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Abstract
Previous studies in animal models showed that exercise-induced metabolites accumulation may sensitize the mechanoreflex-
induced response. The aim of this study was to assess whether the magnitude of the central hemodynamic and ventilatory 
adjustments evoked by isolated stimulation of the mechanoreceptors in humans are influenced by the prior accumulation 
of metabolic byproducts in the muscle. 10 males and 10 females performed two exercise bouts consisting of 5-min of 
intermittent isometric knee-extensions performed 10% above the previously determined critical force. Post-exercise, the 
subjects recovered for 5 min either with a suprasystolic circulatory occlusion applied to the exercised quadriceps (PECO) 
or under freely-perfused conditions (CON). Afterwards, 1-min of continuous passive leg movement was performed. Central 
hemodynamics, pulmonary data, and electromyography from exercising/passively-moved leg were recorded throughout the 
trial. Root mean square of successive differences (RMSSD, index of vagal tone) was also calculated. Δpeak responses of 
heart rate (ΔHR) and ventilation ( ΔV̇

E
 ) to passive leg movement were higher in PECO compared to CON (ΔHR: 6 ± 5 vs 

2 ± 4 bpm, p = 0.01; 3.9 ± 3.4 vs 1.9 ± 1.7 L min−1, p = 0.02). Δpeak of mean arterial pressure (ΔMAP) was significantly dif-
ferent between conditions (5 ± 3 vs  − 3 ± 3 mmHg, p < 0.01). Changes in RMSSD with passive leg movement were different 
between PECO and CON (p < 0.01), with a decrease only in the former (39 ± 18 to 32 ± 15 ms, p = 0.04). No difference was 
found in all the other measured variables between conditions (p > 0.05). These findings suggest that mechanoreflex-mediated 
increases in HR and V̇

E
 are sensitized by metabolites accumulation. These responses were not influenced by biological sex.
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Introduction

Cardiovascular and ventilatory adjustments to physical 
exercise are achieved through the cooperation of different 
mechanisms. The most important are a feedforward efferent 
mechanism (i.e., central command), the arterial baroreflex, 

and the exercise pressor reflex, which is a negative-loop 
feedback mechanism originating from the working muscle, 
entailing a mechanosensitive and a metabosensitive branch 
(Fisher et al. 2015). This feedback from the working mus-
cles is sent to the central nervous system through group 
III/IV afferent fibers, which convey information about the 
mechanical distortion of their receptive fields (group III), 
and metabolic changes happening in the intramuscular 
milieu (group IV) (Fisher et al. 2015). While the involve-
ment of group IV fibers on hemodynamic regulation is well 
established (Boushel 2010), the role of mechanosensitive 
afferent fibers is more difficult to demonstrate. In the last 
decade, strong evidence for an important role of these fib-
ers in the hemodynamic regulation came using intrathe-
cal fentanyl injection (a potent opioid receptors agonist), 
which partially blocks afferent feedback to the central nerv-
ous system. Indeed, blocking afferent feedback resulted in 
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a substantial decrease in the chronotropic response that 
typically accompanies passive leg movement (Trinity 
et al. 2010). Furthermore, using the same pharmacologi-
cal approach in healthy volunteers (Amann et al. 2010) 
and a spinal cord injury model, in which afferent feedback 
is intrinsically interrupted (Venturelli et al. 2012), it has 
been shown that muscle afferent fibers play a pivotal role 
also in the ventilatory adjustments to exercise (Amann 
et al. 2010) and passive movement (Venturelli et al. 2012), 
respectively.

Classical studies carried out in animal models indicate 
that metabolic changes in the exercising muscle may sen-
sitize the response to mechanical stress (Rotto et al. 1990; 
Rotto and Kaufmann 1988). In humans, this issue is more 
controversial. A previous study utilizing passive stretch of 
the wrist during post-exercise ischemia, found an increase 
in the blood pressure response and sympathetic activa-
tion (Cui et al. 2008). Similarly, other investigators found 
a vagally-mediated transient increase in heart rate (HR) 
when static stretch of the calf muscles was superimposed 
to circulatory occlusion of the limb (Drew et al. 2008a, b). 
However, Fisher et al. showed that HR response to static 
calf stretch was not different after exercise bouts carried 
out at different intensities, and therefore likely different 
levels of metabolites accumulation (Fisher et al. 2005). 
Moreover, since different subsets of group III/IV muscle 
afferents respond to different stimuli, there is evidence that 
mechanically-sensitive fibers may be preferentially acti-
vated during movement compared to static stretch (Hayes 
et al. 2005). Therefore, static stretch and dynamic move-
ments may yield different outcomes in terms of autonomic 
control.

Recently, a study found that when passive cycling was 
coupled with circulatory occlusion of the lower limbs, 
chronotropic and ventilatory responses were augmented 
(Lis et al. 2020). However, as highlighted by Fernandes 
and Vianna (2020), the accumulation of metabolic byprod-
ucts and the presence of electromyographic recordings are 
of paramount importance to parse out alternative explana-
tions when studying the interaction between metabo- and 
mechanoreflex.

The aim of this study was to evaluate mechanoreflex-
induced central hemodynamic and ventilatory responses 
when a passive, mechanical stimulation was superimposed 
over circulatory occlusion compared to when recovery is 
allowed to take place under freely perfused conditions. Also, 
our secondary objective was to assess whether a sex-specific 
response in these assessments was present. Our hypothesis 
was that mechanoreflex-induced responses would be higher 
when exercise-induced metabolites were trapped in the mus-
cle by circulatory occlusion and that this outcome would not 
be different between sexes.

Methods

Subjects and ethical approval

Twenty young healthy subjects were recruited for 
this study (10 males and 10 females, age: 26 ± 3 vs 
22 ± 3 years, height: 176 ± 7 vs 163 ± 6 cm, and weight: 
76 ± 9 vs 56 ± 7 kg). All subjects were non-smokers and 
none of them was taking medications as determined by 
a health questionnaire. They were instructed to report to 
the lab after having refrained from alcohol and caffeine 
(≥ 12 h), food (≥ 2 h), and physical exercise (≥ 24 h). The 
subjects were tested in the same temperature-controlled 
room (22–24 °C). Moreover, the last experimental ses-
sion for females was performed during the early follicular 
phase (days 1–5 from the self-reported menstruation onset) 
to lessen potential effects of estrogen hormones on hemo-
dynamic responses (Wenner and Stachenfeld 2020). No 
female participant reported to being using contraceptives 
at the time of the study. Leg dominance was established 
based on the self-reported foot used to kick a ball. All sub-
jects but two reported being right-leg dominant. Written 
informed consent was obtained from each participant after 
a detailed verbal and written explanation of the experimen-
tal procedures. The study complied with the Declaration of 
Helsinki and was approved by the local ethical committee 
of the University of Verona (IRB #30444).

Experimental design and procedures

The subjects were asked to report to the lab on three dif-
ferent occasions. On the first experimental day, the sub-
jects were familiarized with the study procedures and with 
the performance of isometric knee-extensors maximal 
voluntary contractions (MVC). The instructions for the 
performance of MVCs were to push “as hard and as fast 
as possible”, to reach a force plateau in the shortest time 
possible. A schematic representation of the study protocol 
is reported in Fig. 1.

On the second experimental day, the subjects performed 
an all-out isometric knee-extensor test, in order to estimate 
critical force employing a 60% duty cycle (contraction/
relaxation: 3 s/2 s) (Burnley 2009). The 5 min all-out test 
consisted of 60 knee-extension MVCs using the same duty 
cycle abovementioned. During the test, participants were 
verbally encouraged by the members of the research team 
to ensure maximal effort. The subjects were seated with a 
90° knee flexion on a custom-built chair, with their ankle 
linked to the force transducer and a steel bar through a 
noncompliant strap, which was placed 2-cm above the 
lateral malleolus of the ankle. Extraneous movement of 
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the upper body was avoided by two-crossed belts over the 
chest while the hips were stabilized by an additional belt. 
An audio recording signaled the start and stop of each 
contraction and the subjects were able to see the force 
feedback on a wall projected ~ 3 m in front of them. No 
information was given to the subjects concerning the time 
elapsed or remaining. Critical force was calculated as the 
average of the mean force exerted during the last six con-
tractions (Burnley 2009).

On the third and last experimental session, participants 
were instrumented and allowed to rest in the sitting posi-
tion for 15 min. After this resting period, a 1-min baseline 
measurement was collected before the subject’s lower leg 
was passively moved for 1 min at 1 Hz. Afterwards, they 
were asked to perform two identical exercise bouts in which 
the recovery was done either without (CON) or with post-
exercise circulatory occlusion (PECO). Circulatory occlu-
sion was obtained by inflating a tourniquet cuff (DTC-506. 
Daesung Maref, South Korea) around the proximal part of 
the exercising thigh at a suprasystolic pressure (300 mmHg) 
with a custom-made rapid cuff occlusion system (< 0.5 s 
to full occlusion). These two bouts were interspersed by a 
30 min rest and were carried out in a counterbalanced man-
ner to minimize any eventual carry-over effect. Each bout 
started with a 5-min baseline period. Then, a MVC was 
performed to normalize EMG signals. After an adequate 

pause (~ 1 min) allowing the hemodynamic values to return 
to baseline, 5 min of rhythmic isometric knee-extension 
(3 s on/2 s off) were performed at an intensity that was 10% 
above critical force, which was determined in the previous 
experimental visit. This intensity has been chosen because 
it has been shown to be adequate to induce significant meta-
bolic perturbation in the exercising muscle (Jones et al. 
2008; Burnley et al. 2012). At the end of the exercise, the 
subjects started the 5-min recovery period either with or 
without PECO. Finally, the lower leg of the subjects was 
again passively moved for 1 min at a frequency of 1 Hz. All 
passive movement procedures were performed by the same 
member of the research team, moving the subjects’ lower leg 
through the range of motion defined by 90 and 180° knee 
joint angles (where the fully extended knee joint is defined 
as 180°).

Central hemodynamics and pulmonary data

Blood pressure, cardiac output (CO), and stroke volume 
(SV) were measured on a beat-by-beat basis using a fin-
ger photoplethysmography device (Finapres model 2300; 
Ohmeda, Englewood, CO, USA). The left hand was held 
on a custom-made support, at the level of the heart and a 
photoplethysmographic cuff was placed on the fourth fin-
ger. A software extension (Non-Invasive Cardiac Output, 

Baseline

A) Critical force determination

0

200

400

600

800

)
N(

ecroF Critical Force

Recovery
CONExercise

P
L
M

0

200

400

600

800

)
N(

ecroF

Critical Force + 10%

Baseline Recovery
PECOExercise

P
L
M

5 min 5 min 5 min 1 min

5 min 5 min 5 min 1 min

B) Experimental protocol

CON
session

PECO
session

P
L
M

Fig. 1   Schematic representation of the study protocol. After the 
familiarization session (not shown) two sessions were carried out 
in separate days (A and B). Critical force (dashed line) in panel A 
was calculated as the mean force expressed in the last six contrac-
tions (dashed square). In the second session, post-exercise circulatory 

occlusion (PECO) or freely perfused (CON) conditions were per-
formed in a counterbalanced manner with a ~ 30-min rest in between. 
Exercise intensity was set at 10% above critical force (dashed line). 
MVC maximal voluntary contraction; PLM passive leg movement
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ADInstruments, Australia) was added to the LabChart 8 
software to apply the Modelflow algorithm to the raw beat-
by-beat data from the non-invasive blood pressure measure-
ment device. Mean arterial pressure (MAP) was calculated 
as diastolic blood pressure + 1/3 (systolic − diastolic blood 
pressure). HR was calculated beat-by-beat from the elec-
trocardiographic signal collected with a dual bioamplifier 
(ML135, ADInstruments, Australia) at 2 kHz.

Pulmonary gas exchange ( V̇O
2
 and V̇CO

2
 ) minute ven-

tilation ( V̇
E
 ), breathing frequency (fB) and tidal volume 

(VT) were measured breath-by-breath with a metabolic 
cart (Quark b2, Cosmed, Italy). Before each session, after 
an appropriate warm-up, the gas analyzer and the turbine 
flowmeter were calibrated according to the instructions of 
the manufacturer.

Isometric force, surface electromyography, 
and rating of perceived exertion

Isometric force was measured by a force transducer (model 
UU2; DaCell, Korea) previously calibrated, connected to 
a custom-made chair through a noncompliant strap placed 
around the subjects’ ankle. The output from the force trans-
ducer was amplified and filtered with a 20 Hz low-cut filter 
and recorded at a sampling rate of 2 kHz.

Vastus lateralis electromyography (EMG) was continu-
ously recorded with a dual bioamplifier (ML135, ADInstru-
ments, Australia). Two surface Ag/AgCl electrodes (PG10C; 
Fiab, Vicchio, Florence, Italy) were attached to the skin 
with a 20-mm inter-electrode distance. The electrodes were 
placed longitudinally, in line with the underlying muscle 
fibers arrangement, at two-thirds of the distance between 
the anterior iliac spine and the lateral part of the patella 
(Hermens et al. 2000). Before the application of the elec-
trodes, the skin was shaved, abraded with sandpaper, and 
finally cleaned with an alcohol swab in order to minimize 
skin impedance. The raw EMG signal was amplified and 
digitized online at a 2 kHz sampling frequency. Acquisition 
of the EMG data was done using a computer-based data 
acquisition and analysis system (hardware: PowerLab 16/30; 
ML880, ADInstruments, Bellavista, Australia and software: 
LabChart 8, ADInstruments, Bellavista, Australia). Finally, 
rating of perceived exertion (RPE) was obtained at every 
minute using the 6–20 Borg scale (Borg 1975).

Data analysis

All central hemodynamics and breath-by-breath data were 
linearly interpolated to 1-s intervals and time-aligned to the 
onset of passive leg movement. Successively, data from the 
30 s before passive leg movement was averaged and repre-
sented baseline values. Pulmonary data was checked visually 
for eventual aberrant breaths. When an aberrant breath was 

found, it was eliminated from the analysis and data from 
the two adjacent breaths were linearly interpolated. All 
hemodynamics and pulmonary data were smoothed using 
a 3-s rolling average. Statistical analysis for the passive leg 
movement-induced responses was performed on the Δpeak 
values from baseline (30 s before the onset of passive leg 
movement).

Root mean square of successive differences (RMSSD) 
was calculated from the R–R intervals of the electrocar-
diogram during the 60-s period preceding the onset of 
the passive movement and the first 15 s afterwards. This 
time point was chosen because changes in vagal tone may 
be expected here based on previous literature (Drew et al. 
2008a). RMSSD is a recommended time-domain measure 
of short-term HR variability and it is sensitive to changes in 
vagal tone (Task-Force 1996) and relatively free of respira-
tory influences (Hill and Siebenbrock 2009). RMSSD data 
from one subject was removed from the analysis because it 
was > 5 SD compared to the average data.

EMG data were analyzed with an in-house built MAT-
LAB routine (MATLAB 2020b, Mathworks, USA). The raw 
EMG signal was bandpass filtered (10–500 Hz) with a fourth 
order, zero-phase, Butterworth filter and full-wave recti-
fied. For the exercise EMG, a 500 ms baseline was detected 
between contractions, and onsets were set when the signal 
rose by > 3SD from baseline values. The same algorithm 
was applied to find contraction offset. For each muscle con-
traction, the root mean square (RMS) was calculated and 
normalized by the highest 500 ms EMGRMS obtained during 
a MVC performed before exercise (Laginestra et al. 2022). 
Moreover, the EMGRMS of the 30 s period preceding passive 
leg movement, and the 60 s of passive leg movement were 
calculated to ensure that the subjects were not voluntarily 
contracting the muscles of the passively moved limb.

Statistical analysis

Two-tailed independent sample t-tests were employed 
for baseline MVC, critical force, and exercise intensity 
between females and males. Paired samples t-tests were 
used between rest and passive leg movement within each 
condition for EMG measurements. Also, a three-way (con-
dition × time × sex) ANOVA for repeated measures was 
performed to find eventual differences between conditions 
during the three phases of the protocol for all the cardiores-
piratory variables (rest–exercise–recovery) and for RMSSD 
(baseline–movement). Successively, a two-way (condi-
tion × sex) ANOVA for repeated measures was performed 
to employed to find differences in the Δpeak responses to 
passive leg movement between PECO and CON. If sig-
nificant interactions were found, pairwise differences were 
identified using Bonferroni post-hoc test correction for mul-
tiple comparisons when appropriate. Statistical analysis was 
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performed with IBM SPSS Statistics 24 (IBM Corp©, 2016) 
and figures were made with GraphPad Prism 8.0 (GraphPad 
Software, Inc., 2012). Significance level was set at α < 0.05 
and effect sizes were reported by calculating Cohen’s d and 
partial eta squared (ηp

2). Data are expressed as mean ± SD 
unless otherwise stated.

Results

Maximal voluntary contraction, critical force, 
and exercise intensity

In our participants, MVC was 595 ± 158 N (females: 
473 ± 81 N; males: 718 ± 113 N, t18 = −5.6, p < 0.01, 
d = 2.49). Critical force was 195 ± 57 N (females: 159 ± 22 
N; males: 230 ± 59 N, t18 = −3.6, p < 0.01, d = 1.59), which 
was equivalent to 33 ± 8% MVC (females: 34 ± 7%; males: 
32 ± 9%, t18 = 0.5, p = 0.17, d = 0.25). The exercise intensity 
used for PECO and CON was 214 ± 62 N (females: 175 ± 24 
N; males: 253 ± 65 N, t18 = −3.6, p < 0.01, d = 1.59). which 
was equivalent to 37 ± 9% MVC (females: 38 ± 8%; males: 
36 ± 10%, t18 = 0.8, p = 0.62, d = 0.22).

Central hemodynamics and root mean square 
of successive differences

Rest, exercise, and recovery data for the two conditions are 
presented in Table 1. All variables were similar between 
sexes and conditions at rest and during exercise (all p > 0.05). 
During recovery after exercise, HR, SV, and CO returned to 
baseline in both conditions, while MAP remained elevated 
during PECO.

Δpeak values for central hemodynamics variables during 
passive leg movement are presented in Fig. 2. There was 
no statistically significant difference in any cardiovascular 
variable between Δpeak responses observed in CON and 
the passive leg movement performed at the beginning of the 
session (all p > 0.05). No significant sex effect (F1,18 = 1.1, 
p = 0.31, ηp

2 = 0.06) nor condition × sex interaction was 
found in HR (F1,18 = 1.7, p = 0.21, ηp

2 = 0.09). However, a 
significant difference in HR behavior was found between 
conditions (F1,18 = 11.5, p < 0.01, ηp

2 = 0.39) whereby HR 
increased by ~ 3% in CON (75 ± 11 to 78 ± 12 bpm) and ~ 8% 
in PECO (77 ± 14 to 83 ± 17 bpm). Furthermore, the change 
in SV was similar between conditions (CON: 69 ± 18 to 
77 ± 19  mL, PECO: 67 ± 15 to 74 ± 16  mL, F1,18 = 0.5, 
p = 0.48, ηp

2 = 0.03) and between sexes (sex: F1,18 = 1.1, 
p = 0.31, ηp

2 = 0.06; condition × sex interaction: F1,18 = 0.3, 
p = 0.60, ηp

2 = 0.02). However, together these adjustments 
did not translate into a different increase in CO (CON: 
5.08 ± 0.98 to 5.54 ± 1.07 L·min−1, PECO: 5.05 ± 1.00 to 
5.60 ± 1.07 L·min−1, F1,18 = 0.7, p = 0.40, ηp

2 = 0.04) nor 

between sexes (sex: F1,18 = 1.0, p = 0.76, ηp
2 = 0.01; condi-

tion × sex interaction: F1,18 = 0.2, p = 0.66, ηp
2 = 0.01). A 

divergent response in MAP (F1,18 = 50.8, p < 0.01, ηp
2 = 0.74) 

was found during passive leg movement in CON (92 ± 7 to 
89 ± 9 mmHg) and in PECO (103 ± 8 to 108 ± 9 mmHg). No 
sex difference was found in MAP (sex: F1,18 = 0.1, p = 0.75, 
ηp

2 = 0.01; condition × sex interaction: F1,18 = 0.2, p = 0.65, 
ηp

2 = 0.01) (Fig. 2).
No significant three-way interaction was found for 

RMSSD (condition  ×  time  ×  sex: F1,17 = 1.0, p = 0.33, 
ηp

2 = 0.06). On the same note, no significant condition × sex 
(F1,17 = 1.8, p = 0.20, ηp

2 = 0.01) or time × sex (F1,17 = 3.3, 
p = 0.09, ηp

2 = 0.16) interactions were detected. On the other 
hand, a significant condition × time interaction was found in 
RMSSD (F1,17 = 13.2, p < 0.01, ηp

2 = 0.44, Fig. 3). Follow-up 
pairwise comparison showed that RMSSD during the first 
15 s of passive leg movement was different than baseline in 
PECO only (39 ± 18 to 32 ± 15 ms, p = 0.04, d = 0.42).

Pulmonary variables

Rest, exercise, and recovery data for the variables of interest 
are presented in Table 1.

Furthermore, Δpeak values for ventilatory variables in 
response to passive leg movement are presented in Fig. 4. 
There was no statistically significant difference in any 

Table 1   Baseline, exercise, and recovery data for cardiovascular and 
respiratory variables

HR heart rate; SV stroke volume; CO cardiac output; MAP mean arte-
rial pressure; V̇

E
 minute ventilation; V̇O

2
 oxygen consumption; V̇CO

2
 

carbon dioxide production V̇
E
∕V̇CO

2
 ventilatory equivalent for CO2; 

CON control; PECO post-exercise circulatory occlusion
*Significantly different from previous time point (p < 0.05); §signifi-
cantly different from the other condition (p < 0.05). n = 20

Baseline Exercise Recovery

HR (bpm) CON 78 ± 13 96 ± 19* 75 ± 11*
PECO 77 ± 11 97 ± 18* 77 ± 14*

SV (mL) CON 71 ± 18 79 ± 17 69 ± 18
PECO 72 ± 15 76 ± 16 67 ± 16

CO (L·min−1) CON 5.5 ± 1.2 7.5 ± 1.4* 5.1 ± 1.0*
PECO 5.4 ± 1.2 7.2 ± 1.4* 5.1 ± 1.0*

MAP (mmHg) CON 91 ± 6 112 ± 9* 92 ± 7*,§

PECO 91 ± 7 112 ± 9* 103 ± 8*,§

V̇
E
(L·min−1) CON 14.8 ± 4.5 21.6 ± 6.6* 10.4 ± 2.5*

PECO 13.5 ± 3.5 20.6 ± 5.3* 11.4 ± 4.8*
V̇O

2
(mL·kg−1·min−1) CON 6.6 ± 1.6 10.0 ± 2.0* 4.6 ± 0.8*

PECO 6.3 ± 1.4 10.1 ± 2.3* 4.5 ± 0.9*
V̇CO

2
(mL·kg−1·min−1) CON 5.7 ± 1.7 9.1 ± 2.3* 3.8 ± 0.7*

PECO 5.3 ± 1.2 9.0 ± 2.4* 4.0 ± 1.2*
V̇
E
∕V̇CO

2
CON 37.2 ± 4.6 34.1 ± 3.5* 37.2 ± 4.8*
PECO 36.6 ± 4.5 33.1 ± 3.2* 38.5 ± 6.5*
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ventilatory variable between Δpeak responses observed 
in CON and the passive leg movement performed at the 
beginning of the session (all p > 0.05). During passive 
leg movement, Δpeak for V̇

E
 increased by ~ 40% in PECO 

(11.4 ± 4.8 to 15.3 ± 5.9 L·min−1) and only ~ 20% in CON 
(10.4 ± 2.5 to 12.3 ± 2.9 L·min−1) with this difference being 
statistically significant between conditions (condition: 
F1,18 = 5.6, p = 0.03, ηp

2 = 0.24). No sex (F1,18 = 1.1, p = 0.31, 
ηp

2 = 0.06), nor condition  ×  sex interaction was found 
(F1,18 = 0.0, p = 0.99, ηp

2 = 0.00). Concurrently, the increase 
in VT was not significantly different (F1,18 = 2.4, p = 0.15, 
ηp

2 = 0.12) between CON (0.72 ± 0.28 to 0.77 ± 0.29 L) and 
PECO (0.87 ± 0.40 to 1.06 ± 0.52 L) nor between sexes (sex: 
F1,18 = 1.2, p = 0.28, ηp

2 = 0.06; condition × sex: F1,18 = 2.0, 
p = 0.17, ηp

2 = 0.10). Finally, also Δpeak response in fB 
was not different (F1,18 = 1.6, p = 0.23, ηp

2 = 0.08) between 
CON (16.4 ± 5.2 to 21.2 ± 5.2 breaths·min−1) and PECO 
(14.8 ± 5.2 to 21.2 ± 5.3 breaths·min−1) and between sexes 
(sex: F1,18 = 1.3, p = 0.28, ηp

2 = 0.07; condition  ×  sex: 
F1,18 = 0.6, p = 0.45, ηp

2 = 0.03). 

Electromyography and rate of perceived exertion

EMG activity during passive leg movement was not dif-
ferent from the preceding resting period in both conditions 

CON (2.40 ± 1.90% to 2.40 ± 1.91%, p = 0.93, d = 0.24) or 
PECO (2.35 ± 1.89% to 2.37 ± 1.87%, p = 0.30, d = 0.24). 
EMGRMS and RPE during exercise are presented in Fig. 5. 
EMGRMS increased over time in both conditions (pooled 
values from min 1 to min 5: 39.6 ± 13.0% to 45.0 ± 20.5%, 
p < 0.01, ηp

2 = 0.18), with no difference between CON and 
PECO (p = 0.97, ηp

2 = 0.01). Also, RPE demonstrated the 
same behavior by increasing over time (pooled values from 
min 1 to min 5: 9 ± 2 to 13 ± 2, p < 0.01, ηp

2 = 0.75) with no 
difference between conditions (p = 0.33, ηp

2 = 0.06).

Discussion

The primary objective of this investigation was to study 
whether the central hemodynamic and ventilatory adjust-
ments to passive leg movement (i.e., mechanoreflex) inter-
act with the effects caused by intramuscular metabolites 
accumulation (i.e., metaboreflex). The main findings of this 
study were that chronotropic (ΔHR) and ventilatory ( ΔV̇

E
 ) 

responses to passive leg movement were higher in both 
sexes when the previously exercised muscle was maintained 
ischemic compared to a situation in which the muscle was 
freely perfused. These higher responses were accompanied 
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by a larger decrease in the vagal tone at the onset of the 
passive movement. This finding supports the concept that 
the cardiorespiratory response to mechanical stimulation, is 
potentiated when metabolites are accumulated in the muscle 
and suggest that this phenomenon is mediated by a transient 
decrease in the parasympathetic drive to the heart, and likely 
an increase in the overall sympathetic activation.

The effects of combined metabo‑ 
and mechanoreflex activation on central 
hemodynamics

Whether an interaction between the mechanical and meta-
bolic branches of muscle afferents exists in humans is still 
controversial with studies demonstrating an influence (Cui 
et al. 2008; Lis et al. 2020; Bell and White 2005; Nishi-
yasu et al. 2006) and others demonstrating no influence 
(Fisher et al. 2005; Venturelli et al. 2017). In humans, iso-
lated muscle mechanoreceptors stimulation through passive 
stretch (Gladwell et al. 2005; Gladwell and Coote 2002), and 
dynamic movement (Venturelli et al. 2017; McDaniel et al. 
2010) has been shown to be able to evoke a transient HR and 
blood pressure response (Cui et al. 2006). Given the rapidity 
of this response, and the fact that infusion of anticholinergic 
drugs (i.e., glycopyrrolate) abolishes it, this chronotropic 
adjustment is attributed to an effect on vagal withdrawal 
(Gladwell et al. 2005).

Our results showed a transient but significantly higher 
increase in HR response (~ 8% vs. ~ 3%) to passive leg move-
ment when ischemia was maintained on the moved leg after 
exercise. However, this difference was too small to result in 
a higher CO response compared to CON, limiting its func-
tional importance in this model. Importantly, the results 

from EMG data suggest that there was no involvement of 
central command during the passive leg movement and 
indicate that the observed effect is due to a reflex mecha-
nism. Interestingly, we also observed a significant decrease 
in RMSSD only in PECO in response to passive leg move-
ment (Fig. 3). This result agrees with the results of a previ-
ous study in which static stretch superimposed on PECO 
transiently decreased RMSSD (Drew et al. 2008a) and sup-
ports the idea that the mechanism between the mechano- and 
metaboreflex interaction, may be represented by a transient 
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decrease of the vagal tone during the first seconds after 
movement onset. Therefore, the sensitization of group III 
fibers, together with the sympathoexcitation due to higher 
group IV afferents firing, may be a sufficient stimulus to 
temporarily increase HR and MAP. In fact, previous studies 
showed how this interaction may lower baroreflex sensitiv-
ity and, therefore, its ability to control changes in HR (Drew 
2017; Drew et al. 2008a). The observation that HR was not 
different between PECO and CON during recovery (Table 1) 
agrees with previous studies showing that PECO alone 
does not cause enough sympathoexcitation to override the 
parasympathetic reactivation happening with the cessation 
of central command (Nishiyasu et al. 1994; Iellamo et al. 
1999). Finally, a recent study by Peçanha and colleagues 
showed that activation of the mechanoreflex during post-
exercise plays a role in attenuating heart rate recovery, high-
lighting the importance of these mechano-sensitive fibers 
on the cardiac parasympathetic branches of the autonomic 
nervous system (Pecanha et al. 2021).

The effects of combined metabo‑ 
and mechanoreflex activation on ventilatory drive

The role of muscle afferents stimulation on ventilatory 
responses is not univocal with previous studies using various 
approaches, yielding inconsistent results, also dependent on 
the modality to stimulate group III/IV afferents. For exam-
ple, passive calf stretch leads to a non-significant increase 
in V̇

E
 (Bruce and White 2012), while bilateral passive leg 

movement has been found to provoke a ~ 6 L·min−1 increase 
in V̇

E
 (Bell and Duffin 2006). A significant increase in venti-

lation was also found when external pulsed muscle compres-
sions were superimposed on rhythmic exercise (Nishiyasu 
et al. 2006). However, while the use of large muscle masses 

may be more appropriate because of the evidence that the 
magnitude of afferent feedback is related to the size of the 
involved muscle mass (Iwamoto and Botterman 1985) it also 
makes the contribution of central command harder to parse 
out, given the possible involvement of postural, stabilizing 
muscles, not directly involved in the passive movement.

In this study, we found that passive movement of a sin-
gle leg with PECO was accompanied by an increase in 
peak ΔV̇

E
 that was almost twofold the one observed during 

CON. The fact that neither ΔVT nor ΔfB were significantly 
different between PECO and CON may suggest that nei-
ther factor alone is responsible for the increased response 
in V̇

E
 in this model, but that may be the result of changes in 

both variables, which are known to be regulated following 
distinct inputs (Forster et al. 2012). This larger increase 
in V̇

E
 during the combined activation of metabolically 

and mechanically sensitive afferents, may signify that the 
effects of the two pathways are interactive. In fact, while 
it is well accepted that post-exercise ischemia is unable 
to sustain ventilatory drive in and of itself (Bruce et al. 
2019), evidence from recent studies suggests that inputs 
from different regulatory mechanisms (e.g. central com-
mand, chemoreflexes) need to act synergistically in order 
to increase the ventilatory responses to muscle afferents 
stimulation (Silva et al. 2018; Wan et al. 2020; Lam et al. 
2019). In an elegantly designed study, Lam and colleagues 
recently showed that when PECO was superimposed to 
the previously exercised contralateral leg, the ventila-
tory response to a successive exercise bout (i.e., involv-
ing central command) was accentuated, with the “excess” 
response attributable to enhanced afferent firing (Lam 
et al. 2019). Accordingly, a study from Silva et al., dem-
onstrated that when the subjects were breathing a hypoxic 
mixture, the ventilatory response to passive leg movement 
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was amplified compared to the passive movement alone, 
demonstrating an interaction when the chemoreflex and the 
mechanoreflex were stimulated together (Silva et al. 2018).

The mechanism behind the increase in ventilation in 
our study is not clear. However, since ventilation is not 
controlled by parasympathetic innervation, we speculate 
that our findings may be the result of a concomitant sym-
pathetic activation caused by the stimulation of group 
III afferents (Victor et al. 1989).In support of this idea, a 
previous study from our group demonstrated how passive 
sympathoexcitatory maneuvers (e.g., static stretching) are 
able to restrain the peripheral hyperemic response to a 
passively moved, remote limb, likely through sympathetic 
vasoconstriction (Zambolin et al. 2022).

Absence of sex‑related differences 
in mechanoreflex‑induced central responses

In the present study, an exploratory analysis was conducted 
in order to assess whether any of the central responses to 
the mechano-metaboreflex interaction, presented sex-related 
differences. Our findings did not uncover any sex-specific 
responses in cardiac or ventilatory responses, indicating 
that the males and females similarly respond to the interac-
tion of the two branches of the group III/IV muscle afferent 
pathway. To our knowledge, this is the first study to provide 
empirical evidence about this issue. Even though the lit-
erature is scarce, a previous study found that the isolated 
mechanoreflex activation through passive leg movement 
resulted in a blunted central hemodynamic response (i.e., 
lower HR) in healthy young females compared to their male 
counterparts (Ives et al. 2013). On the other hand, similar 
to the present study, a recent investigation from Wan and 
colleagues (Wan et al. 2022), found that when passive leg 
movement was performed in isolation, HR response was 
similar between sexes. Interestingly however, biological 
sex had an important effect when the mechanoreflex acted 
in concert with the chemoreflex, highlighting, once again, 
the importance of studying the interaction between reflexes 
instead of their isolated effects. On this note, further research 
is needed to evaluate how biological sex and reflexes inter-
act in the neural control of autonomic adjustments. Finally, 
although the sample size employed in the present study is 
relatively close to the ones used in previous investigations 
addressing similar experimental questions (Ives et al. 2013; 
Wan et al. 2022), future studies should consider increasing 
the number of participants for each sex to ensure adequate 
statistical power.

Experimental considerations

In the present study, the activation of the metaboreflex 
was performed by inflating a cuff at suprasystolic pressure 
(standardized at 300 mmHg for all participants). It is impor-
tant to point out that this procedure is usually associated 
with significant pain. Since noxious stimulation is also effec-
tive in activating group IV afferents (Pollak et al. 2014) our 
results are likely representing the response of metabo- and 
nociceptors.

It may be argued that performing passive leg movement 
after 5 min of recovery from exercise in CON may have an 
effect on the observed responses for two reasons: (1) 5 min 
may not be enough to washout all the metabolic byprod-
ucts of exercise, and (2) given the proximity of the passive 
movement to exercise, this may be influenced by other fac-
tors such as arousal, defined as an increase in brain activity 
independent of motor command (Bell and Duffin 2004; Ven-
turelli et al. 2012). To verify this proposition, we compared 
the responses observed in CON with the ones obtained dur-
ing the passive leg movement performed at the beginning 
of each experimental session (Fig. 1, panel B). Since there 
were no differences in any of the studied variables between 
the two trials, these results support the idea that full recovery 
was achieved and that the observed mechanoreflex-induced 
responses were likely not influenced by arousal.

In this study, we decided to use the critical intensity 
model to establish the exercise intensity for our protocol, 
instead of basing it on a fixed %MVC. To the best of our 
knowledge, this approach is novel in the study of autonomic 
adjustments to metabolic and mechanical stimulation. Our 
choice stems from the observation that metabolites accumu-
lation depends on the metabolic domain in which exercise is 
performed (Jones et al. 2008). In fact, given the high inter-
subjects variability in the levels of %MVC at which critical 
intensity is located (Kellawan and Tschakovsky 2014; Burn-
ley 2009), a fixed %MVC would likely create very different 
metabolic perturbations, which could be extremely high for 
a subject or extremely low for another (Kent-Braun et al. 
1993). Accordingly, a study using 31P magnetic resonance 
spectroscopy demonstrated how the kinetics of changes in 
the intramuscular metabolic milieu differ when exercise is 
performed above, or below critical intensity (Jones et al. 
2008). Also, it is becoming increasingly recognized that 
absolute muscle strength influences the pressor response to 
exercise (Lee et al. 2021; Notay et al. 2018), which may 
also partly be explained by this proposition. In fact, the 
levels of blood flow occlusion caused by higher absolute 
forces would, in turn, cause longer time under ischemia and 
different rates of metabolites accumulation. Therefore, we 
believe that the approach used in our study is more suitable 
to compare physiological responses that are highly depend-
ent on metabolites accumulation, and we advocate for future 
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studies to apply this concept to further investigate the role 
of intensity domains on autonomic adjustments to exercise, 
especially when between-subjects designs are employed.

Conclusions

In conclusion, in this study we have shown that mechanore-
flex-induced cardiac and ventilatory responses to passive 
leg movement are sensitized by the metabolic conditions 
of the muscle in young adults, independently from biologi-
cal sex. Our data suggest that a transient decrease in vagal 
tone and a likely concurrent increase in sympathetic activa-
tion mediate the increase in chronotropic and ventilatory 
responses when passive leg movement is superimposed on 
metaboreflex activation.
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