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Abstract
Purpose Exposure to environmental heat stress increases carbohydrate oxidation and extracellular heat shock protein 70 
(HSP70) concentrations during endurance exercise at matched absolute, external work rates. However, a reduction in abso-
lute work rate typically occurs when unacclimated endurance athletes train and/or compete in hot environments. We sought 
to determine the effect of environmental heat stress on carbohydrate oxidation rates and plasma HSP70 expression during 
exercise at matched heart rates (HR).
Methods Ten endurance-trained, male cyclists performed two experimental trials in an acute, randomised, counterbalanced 
cross-over design. Each trial involved a 90-min bout of cycling exercise at 95% of the HR associated with the first ventilatory 
threshold in either 18 (TEMP) or 33 °C  (HEAT), with ~ 60% relative humidity.
Results Mean power output (17 ± 11%, P < 0.001) and whole-body energy expenditure (14 ± 8%, P < 0.001) were signifi-
cantly lower in HEAT. Whole-body carbohydrate oxidation rates were significantly lower in HEAT (19 ± 11%, P = 0.002), 
while fat oxidation rates were not different between-trials. The heat stress-induced reduction in carbohydrate oxidation was 
associated with the observed reduction in power output (r = 0.64, 95% CI, 0.01, 0.91, P = 0.05) and augmented sweat rates 
(r = 0.85, 95% CI, 0.49, 0.96, P = 0.002). Plasma HSP70 and adrenaline concentrations were not increased with exercise in 
either environment.
Conclusion These data contribute to our understanding of how moderate environmental heat stress is likely to influence 
substrate oxidation and plasma HSP70 expression in an ecologically-valid model of endurance exercise.
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Abbreviations
ATP  Adenosine triphosphate
CHO  Carbohydrate
EE  Energy expenditure
ELISA  Enzyme-linked immunosorbent assay
HR  Heart rate
HSP  Heat shock protein
rH  Relative humidity
RPE  Rating of perceived exertion
Tins  Insulated skin temperature
Tmus  Muscle temperature

Tre  Rectal temperature
V̇E ⋅ VCO−1

2
  Ventilatory equivalent for carbon dioxide

V̇E ⋅ VO−1
2

  Ventilatory equivalent for oxygen
V̇CO2  Volume of carbon dioxide production
V̇O2  Volume of oxygen uptake
V̇O2peak  Peak oxygen uptake
VT1  First ventilatory threshold

Introduction

During endurance exercise, carbohydrates and fatty acids 
are the primary substrates oxidised to support the adenosine 
triphosphate (ATP) turnover required for repeated skeletal 
muscle contraction (Hawley and Leckey 2015; O’Brien et al. 
1993; Watt et al. 2002). The absolute and relative contribu-
tions made by these substrates to total energy expenditure 
is largely determined by exercise intensity and duration 
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(Jeukendrup et al. 1998; Romijn et al. 1993; Watt et al. 
2002). Additionally, environmental heat stress increases 
carbohydrate and reduces fat oxidation during exercise at 
given work rates (Febbraio et al. 1994a, b; Jentjens et al. 
2002; Hargreaves et al. 1996a). This shift in substrate uti-
lisation may be explained by heat-stress-induced increases 
in core and muscle temperatures (Febbraio et al. 1994a, b; 
Fernández-Elías et al. 2015), dehydration (Wilson et al. 
1977; Febbraio et al. 1996, 1998), and increases in circulat-
ing adrenaline concentrations (González-Alonso et al. 1999; 
Hargreaves et al. 1996b; Powers et al. 1985). The metabolic 
response to exercise has implications for fatigue (Bergström 
and Hultman 1967), the adaptive response to training (Philp 
et al. 2012), and refuelling requirements (Impey et al. 2018).

Exposure to environmental heat stress during endurance 
exercise also increases intracellular and extracellular heat 
shock protein 72 (HSP72) concentrations (Gibson et al. 
2014; Magalhães et al. 2010; Marshall et al. 2006; Morton 
et al. 2006; Périard et al. 2012; Whitham et al. 2007). Intra-
cellular HSP72 acts as a molecular chaperone that accom-
panies misfolded and denatured proteins to maintain cellular 
homeostasis (Whitham and Fortes 2008), and subsequently 
contributes to the development of thermotolerance (Li et al. 
1995; Liu et al. 1992). In skeletal muscle, this chaperoning 
function of HSP72 may contribute to mitochondrial adap-
tations to endurance exercise training (Henstridge et al. 
2014; Skidmore et al. 1995; Young et al. 2003). Mecha-
nistically, HSP72 is released into the circulation through 
the α1-adrenoceptor pathway, and is therefore stimulated by 
circulating catecholamines (Johnson et al. 2005; Whitham 
et al. 2006), which are increased by exercise (Febbraio et al. 
2002a; Walsh et al. 2001). During stress, the elevation of 
extracellular HSP72 expression may act a ‘danger signal’ 
to prime or enhance immunologic responses (Fleshner 
and Johnson 2005; Fleshner et al. 2003). It is possible that 
HSP72 responses are influenced by exercise in a duration-
and-intensity dependent manner (Fehrenbach et al. 2005; 
Liu et al. 1999).

Previous research has studied these stimulatory effects of 
environmental heat stress on substrate metabolism (Maun-
der et al. 2020; Febbraio et al. 1994a; Jentjens et al. 2002; 
Young et al. 1985; Marino et al. 2001) and HSP72 expres-
sion (Gibson et al. 2014; Yamada et al. 2007; Walsh et al. 
2001; Whitham et al. 2006) during endurance exercise at 
matched external work rates between-environments. In the 
real-world, however, endurance athletes are likely to experi-
ence a reduction in absolute work rates when training in hot 
vs. temperate conditions (Boynton et al. 2019; Lorenzo et al. 
2010; Maunder et al. 2021a, b). Given that research supports 
the importance of exercise intensity in both substrate utili-
sation (Lorenzo et al. 2010; Boynton et al. 2019; Maunder 
et al. 2021a, b) and HSP72 expression (Gibson et al. 2014; 
Morton et al. 2009), it is possible that these acute effects of 

environmental heat stress may be at least partially blunted 
by the likely reduction in absolute work rates. Therefore, a 
relevant comparison for practitioners considering the likely 
metabolic effects of performing a training session under 
environmental heat stress may be using matched relative 
physiological stress, or heart rates.

Accordingly, the primary aim of the present investigation 
was to assess the effects of moderate environmental heat 
stress on substrate oxidation rates during heart rate-matched 
moderate-intensity cycling. Additionally, we investigated the 
response of plasma HSP70 to the exercise protocols. We 
hypothesised that lower rates of whole-body energy expendi-
ture and carbohydrate oxidation would be observed under 
moderate environmental heat stress secondary to lower 
achieved power outputs, but that plasma HSP70 expression 
would still be elevated due to greater increases in core tem-
perature and plasma adrenaline concentrations.

Methods

Ethical approval

This study was performed in accordance with the stand-
ards of the Declaration of Helsinki, 2013. The Auckland 
University of Technology Ethics Committee approved all 
procedures (21/121), and all participants provided written 
informed consent prior to participation. This study was not 
registered in a database. Data associated with this study are 
available from the corresponding author upon reasonable 
request.

Participants

Ten endurance-trained male cyclists and triathletes partici-
pated in this study (age, 31 ± 8 years; height, 181 ± 3 cm; 
body mass, 75.0 ± 5.7 kg; peak oxygen uptake [ V̇O2peak ], 
58.1 ± 6.8 mL·kg−1·min−1; first ventilatory threshold  [VT1], 
204 ± 46 W; overall training volume, 9 ± 3 h·wk−1; cycling 
volume, 6 ± 2 h·wk−1). Participants were free from viral 
infection (> 1 month), lower-limb injury (> 3 months), and 
had not suffered with any cardiovascular disease, or previ-
ously experienced exertional heat stress illness. Participants 
were unacclimated to exercise-heat stress, which was defined 
as not recently having undertaken specific heat acclimatisa-
tion training (≥ 6 months). Using 50% of the between-group 
effect size for post-exercise extracellular HSP72 concentra-
tion (Whitham et al. 2007), it was a priori calculated that 
a total sample size of 10 participants would be required to 
observe a between-group difference (P < 0.05) in post-exer-
cise extracellular HSP72 concentration with 80% statisti-
cal power. This smaller effect size was utilised as smaller 
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between-environment differences in post-exercise ther-
moregulatory variables were expected in this study (~ 1 °C 
difference in  Tre based on Maunder et al. (2020), compared 
to the ~ 2 °C difference in Whitham et al. (2007)).

Study design

An acute, randomised, counterbalanced cross-over design 
was used in the present investigation. Participants visited 
the laboratory on three occasions, ~ 7 d apart, for: (i) a char-
acterisation trial involving an incremental cycling test, and 
(ii) two experimental trials, which each involved a 90-min 
bout of cycling exercise at 95% of the HR associated with 
 VT1 in either 18 (TEMP) or 33 °C (HEAT), with ~ 60% 
relative humidity (rH) (Fig. 1). The order in which partici-
pants completed the two experimental trials was randomised 
with a counterbalanced design. All laboratory trials were 
intended to be completed during the non-summer months 
in Auckland, New Zealand. However, data collection was 
interrupted by a nationwide lockdown for COVID-19. Con-
sequently, four participants completed their trials during the 
winter months, and six of the ten participants were tested 
during the warmer months. Therefore, subgroup analyses 
were performed to assess seasonal effects on the primary 
outcome measures of this study.

Characterisation trial

Participants arrived the laboratory at ~ 7:00 am for the 
characterisation trial following an overnight fast, having 
refrained from caffeine, alcohol, and intense exercise for 
24 h. On arrival, participants provided written informed 
consent and completed a health screening questionnaire. 
Height and body mass were first measured. Participants 

then mounted a laboratory ergometer (Excalibur Sport, 
Lode, Groningen, NET), and an incremental cycling test 
commenced at 95 W in a laboratory environment (18 °C , 
60–80% rH). The power output was increased by 35 W every 
3 min until the respiratory exchange ratio reached 1.0, after 
this point the duration of each stage was shortened to 1 min 
until task failure. Expired gases were collected throughout 
using a metabolic cart (TrueOne2400, ParvoMedics, Sandy, 
UT, US). V̇O2peak was determined to ensure eligibility for 
study participation of V̇O2peak  ≥ 50 mL·kg−1·min−1, and  VT1 
was also determined to individualise the exercise intensity 
in the experimental trials. HR was also measured continu-
ously using a chest-strap HR monitor (TICKR, Wahoo, Tai-
wan). The V̇O2peak was identified as the highest 30-s aver-
age value for V̇O2 during the incremental cycling test. The 
 VT1 was identified as the first increase in the ventilatory 
equivalent for oxygen ( V̇E ⋅ VO−1

2
 ) without changes in ven-

tilatory equivalent for carbon dioxide ( V̇E ⋅ VCO−1
2

 ) (Lucía 
et al. 2000), and expressed as both a power output and HR 
value. Convective air flow was provided using a pedestal fan 
(GCPF340, Goldair, China).

Experimental trials

Participants arrived at the laboratory ~ 7 d following the 
characterisation trial at ~ 7:00 am, having adhered to the 
same pre-trial instructions described above, and made writ-
ten records of their diet for 48 h and training for 7 d, such 
that these could be repeated in advance of the second experi-
mental trial. On arrival, a 6-mL pre-exercise blood sample 
was drawn from an antecubital vein using the venepuncture 
technique. Pre-exercise body mass was measured in cycling 
clothes and then participants self-inserted a rectal ther-
mometer ∼10 cm beyond the anal sphincter in privacy for 

Fig. 1  Experimental overview
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determination of rectal temperature  (Tre). A skin temperature 
thermistor was subsequently taped over the mid-belly of the 
vastus lateralis ∼15 cm above the patella, and covered with 
two pieces of 2-mm neoprene in order to insulate the skin 
underneath for continuous observation of insulated skin tem-
perature  (Tins), which was used for estimation of muscle tem-
perature  (Tmus) in line with recent work (Flouris et al. 2015). 
Participants then sat comfortably for 5 min for measurement 
of resting estimation  Tmus and  Tre in the laboratory environ-
ment before entering the environmental chamber, which was 
set at either 18 or 33 °C , with 60% rH. Participants then 
mounted their own road bicycle, which was connected to a 
calibrated, direct-drive indoor trainer (Kickr, Wahoo Fitness, 
Atlanta, USA), and were fitted with a chest-strap HR moni-
tor (TICKR, Wahoo, Taiwan) for continuous observation of 
HR during exercise.

A 90-min bout of cycling then commenced. During the 
first 5-min of cycling, participants were asked to progres-
sively increase their HR to a specified target equivalent to 
95% (± 2 b·min−1) of the  VT1 HR determined in the incre-
mental cycling test, and then maintain their target HR until 
exercise cessation. Participants were reminded of this if 
their HR drifted outside the target range. Participants had 
ad  libitum access to plain water throughout the cycling 
trial. Convective air flow (~ 3.2 m·s−1) was provided by an 
industrial fan (FS-75, FWL, Auckland, NZ). Expired gases 
were obtained for 4 min every 15 min using a metabolic 
cart (TrueOne2400, ParvoMedics, Sandy, UT, US). Rating 
of perceived exertion (RPE) on a scale of 6 to 20 (Borg 
1982) was recorded every 15 min. Perceived thermal com-
fort on a 1-to-10 scale, and thermal sensation on a 1-to-14 
scale, which were adapted from an previous work (Gagge 
et al. 1967), were also assessed every 15 min. The  Tre was 
monitored throughout the cycling trial to ensure that it did 
not exceed 39.5 °C  (Silva et al. 2019), and no participant 
reached this temperature.

Within 3-min after exercise cessation, a 6-mL post-exer-
cise antecubital venous blood sample was obtained using 
venepuncture technique, and total water consumption was 
recorded through weighing of drink bottles. Participants 
subsequently removed the HR monitor, skin temperature 
thermistor, and rectal thermometer in privacy. Participants 
dried their skin using a towel, and post-exercise body mass 
was measured in cycling clothes for calculation of percent-
age dehydration (Eq. 1), and estimation of the magnitude of 
sweat loss during the trial, accounting for fluid consumption. 
Participants returned to the laboratory ~ 7 d later to perform 
the remaining experimental trial, having adhered to the same 
pre-trial instructions described above, and repeated their 
48-h diet and 7-day training records in advance.

Equation 1 Calculation of percentage dehydration (%).

Expired gas analyses

In the incremental cycling test, VȮ2 and VĊO2 from the last 
1 min of each stage were used to estimate substrate oxidation 
rates using standard stoichiometric equations (Eq. 2) (Jeu-
kendrup and Wallis 2005). Peak fat oxidation rate (g·min−1) 
was then identified as the highest fat oxidation rate during 
the test. In the experimental trials, expired gases from the 
final three minutes of each 4-min sampling time point were 
averaged and used for calculation of whole-body rates of 
energy expenditure, carbohydrate oxidation, and fat oxida-
tion using standard equations (Eq. 2). The first minute of 
each sampling timepoint was discarded to minimise any 
potential hyperventilatory effect associated with reorganis-
ing the headgear, and to ensure that participants had resettled 
into their comfortable cycling position. The rate of meta-
bolic heat production  (Hprod) was calculated by subtracting 
external mechanical power output (W) from metabolic 
energy expenditure (W) (Ravanelli et al. 2020). The  Hprod 
is expressed relative to body surface area according to the 
Dubois and Dubois formula (Du Bois and Du Bois 1916).

Equation 2 Estimates of whole-body rates of energy 
expenditure, carbohydrate oxidation, and fat oxidation, 
where both carbon dioxide production ( V̇CO2 ), and oxygen 
uptake ( V̇O2 ) are in L·min−1.

Thermoregulatory analyses

Mean values obtained from the rectal thermometer and skin 
temperature thermistor during the 30-s prior to each meas-
urement timepoint were defined as  Tre and  Tins. The  Tins was 
used for estimation of the vastus lateralis temperature  (Tmus) 
in line with previous work (Eq. 3) (Flouris et al. 2015).

(1)

Percentage dehydration (%)
=

[(

Body masspre−exercise− Body masspost−exercise
)

÷Body masspre−exercise
]

× 100

(2a)
Energy expenditure (EE)

(

kcal ⋅min−1
)

=
(

0.550 × V̇CO2
)

+
(

4.471 × V̇O2
)

(2b)
Carbohydrate oxidation (CHO)

(

g ⋅min−1
)

=
(

4.210 × V̇CO2
)

−
(

2.962 × V̇O2
)

(2c)
Fat oxidation (g ⋅min−1) =

(

1.695 × V̇O2

)

−
(

1.701 × V̇CO2

)
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Equation 3 Estimates of insulated skin temperature over 
the vastus lateralis  (Tins) at rest and during exercise, where 
 TinsLag2 =  Tins –  Tins two min beforehand, etc.

Plasma analyses

Venous blood samples were stored on ice in pre-chilled eth-
ylenediaminetetraacetic acid tubes until trial completion. In 
order to allow the correction of plasma concentrations for 
changes in plasma volume across the trial (van Beaumont 
et al. 1972), a small sample of whole blood was pipetted 
into duplicate capillary tubes before spinning for 3-min 
using a micro-haematocrit centrifuge (Haematospin 1400, 
Hawksley& Sons, Ltd., England), and then the propor-
tion of red blood cells was manually measured (the coef-
ficient of variation [CV], 1.55 ± 1.85%). Plasma was then 
extracted from the remaining whole blood by centrifugation 
in 4 °C for 10 min using a Heraeus Megafuge 16 Centrifuge 
(D-37520 Osterode, Thermo Fisher Scientific, Inc., Ger-
many), and stored at − 80 °C for further analyses. Plasma 
HSP70 concentration was determined via an enzyme-linked 
immunosorbent assay (ELISA) (BMS2087, Thermo Fisher 
Scientific, Inc., US). Plasma adrenaline and noradrenaline 
concentrations were determined via ELISA kits (ab287788 
and ab287789,  Abcam®, UK). These assays were performed 
using commercially available kits in duplicate according 
to the manufacturer’s instructions. Achieved intra-assay 
CVs were 13.0% for plasma HSP70 concentration, 4.3% 
for plasma adrenaline concentration, and 16.6% for plasma 
noradrenaline concentration.

Statistical analyses

Statistical analysis was performed with GraphPad Prism 
Version 9.3.1 (GraphPad Software, San Diego, CA, USA). 
Data are presented as mean ± standard deviation (SD) unless 
otherwise stated. The normality of data distributions were 
assessed using the Shapiro–Wilk test, which is considered 
as an appropriate test for small sample sizes (N < 50) (Rah-
man and Govindarajulu 1997). Within- and between-trial 
differences in physiological variables were assessed using 
two-way, repeated measures analyses of variance, with 
temperature and time as factors. Simple comparisons were 
made using paired t-tests (or the Wilcoxon signed-rank test 

(3a)

Estimated Tmusatrest
(◦C

)

=
(

0.597 × Tins
)

−
(

0.439 × TinsLag2
)

+
(

0.554 × TinsLag3
)

−
(

0.709 × TinsLag4
)

+ 14.767

(3b)
Estimated Tmusduring exercise (◦C)
=
(

0.599 × Tins
)

−
[(

0.311 × TinsLag4
)]

+ 15.63

for non-normal distributions). Where main effects of time 
were observed, exercise-induced changes (15 vs. 90 min) in 
variables were compared. Where main effects of environ-
mental temperature were observed, end-exercise values were 
compared. Where interactions between trial and time were 
observed, the magnitude of exercise-induced changes (15 vs. 
90 min) in variables were compared. Bivariate linear cor-
relations (Pearson’s product-moment correlation coefficients 
or Spearman’s rank-order correlation coefficients, depending 
on the distribution of the data) were used to assess rela-
tionships between primary outcome measures (heat stress-
induced changes in mean carbohydrate oxidation rate and 
post-exercise plasma HSP70 concentrations) and heat stress-
induced changes in dehydration percentage, sweat rate, mean 
power output, mean  Tre, and mean estimated  Tmus. The level 
of statistical significance was set at P ≤ 0.05.

Results

Mean HR was not significantly different between TEMP and 
HEAT (P = 0.63, Fig. 2a); in all cases, the individual differ-
ence in mean HR between-trials was ≤ 4 b·min−1. Although 
a main effect of time for HR was observed (P = 0.01), there 
was no main effect of environmental temperature (P = 0.23), 
or interaction between time and environmental temperature 
(P = 0.53, Fig. 2b). Subgroup analyses indicated no signifi-
cant effect of season for mean whole-body EE (P = 0.54), 
CHO oxidation rate (P = 0.58), fat oxidation rate (P = 0.78), 
or exercise-induced change in post-exercise plasma HSP70 
concentration (P = 0.26).

Mean power output was significantly lower in HEAT 
(17 ± 11%, P < 0.001, Fig. 2c); in all participants, mean 
power output was numerically lower in HEAT (5–64 W). 
A main effect of time was observed for power output, 
whereby power output significantly decreased as exercise 
progressed (P < 0.001, Fig. 2d). A significant interaction 
between time and environmental temperature was observed 
(P = 0.01, Fig. 2d). The reduction in power output over time 
(15 vs. 90 min) was greater in HEAT (22 ± 11 vs. 11 ± 7%, 
P = 0.005). Accordingly, the rate of metabolic heat produc-
tion was lower in HEAT vs. TEMP (308 ± 77 vs. 354 ± 84 
W·m−2, P < 0.001).

Both  Tre and estimated  Tmus significantly increased as 
exercise progressed  (Tre, 1.1 ± 0.4 and 1.2 ± 0.6 °C ; esti-
mated  Tmus, 3.8 ± 0.7 and 4.5 ± 0.9, in TEMP and HEAT, 
respectively, from rest to 90 min, both P < 0.001, Fig. 3a, 
b). No main effect of environmental temperature (P = 0.49), 
or interaction between time and environmental tempera-
ture was observed for  Tre (P = 0.58, Fig. 3a). A main effect 
of environmental temperature was observed for estimated 
 Tmus, whereby the end-exercise estimated  Tmus was greater 
in HEAT (1.0 ± 0.4 °C , P < 0.001, Fig. 3b). A significant 
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interaction between time and environmental temperature 
was observed (P = 0.017). The increase in estimated  Tmus 
from rest to 90 min was greater in HEAT (4.5 ± 0.9 vs. 
3.8 ± 0.7 °C , P = 0.003). Sweat rate (1.1 ± 0.4 vs. 0.6 ± 0.3 
L·h−1, P < 0.001) and dehydration (1.4 ± 0.6 vs. 0.9 ± 0.7% 
of pre-exercise body mass, P = 0.003) were significantly 
greater in HEAT.

A main effect of time for RPE was observed, whereby 
it significantly increased as exercise progressed (P < 0.001, 
Fig. 3c). There was no significant main effect of environ-
mental temperature (P = 0.09), or interaction between time 
and environmental temperature (P = 0.76) for RPE. No main 
effect of time was observed for thermal comfort (P = 0.12), 
but a significant effect of environmental temperature was 
observed, whereby thermal comfort was significantly higher 
in HEAT (P = 0.001, Fig. 3d). A significant interaction 
between time and environmental temperature was observed 
(P = 0.03), whereby participants felt less comfortable as 
exercise duration progressed in HEAT. No main effect of 
time was observed for thermal comfort (P = 0.10), but a sig-
nificant effect of environmental temperature was observed, 
whereby thermal sensation was significantly higher in HEAT 
(P < 0.001, Fig. 3e). No interaction between time and envi-
ronmental temperature interaction was observed for thermal 
sensation (P = 0.89).

Mean whole-body EE was significantly lower in HEAT 
(14 ± 8%, P < 0.001, Fig. 4a). A main effect of time was 
observed for whole-body EE (P = 0.002), whereby it 

significantly decreased as exercise progressed (12.0 ± 2.9 
vs. 11.4 ± 2.9  kcal.min−1, at 15 vs. 90 min, respectively, 
P = 0.03), but there was no interaction between time and 
environmental temperature (P = 0.13, Fig. 4b). Mean CHO 
oxidation rate was significantly lower in HEAT (19 ± 11%, 
P = 0.002, Fig. 4c). A main effect of time was observed for 
CHO oxidation rate, whereby it significantly decreased as 
exercise progressed (P = 0.003, Fig. 4d). A significant inter-
action between time and environmental temperature was 
observed (P = 0.02). The exercise-induced reduction in CHO 
oxidation rate over time (15 vs. 90 min) was significantly 
greater in HEAT (27.1 ± 10.1 v. 9.6 ± 21.3%, P = 0.003, 
Fig. 4d). Mean fat oxidation rate was not significantly differ-
ent between-trials (P = 0.54, Fig. 4e). A main effect of time 
was observed for fat oxidation (P < 0.001), whereby it sig-
nificantly increased as exercise progressed (0.43 ± 0.18 and 
0.52 ± 0.17 g·min−1, at 15 and 90 min, P = 0.001, Fig. 4f). 
No main effect of temperature (P = 0.54), or interaction 
between time and environmental temperature (P = 0.73), 
was observed for fat oxidation rate.

No main effect of time (P = 0.80), environmental tem-
perature (P = 0.51), or interaction between time and envi-
ronmental temperature (P = 0.30), was observed for plasma 
HSP70 concentration (Fig.  5a). No main effect of time 
(P = 0.65), environmental temperature (P = 0.31), or interac-
tion between time and environmental temperature (P = 0.86), 
was observed for plasma adrenaline concentration (Fig. 5b). 

Fig. 2  Heart rate (HR, 
beats·min−1) and power 
output (W) during 90 min of 
moderate-intensity exercise at 
a target HR of 95% of the first 
ventilatory threshold in 18 °C  
(TEMP) and 33 °C  (HEAT). 
a Mean HR during the 90-min 
exercise trials (beats·min−1), b 
HR at each timepoint through-
out the 90-min exercise trials 
(beats·min.−1), c mean power 
output (W) during the 90-min 
exercise trials, and d power 
output (W) at each timepoint 
throughout the 90-min exercise 
trials. Bars indicate group mean 
values, and dots identify indi-
vidual mean values. ***Indi-
cates P ≤ 0.001
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No main effect of time (P = 0.23), environmental tempera-
ture (P = 0.98), or interaction between time and environ-
mental temperature (P = 0.91), was observed for plasma 
noradrenaline concentration (Fig. 5c).

Heat stress-induced in changes in mean CHO oxidation 
rate were significantly correlated with heat stress-induced 
changes in power output (r = 0.64, P = 0.05), and sweat 
rate (r = 0.85, P = 0.002). No significant correlations were 
observed between heat stress-induced changes in post-exer-
cise plasma HSP70 concentration and heat stress-induced 

changes in mean power output, dehydration, sweat rate, 
mean  Tre, or mean estimated  Tmus (Table 1).

Discussion

The purpose of the present investigation was to assess the 
effect of moderate environmental heat stress on substrate 
oxidation rates and plasma HSP70 expression in response 
to heart rate-matched prolonged moderate-intensity cycling. 

Fig. 3  Thermoregulatory and perceptual variables. a Rectal tempera-
ture (°C ), b estimated muscle temperature (°C ), c rating of perceived 
exertion (6–20, AU), d thermal comfort (1–10, AU), and e thermal 
sensation (1–14, AU) at each timepoint during 90 min of moderate-

intensity exercise with a target HR of 95% of the first ventilatory 
threshold in 18  °C  (TEMP) and 33  °C  (HEAT). A solid line with 
clear markers indicates data obtained from TEMP, and a dashed line 
with solid markers indicate data obtained from HEAT



2080 European Journal of Applied Physiology (2023) 123:2073–2085

1 3

Fig. 4  Whole-body substrate 
oxidation rates during 90 min 
of moderate-intensity exercise 
with a target HR of 95% of 
the first ventilatory threshold 
in 18 °C  (TEMP) and 33 °C  
(HEAT). a Mean energy 
expenditure (kcal·min−1), b 
energy expenditure (kcal·min−1) 
at each 15-min timepoint, c 
mean carbohydrate oxidation 
rate (g·min−1), d carbohydrate 
oxidation rate (g·min−1) at each 
15-min timepoint, e mean fat 
oxidation rate (g·min−1), f fat 
oxidation rate (g·min.−1) at each 
15-min timepoint. Bars indicate 
group mean values, and dots 
identify individual mean values. 
***Indicates P ≤ 0.001. **Indi-
cates P ≤ 0.01

Fig. 5  Mean pre- and post-
exercise plasma. a Heat shock 
protein 70 (ng·mL−1) (TEMP, 
N = 8; HEAT, N = 9), b 
adrenaline (pg·mL−1) (N = 9), 
and c noradrenaline (pg·mL−1) 
(N = 10) concentrations in 18 °C  
(TEMP) and 33 °C  (HEAT). 
A solid line with clear markers 
indicates data obtained from 
TEMP, and a dashed line with 
solid markers indicate data 
obtained from HEAT
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The primary findings were that (i) whole-body CHO oxida-
tion rates were lower, but whole-body fat oxidation rates 
were similar, during moderate-intensity cycling in HEAT 
vs. TEMP, with these effects likely due to the reduction 
in power output and associated decrease in EE in HEAT, 
and (ii) moderate-intensity cycling did not increase plasma 
HSP70 expression in either HEAT or TEMP.

In this present study, exercise intensity was regulated in 
relation to HR thresholds (95% of the HR associated with 
 VT1), and therefore, the reduced power output in HEAT 
vs. TEMP was not unexpected. Indeed, a decrease in mean 
power output was observed in all participants in HEAT 
(− 17 ± 11% from mean power output in TEMP, P = 0.001, 
Fig. 2c). Lower power output achieved during endurance 
exercise—at a given HR – in HEAT may be explained by 

increased peripheral blood flow to regulate temperature via 
sweating (Febbraio 2001). Greater peripheral blood flow 
in HEAT is supported by the observed elevated sweat rate 
in HEAT (1.1 ± 0.4 vs. 0.6 ± 0.3 L·h−1, P < 0.001). Greater 
demand for peripheral blood flow necessitates greater car-
diac output and reduced stroke volume via the Frank-Starling 
mechanism, and therefore results in an increase in HR during 
exercise at given absolute work rates (Trinity et al. 2010). 
Thus, participants had to reduce power output to maintain 
the HR target in HEAT.

In alignment with our hypothesis, whole-body CHO oxi-
dation rates were lower in HEAT vs. TEMP (1.48 ± 0.46 
vs. 1.86 ± 0.61 g·min−1, P = 0.002, Fig. 4c). These findings 
contrast previous research demonstrating increased carbo-
hydrate metabolism during endurance exercise performed 
under environmental heat stress (≥ 30 °C ) compared to 
equivalent exercise in temperate conditions at matched 
external work rates, where core temperatures were greater 
in the environmental heat stress trials and higher than in the 
present study (Febbraio et al. 1994a, b; Jentjens et al. 2002; 
Hargreaves et al. 1996a; Maunder et al. 2020). We took this 
approach in order to describe physiological responses to an 
ecologically valid scenario. The lack of difference in core 
temperature can be explained by the lower  Hprod in HEAT vs. 
TEMP (308 ± 77 vs. 354 ± 84 W·m−2, P < 0.001), secondary 
to the lower EE and power output.

The bivariate correlational analyses indicate the observed 
heat stress-induced decrease in whole-body CHO oxidation 
rates may be explained by the associated reduction in power 
output in HEAT (Table 1). The lower absolute power output 
in HEAT reduced whole-body EE (− 14 ± 8% from mean 
EE in TEMP, P < 0.001, Fig. 4a), and therefore the demand 
for ATP production via carbohydrate metabolism. Interest-
ingly, whole-body fat oxidation rates were unaffected by 
environmental temperature (P = 0.54, Fig. 4e). Therefore, 
the observed heat stress-induced reduction in whole-body 
EE associated with the lower power output during moder-
ate-intensity cycling performed in HEAT is explained by 
reduced CHO oxidation and maintained fat oxidation rates. 
However, the addition of an experimental trial in HEAT with 
the exercise intensity at absolute power output matched to 
TEMP would be necessary to confirm this.

Furthermore, the observed heat stress-induced increase 
in sweat rate was related to the heat stress-induced decrease 
in whole-body CHO oxidation rate (Table 1). Plausibly, par-
ticipants who had a larger increase in sweat rate in HEAT 
could dissipate heat more efficiently in HEAT, and there-
fore produce more metabolic heat for the same  Tre response, 
resulting in a more subtle reduction in power output in 
HEAT vs. TEMP. Therefore, athletes with greater between-
environment difference in sweat rate had smaller reductions 

Table 1  Bivariate linear correlations between primary outcome meas-
ures (heat stress-induced changes in mean carbohydrate oxidation rate 
and post-exercise plasma HSP70 concentration) and input variables 
(heat stress-induced changes in mean power output, dehydration, 
sweat rate, mean rectal temperature, and mean estimated muscle tem-
perature)

Data are expressed with 95% confidence intervals
Δ represents the difference between the two experimental trials 
(HEAT – TEMP)
CHO oxidation Carbohydrate oxidation, HSP70 Heat shock protein 
70, Tre Rectal temperature, estimated Tmus Estimated muscle tempera-
ture, r Pearson’s product-moment correlation coefficients, rs Spear-
man’s rank-order correlation coefficients
*Missing data due to technical difficulty (N = 9)
Significant correlations are in bold

Δ Mean CHO 
oxidation rate 
(g·min−1)

Δ Post-exercise plasma 
HSP70 concentration 
(ng·mL−1)

(N = 10) (N = 8)

Δ Mean power r = 0.64 rs =  − 0.45
(W) (0.01, 0.91) (− 0.88, 0.37)

P = 0.05 P = 0.27
Δ Dehydration r = 0.42 rs =  − 0.19
(% of body mass) (− 0.29, 0.83) (− 0.79, 0.59)

P = 0.23 P = 0.66
Δ Sweat rate r = 0.85 rs =  − 0.40
(L·h−1) (0.49, 0.96) (− 0.86, 0.42)

P = 0.002 P = 0.33
Δ Mean  Tre r =  − 0.37 rs = 0.17
(°C ) (− 0.83, 0.39) (− 0.61, 0.78)

P = 0.33* P = 0.69
Δ Mean estimated 

 Tmus

r = 0.08 rs = 0.60

(°C ) (− 0.58, 0.68) (− 0.19, 0.92)
P = 0.83 P = 0.13
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in power output, and therefore smaller reductions in CHO 
oxidation rates.

However, this heat stress-induced decrease in whole-body 
CHO oxidation rate when exercising at matched HR might 
not be observed in endurance athletes acclimated to hot envi-
ronments. Following acclimation, athletes produce more 
power at a given HR under heat stress (Yamada et al. 2007; 
Corbett et al. 2022), likely necessitating a greater demand 
for ATP synthesis, and therefore CHO oxidation, than when 
unacclimated. Accordingly, the between-trial differences we 
observed here might be reduced following a period of heat 
acclimation training.

Secondly, moderate-intensity endurance exercise did not 
increase plasma HSP70 expression in either TEMP or HEAT 
(Fig. 5a). These findings contrast previous studies reporting 
a significant increase in extracellular HSP72 concentration 
in unacclimated individuals following endurance exercise 
performed in temperate (18–24 °C ) (Whitham et al. 2007; 
Fehrenbach et al. 2005) and hot environments (35–40 °C ) 
(Magalhães et al. 2010; Marshall et al. 2006; Gibson et al. 
2014; Périard et al. 2012; Whitham et al. 2007). The ELISA 
kit used in the present investigation quantified the concen-
tration of the whole HSP70 family (including HSP72 and 
HSP73 isoforms). This could explain the greater plasma 
HSP70 concentrations (~ 6–9 ng·mL−1) observed in this 
present study, compared with the other studies measuring 
extracellular HSP72 (~ 1–6 ng·mL−1) (Magalhães et  al. 
2010; Marshall et al. 2006; Whitham et al. 2007; Périard 
et al. 2012; Fehrenbach et al. 2005). As HSP73 is unlikely 
to be stimulated by environmental heat stress (Kregel 2002; 
Locke 1997; Welch and Suhan 1986), it is plausible that the 
capture of the whole HSP70 may have obscured an effect of 
endurance exercise on plasma HSP72 expression. However, 
the lack of observed plasma HSP70 accumulation might also 
be explained by the absence of exercise-induced increase in 
plasma adrenaline concentration (Fig. 5b), given catecho-
lamines stimulate the release of HSP72 into the circulation 
(Chin et al. 1996; Heneka et al. 2003).

The extracellular HSP72 response to endurance exercise 
is related to exercise intensity and duration (Fehrenbach 
et al. 2005), with the addition of internal thermal stress 
promoting further increases extracellular HSP72 responses 
(Marshall et al. 2006). In this present investigation, expired 
gases collected during TEMP indicated the exercise intensity 
corresponded to 60.7 ± 5.5%V̇O2peak . This is relatively simi-
lar to studies reporting increased concentrations of plasma 
HSP72 after endurance exercise intensity prescribed at ~ 60% 
V̇O2peak (Whitham et al. 2007; Fehrenbach et al. 2005), but 
may have been insufficient in our cohort to induce increased 
extracellular HSP70 concentration. Similarly, insufficient 
exercise duration may explain the lack of stimulation of 

extracellular HSP70, as the aforementioned studies included 
longer exercise protocols (90 vs. 120 min) (Whitham et al. 
2007; Fehrenbach et al. 2005). A longer exercise duration 
may further increase heat stress-induced physiological strain 
relevant to HSP72 accumulation, which may include ele-
vated core and/or local temperatures (Morton et al. 2006; 
Cuthbert et al. 2019), or decreased carbohydrate availability 
(Dalgaard et al. 2022; Febbraio and Koukoulas 2000; Feb-
braio et al. 2002b). Plausibly, an exercise-induced increase 
in plasma HSP70 expression may have been observed in 
this present study if exercise duration was ≥ 120 min. Given 
HEAT did not increase  Tre or plasma adrenaline concentra-
tions vs. TEMP, it is unsurprising that a stimulatory effect of 
heat stress on plasma HSP70 expression was not observed.

From a practical standpoint, our descriptive data might be 
used to help inform nutrition practices in endurance training. 
Our data suggests that when endurance athletes are exposed 
to a hot environment during training, either incidentally (e.g. 
during summer months) or deliberately (e.g. heat acclimati-
sation training), the carbohydrate and overall energy cost of 
exercise might be reduced compared to training performed 
at a similar HR in temperate conditions.

In conclusion, heart rate-matched moderate-intensity 
cycling in a hot environment (33 °C ) reduced whole-body 
CHO oxidation rates, but did not alter fat oxidation rates, 
compared to the equivalent exercise performed in a tem-
perate environment (18 °C ). This metabolic change was 
associated with the lower external power output in HEAT. 
Exercise-induced increases in plasma HSP70 expression 
did not occur in either condition. These data should be 
considered by practitioners working with endurance ath-
letes who are exposed to moderate environmental heat 
stress, either incidentally or purposefully, during training 
and/or competition.
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