2022) 
Performance prediction, pacing profile and running pattern of elite 
1-h track running events. Sport Sci Health 18:1457–1474

Gordon S (2005) Optimising distribution of power during a cycling 
time trial. Sports Eng 8(2):81–90

Gorostiaga EM, Sánchez-Medina L, Garcia-Tabar I (2022a) Critical 
power: over 95 years of “evidence” and “evolution.” Scand J Med 
Sci Sports 32(6):1069–1071

Gorostiaga EM, Sánchez-Medina L, Garcia-Tabar I (2022b) Over 55 
years of critical power: fact or artifact? Scand J Med Sci Sports 
32(1):116–124

Gorostiaga EM, Sánchez-Medina L, Garcia-Tabar I (2022c) Response 
to commentaries on: “Over 55 years of critical power: fact or 
artifact?” Scand J Med Sci Sports 32(5):935–936

Gorostiaga EM, Garcia-Tabar I, Luis S (2023) Critical power: artifact-
based weaknesses. Scand J Med Sci Sports 33(1):101–103

Ham DJ, Knez WL (2009) An evaluation of 30-km cycling time trial 
(TT30) pacing strategy through time-to-exhaustion at average 
TT30 pace. J Strength Cond Res 23(3):1016–1021

Hill AV (1925) The physiological basis of athletic records. The Scien-
tific Monthly 21(4):409–428

Hill DW (1993) The critical power concept. Sports Med 16(4):237–254
Hill DW, Alain C, Kennedy MD (2003) Modeling the relationship 

between velocity and time to fatigue in rowing. Med Sci Sports 
Exerc 35(12):2098–2105

Hinckson EA, Hopkins WG (2005) Reliability of time to exhaustion 
analyzed with critical-power and log–log modeling. Med Sci 
Sports Exerc 37(4):696–701

Hoffman MD (2014) Pacing by winners of a 161-km mountain ultra-
marathon. Int J Sports Physiol Perform 9(6):1054–1056

Housh DJ, Housh TJ, Bauge SM (1989) The accuracy of the critical 
power test for predicting time to exhaustion during cycle ergom-
etry. Ergonomics 32(8):997–1004

Jones AM, Vanhatalo A (2017) The ‘critical power’ concept: applica-
tions to sports performance with a focus on intermittent high-
intensity exercise. Sports Med 47(1):65–78

Jones AM, Wilkerson D, Vanhatalo A, Burnley M (2008) Influence of 
pacing strategy on O2 uptake and exercise tolerance. Scand J Med 
Sci Sports 18(5):615–626

Jones AM, Vanhatalo A, Burnley M, Morton RH, Poole DC (2010) 
Critical power: implications for determination of VO2max and 
exercise tolerance. Med Sci Sports Exerc 42(10):1876–1890

Jones AM, Burnley M, Black MI, Poole DC, Vanhatalo A (2019) The 
maximal metabolic steady state: redefining the ‘gold standard.’ 
Physiol Rep 7(10):e14098

Karsten B, Jobson SA, Hopker J, Stevens L, Beedie C (2015) Validity 
and reliability of critical power field testing. Eur J Appl Physiol 
115(1):197–204

Keller JB (1974) Optimal velocity in a race. Am Math Mon 
81(5):474–480

Kennelly AE (1906) An approximate law of fatigue in the speeds of 
racing animals. Proc Am Acad Arts Sci 42(15):275–331

Keogh A, Sheridan OO, McCaffrey O, Dunne S, Lally A, Doherty C 
(2020) The determinants of marathon performance: an observa-
tional analysis of anthropometric, pre-race and in-race variables. 
Int J Exerc Sci 13(6):1132–1142

Kranenburg KJ, Smith DJ (1996) Comparison of critical speed deter-
mined from track running and treadmill tests in elite runners. Med 
Sci Sports Exerc 28(5):614–618

Lauderdale M, Hinchcliff K (1999) Hyperbolic relationship between 
time-to-fatigue and workload. Equine Vet J 31(30):586–590

Laursen PB, Francis GT, Abbiss CR, Newton MJ, Nosaka K (2007) 
Reliability of time-to-exhaustion versus time-trial running tests in 
runners. Med Sci Sports Exerc 39(8):1374–1379

Leo P, Spragg J, Mujika I, Giorgi A, Lorang D, Simon D, Lawley J 
(2021) Power profiling, workload characteristics, and race perfor-
mance of U23 and professional cyclists during the multistage race 
tour of the alps. Int J Sports Physiol Perform 16(8):1089–1095

Leo P, Spragg J, Podlogar T, Lawley J, Mujika I (2022a) Power profil-
ing and the power-duration relationship in cycling: a narrative 
review. Eur J Appl Physiol 122(2):301–316

Leo P, Spragg J, Simon D, Lawley J, Mujika I (2022b) Climbing per-
formance in U23 and professional cyclists during a multi-stage 
race. Int J Sports Med 43(02):161–167

Lietzke MH (1954) An analytical study of world and Olympic racing 
records. Science 119(3089):333–336

Lindinger MI (2022) Critically assessing paradigms in applied exercise 
physiology. Eur J Appl Physiol 122(7):1543–1544

Luttikholt H, Jones AM (2022) Effect of protocol on peak power output 
in continuous incremental cycle exercise tests. Eur J Appl Physiol 
122(3):757–768

Marwood S, Goulding RP (2022) 55 years of critical power: fact. Scand 
J Med Sci Sports 32(6):1064–1065

McClave SA, LeBlanc M, Hawkins SA (2011) Sustainability of criti-
cal power determined by a 3-minute all-out test in elite cyclists. J 
Strength Cond Res 25(11):3093–3098

Monod H, Scherrer J (1965) The work capacity of a synergic muscular 
group. Ergonomics 8(3):329–338

Morton RH (1996) A 3-parameter critical power model. Ergonomics 
39(4):611–619

Morton RH (2009) A new modelling approach demonstrating the ina-
bility to make up for lost time in endurance running events. IMA 
J Manag Math 20(2):109–120

Morton RH, Billat LV (2004) The critical power model for intermittent 
exercise. Eur J Appl Physiol 91(2):303–307

Nicolò A, Bazzucchi I, Sacchetti M (2017) Parameters of the 3-min-
ute all-out test: overestimation of competitive-cyclist time-trial 
performance in the severe-intensity domain. Int J Sports Physiol 
Perform 12(5):655–661

Nimmerichter A, Novak N, Triska C, Prinz B, Breese BC (2017) Valid-
ity of treadmill-derived critical speed on predicting 5000-metre 
track-running performance. J Strength Cond Res 31(3):706–714

Okuno NM, Perandini LA, Bishop D, Simões HG, Pereira G, Berth-
oin S, Kokubun E, Nakamura FY (2011) Physiological and 
perceived exertion responses at intermittent critical power and 
intermittent maximal lactate steady state. J Strength Cond Res 
25(7):2053–2058

Osiecki R, Nascimento VB, Daros LB, Becker D, Stanganélli LCR, 
Carlos A (2014) Prediction of swimming performance over 200 m 
and 400 m freestyle through the log–log model and critical power 
model. J Exerc Physiol Online 17(1):58–67

Padilla S, Mujika I, Angulo F, Goiriena JJ (2000) Scientific approach 
to the 1-h cycling world record: a case study. J Appl Physiol 
89(4):1522–1527

Pallarés JG, Lillo-Bevia JR, Morán-Navarro R, Cerezuela-Espejo V, 
Mora-Rodriguez R (2020) Time to exhaustion during cycling is 
not well predicted by critical power calculations. Appl Physiol 
Nutr Metab 45(7):753–760

https://www.runnersworld.com/training/a20790534/learn-how-to-run-negative-splits/
https://www.runnersworld.com/training/a20790534/learn-how-to-run-negative-splits/
https://www.runnersworld.com/training/a20790534/learn-how-to-run-negative-splits/


526	 European Journal of Applied Physiology (2024) 124:507–526

1 3

Passfield L, Coakley S, Jobson S (2013) Cycling endurance perfor-
mance is described by the power-law not critical power. In: Con-
gress of the European college on sports science in Barcelona, 
Spain. Poster presentation (Abstract ID: 18–1730)

Patoz A, Spicher R, Pedrani N, Malatesta D, Borrani F (2021) Critical 
speed estimated by statistically appropriate fitting procedures. Eur 
J Appl Physiol 121(7):2027–2038

Péronnet F, Thibault G (1989) Mathematical analysis of running perfor-
mance and world running records. J Appl Physiol 67(1):453–465

Petrigna L, Karsten B, Delextrat A, Pajaujiene S, Mani D, Paoli A, 
Palma A, Bianco A (2022) An updated methodology to estimate 
critical velocity in front crawl swimming: a scoping review. Sci 
Sports 37(5–6):373–382

Pfitzinger P, Douglas S (2009) Advanced marathoning, 2nd edn. 
Human Kinetics, Champaign

Pinot J, Grappe F (2011) The record power profile to assess perfor-
mance in elite cyclists. Int J Sports Med 32(11):839–844

Poole DC, Burnley M, Vanhatalo A, Rossiter HB, Jones AM (2016) 
Critical power: an important fatigue threshold in exercise physiol-
ogy. Med Sci Sports Exerc 48(11):2320

Puchowicz MJ, Mizelman E, Yogev A, Koehle MS, Townsend NE, 
Clarke DC (2018) The critical power model as a potential tool for 
anti-doping. Front Physiol 9(643):1–21

Puchowicz MJ, Baker J, Clarke DC (2020) Development and field vali-
dation of an omni-domain power-duration model. J Sports Sci 
38(7):801–813

Riegel PS (1977) Time predicting. Runner’s World Magazine, Emmaus
Riegel PS (1981) Athletic records and human endurance. Am Sci 

69(3):285–290
Runner’s World Magazine (2013) RW’s race time predictor. https://​

www.​runne​rswor​ld.​com/​uk/​train​ing/​a7616​81/​rws-​race-​time-​predi​
ctor/. Accessed 13 Dec 2021

Spragg J, Leo P, Swart J (2022) The relationship between physiological 
characteristics and durability in male professional cyclists. Med 
Sci Sports Exerc 55:133–140

Stout JR, Eckerson JM, Housh TJ, Ebersole KT (1999) The effects 
of creatine supplementation on anaerobic working capacity. J 
Strength Cond Res 13(2):135–138

Triska C, Karsten B (2022) Letter to the editor: “Over 55 years 
of critical power: fact or artifact?” Scand J Med Sci Sports 
32(6):1066–1067

Tsai MC (2015) Revisiting the power-duration relationship and devel-
oping alternative protocols to estimate critical power parameters. 
PhD thesis, University of Toronto, Canada

Vandewalle H (2018) Modelling of running performances: compari-
sons of power-law, hyperbolic, logarithmic, and exponential mod-
els in elite endurance runners. Biomed Res Int 2018:1–23

Vandewalle H, Vautier J, Kachouri M, Lechevalier J, Monod H (1997) 
Work-exhaustion time relationships and the critical power con-
cept. A critical review. J Sports Med Phys Fitness 37(2):89–102

Vanhatalo A, Doust JH, Burnley M (2007) Determination of critical 
power using a 3-min all-out cycling test. Med Sci Sports Exerc 
39(3):548–555

Vanhatalo A, Jones AM, Burnley M (2011) Application of critical 
power in sport. Int J Sports Physiol Perform 6(1):128–136

Vickers AJ, Vertosick EA (2016) An empirical study of race times in 
recreational endurance runners. BMC Sports Sci Med Rehabil 
8(1):1–9

Wakayoshi K, Ikuta K, Yoshida T, Udo M, Moritani T, Mutoh Y, 
Miyashita M (1992) Determination and validity of critical velocity 
as an index of swimming performance in the competitive swim-
mer. Eur J Appl Physiol 64(2):153–157

World Athletics (2021) Athletes hub. https://​www.​world​athle​tics.​org/​
athle​tes. Accessed: 05 Nov 2021

Zinoubi B, Vandewalle H, Driss T (2017) Modeling of running perfor-
mances in humans: comparison of power laws and critical speed. 
J Strength Cond Res 31(7):1859–1867

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://www.runnersworld.com/uk/training/a761681/rws-race-time-predictor/
https://www.runnersworld.com/uk/training/a761681/rws-race-time-predictor/
https://www.runnersworld.com/uk/training/a761681/rws-race-time-predictor/
https://www.worldathletics.org/athletes
https://www.worldathletics.org/athletes

	Modelling human endurance: power laws vs critical power
	Abstract
	Introduction
	The power–duration relationship
	Recent debate about the critical-power paradigm
	Contributions
	Related literature

	Power–duration models
	Hyperbolic (a.k.a. critical-power) model
	The model
	Range of validity
	Estimation
	Rate-of-exertion interpretation

	Power-law (a.k.a. Riegel) model
	The model
	Range of validity
	Estimation
	Rate-of-exertion interpretation


	Contribution I: Fit over different durations
	Case study from Jones et al. (2019)
	Case study from Jones and Vanhatalo (2017)
	Large-data study in running
	Large-data study in rowing
	Large-data study in cycling
	Piecewise-defined models

	Contribution II: Implications for pacing
	Impossibility of over-pacing under the hyperbolic model
	Optimality of even pacing under the power-law model
	Pacing results in context

	Contribution III: Modelling fatigue
	Fatigued power–duration relationship
	Problems of the “critical power decreases with fatigue” hypothesis

	Conclusions
	Implications for the notion of “critical power”.
	Implications for training prescription
	Limitations

	Acknowledgements 
	References




