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Abstract
Objectives Deficits in muscle performance could be a consequence of a reduced ability of a motor neuron to increase the rate 
in which it discharges. This study aimed to investigate motor unit (MU) discharge properties of each triceps surae muscle 
(TS) and TS torque steadiness during submaximal intensities in runners with Achilles tendinopathy (AT).
Methods We recruited runners with (n = 12) and without (n = 13) mid-portion AT. MU discharge rate was analysed for each 
of the TS muscles, using high-density surface electromyography during 10 and 20% isometric plantar flexor contractions.
Results MU mean discharge rate was lower in the gastrocnemius lateralis (GL) in AT compared to controls. In AT, GL MU 
mean discharge rate did not increase as torque increased from 10% peak torque, 8.24 pps (95% CI 7.08 to 9.41) to 20%, 8.52 
pps (7.41 to 9.63, p = 0.540); however, in controls, MU discharge rate increased as torque increased from 10%, 8.39 pps 
(7.25–9.53) to 20%, 10.07 pps (8.89–11.25, p < 0.001). There were no between-group difference in gastrocnemius medialis 
(GM) or soleus (SOL) MU discharge rates. We found no between-group differences in coefficient of variation of MU dis-
charge rate in any of the TS muscles nor in TS torque steadiness.
Conclusion Our data demonstrate that runners with AT may have a lower neural drive to GL, failing to increase MU discharge 
rate to adjust for the increase in torque demand. Further research is needed to understand how interventions focussing on 
increasing neural drive to GL would affect muscle function in runners with AT.

Keywords Achilles tendon · Running · Firing rate · Neural drive · Torque steadiness · Triceps surae · High-density 
electromyography

Abbreviations
AT  Achilles tendinopathy
GL  Gastrocnemius lateralis
GM  Gastrocnemius medialis
HD-EMG  High-density surface electromyography
MVIC  Maximal voluntary isometric contraction
SOL  Soleus

Introduction

Achilles tendinopathy (AT) is the most prevalent running 
injuries, accounting for about 6.2–9.5% of all running inju-
ries (Lagas et al. 2020; Mousavi et al. 2019). AT is an over-
loading injury and although its aetiology is multifactorial 
(Cook et al. 2016), deficits in muscle performance is sug-
gested to be a key factor (O’Neill et al. 2019; Mahieu et al. 
2006), which seems to be maintained long after symptomatic 
recovery (Silbernagel et al. 2007). Several lines of evidence 
suggest that neural changes to the triceps surae might under-
pin some of these chronic motor deficits (Crouzier et al. 
2020; Fernandes et al. 2021). In particular, it has been shown 
that individuals with AT have: (1) lower contribution of 
gastrocnemius lateralis (GL) to produce plantar flexor force 
Crouzier et al. 2020 and (b) greater levels of intra-cortical 
inhibition associated with lower plantar flexor endurance 
during single leg heel raise test (Fernandes et al. 2021) when 
compared to controls. Collectively, these findings suggest 
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that changes in how the central nervous system control mus-
cles coordination (Hug and Tucker 2017) within the triceps 
surae (force distribution and activation) might impact load 
distribution to the tendon in individuals with AT. This is of 
particular importance because altered triceps surae coordi-
nation (due to lower individual muscle contribution to mus-
cle force) could create uneven loading of the Achilles tendon 
and contribute to tendinopathy (Cook and Purdam 2009).

There has been some speculation about differences in 
recruitment strategies within the triceps surae in people 
with AT, with conflicting evidence about which muscle is 
affected. One study (O’Neill et al. 2019) suggested soleus 
(SOL) would be the main muscle responsible for the strength 
and endurance deficits observed in these individuals. The AT 
group had deficits in plantar flexor torque during dynamom-
etry testing, irrespectively of knee position (knee flexed/
extended) compared to controls. The authors reasoned that 
if the gastrocnemii were affected, deficits between groups 
would be larger during knee extended and smaller during 
knee flexed. However, determining force deficits in SOL 
in relation to the gastrocnemii solely by comparing torque 
measures between flexed and extended knee positions pro-
vides very limited and possibly inaccurate information about 
muscle recruitment patterns, neglecting all the neurophysi-
ological mechanisms that enable force production in the 
first place (Enoka and Duchateau 2017). Conversely, run-
ners with acute AT (Crouzier et al. 2020) (< 3 months) have 
about 22% lower contribution of GL during 20 and 40% of 
peak plantar flexor isometric torque but no differences in 
gastrocnemius medialis (GM) or SOL, compared to controls. 
Force-sharing contribution of individual muscles of the tri-
ceps surae was estimated for each muscle based on the root 
mean squared (RMS) of surface EMG (electromyography) 
signal amplitude and other muscle characteristics (i.e. physi-
ological cross-sectional area). Even though data from sur-
face EMG signal is somewhat limited in estimating changes 
in neural drive to a specific muscle (Martinez-Valdes et al. 
2018), this result suggests that individual muscles recruit-
ment strategies might be altered in AT.

From a neurophysiological perspective, the force exerted 
by a muscle depends, partly, on the recruitment and dis-
charge rates of the motor units (Enoka and Duchateau 2017). 
Thus, deficits in motor performance could be a result of a 
reduced ability to recruit motor units and/or to increase the 
rate at which motor neurons’ discharge (Enoka and Ducha-
teau 2017). The analysis of individual motor unit discharge 
rates from each muscle of the triceps surae (Hug et al. 2020) 
is a more reliable way of investigating the central nervous 
system strategy of recruitment of the triceps surae muscle 
(i.e. neural drive), than the typical and limited interference 
EMG (Souza et al. 2018). This method has been also used in 
other studies to estimate changes in neural drive to specific 
muscles in individuals with other chronic musculoskeletal 

conditions such as ACL injury (Nuccio et al. 2021) and 
patellofemoral pain (Martinez-Valdes et al. 2019).

Furthermore, reduced control of the plantar flexors could 
create tendon overload, progressing to early stages of ten-
dinopathy (Cook and Purdam 2009). Increased fluctuation 
in torque (torque steadiness) is associated with painful 
musculoskeletal conditions such as knee osteoarthritis or 
patellofemoral pain (Martinez-Valdes et al. 2019; Rice et al. 
2015) or following ACL reconstruction (Telianidis et al. 
2014) and could occur as consequence of greater variation 
in motor unit discharge rate (Enoka and Farina 2021). Coef-
ficient of variation of motor unit discharge represents, at 
an individual muscle level, the ability to effectively control 
muscle torque and it is an important measure that can help 
explain motor performance (Enoka and Duchateau 2017).

Thus, this study aimed to: (i) investigate differences 
in neural drive to each muscle of the triceps surae during 
submaximal plantar flexor contractions in individuals with 
AT; (ii) determine between-group differences in coefficient 
of variation of motor unit discharge rate and torque steadi-
ness. We hypothesised that motor unit mean discharge rate 
of each individual muscles of the triceps surae would be 
lower in the tendinopathy group, associated with differ-
ences between muscles of the triceps surae in the AT group. 
We also hypothesised the AT group would have increased 
variability in motor unit discharge rate and torque steadiness 
compared to controls.

Methods

This was a cross-sectional study comparing runners with 
and without mid-portion AT. A sample size of 18 par-
ticipants (9 per group) was calculated based on a similar 
study (Gallina et al. 2018) (GPower software parameters: 
effect size F = 0.40; α err prob: 0.05; power 0.95; n = 9 per 
group). 25 endurance runners were recruited for this study, 
12 with mid-portion AT (7 males, 44.3 years old ± 95% CI 
6.7, 173 cm ± 5.7, 76.2 kg ± 9.3) and 13 healthy controls 
(7 males, 34.0 years old ± 4.2, 171 cm ± 5.6, 64.8 kg ± 7.0), 
with a running routine of more than twice weekly for more 
than 4 months. Runners were recruited from local running 
clubs, via email and social media. Participants from this 
study are the same from a separate study (one more par-
ticipant in the AT group) (Fernandes et al. 2021). Torque 
measures such as absolute and normalised plantar flexor 
peak isometric torque and explosive torque were not differ-
ent between the groups, as have been reported previously 
(Fernandes et al. 2021).

All volunteers were endurance runners, recruited from 
local running clubs around Southeast Queensland, Aus-
tralia. Diagnosis of mid-portion AT was confirmed by an 
experienced physiotherapist during examination if patients 
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presented with localised mid-portion Achilles tendon pain 
for more than 3 months, pain provoked by physical activi-
ties in a dose dependent way and had pain with palpation 
at the mid-portion of tendon. Volunteers were excluded if 
presenting insertional AT; previous rupture or surgery of the 
Achilles tendon; clinical findings indicating a differential 
diagnosis for the Achilles tendon pain (such as tendon tear); 
regular participation in other sports involving high speed 
running (football, rugby, AFL etc.), 4) VISA-A score > 90 
points for AT group and < 100 for the healthy group; any 
other musculoskeletal injuries of the lower limb; any neu-
rological disorder; or mental health issues affecting consent. 
All participants were free of comorbidities such as cardiac, 
pulmonary, renal, and endocrine of gastrointestinal and were 
not taking any medication for tendon pain or that would 
affect tendon structure (Knobloch 2016).

Prior to testing, all participants read and signed a detailed 
informed consent document and completed the VISA-A 
questionnaire (Martin et  al. 2018). The average VISA-
A score for the AT group was 70.1 ± 5.7 and 100 ± 0 for 
the control group. The AT group had a running routine of 
38.7 ± 9.1 km/week and 30.4 ± 8.4 km/week for the con-
trol group; mean difference of 8.3 ± 12.2. This study was 
approved by the Queensland University of Technology 
Human Research and Ethics Committee in line with the Dec-
laration of Helsinki. Data collection was conducted during 
the COVID-19 pandemic and all safety procedures followed 
local state government policies.

Data collection and analysis

Plantar flexor isometric peak torque was measured using an 
isokinetic dynamometer (Biodex Medical Systems, Shirley, 
New York). For the bilateral AT presentations (n = 3), the 
most symptomatic leg was used and for the control group, 
the dominant leg was used for testing. Leg dominance was 
selected by asking the participants what their preferred leg 
was, and if participants were unsure, they were asked which 
leg they would use to kick a ball. Participants were sitting 
(75 degrees of hip flexion) with their knee straight and with 
the foot perpendicular to shank. Warm up consisted of 2 × 4 s 
isometric contractions of each participant’s perceived 20, 
40, 60 and 80% maximal voluntary isometric contraction 
intensity. After warm-up, participants performed at least 
three maximal voluntary isometric contractions, until < 5% 
variation was observed between contractions, and the high-
est value was used. Thereafter, participants performed three 
trapezoidal submaximal isometric contractions with each 
target intensity based on their peak isometric torque (3 × 10% 
and 3 × 20% peak torque) in a randomised order. For each 
intensity participants had four attempts to get familiarised 
with task before recordings. Rate of torque rise and decline 
was standardised at 10% peak torque/s between contractions 

with different intensities, with a 10 s sustained plateau at the 
top, followed by 1 min of rest between contractions (Boccia 
et al. 2019; Vecchio et al. 2019). Participants received real-
time visual feedback of the trapezoidal pathway, displayed 
in a monitor placed at 1 m away from the participant. During 
the plantar-flexors trapezoidal contractions, HD-EMG (Ses-
santaquattro, OTBioelettronica, Torino, Italy) signals were 
recorded with OT Biolab + software (version 1.3.0., OTBio-
elettronica, Torino, Italy), from SOL, GM and GL. After 
skin preparation (shaving, light abrasion, and cleansing of 
area with alcohol), electrodes were positioned following 
the estimated muscle fibres orientation using a bi-adhesive 
layer with a conductive paste to ensure good skin–electrode 
contact and conductibility. One 32-channel electrode grid 
(ELSCH032NM6, OTBioelettronica, Torino, Italy) was 
placed on GM, one 32-channel electrode grid on GL and 
two 32-channel electrodes grid on SOL, one laterally and 
one medially to the Achilles tendon (Fig. 1). Two electrodes 
were used on SOL to increase the number of identified motor 
units. Data from both electrodes were clustered into one file 
to increase motor unit yield, prior to analysis of SOL motor 
unit characteristics. The ground strap electrode (WS2, OTBi-
oelettronica, Torino, Italy) was dampened and positioned 
around the ankle joint of the tested leg. The EMG signals 
were recorded in monopolar mode, amplified (256×), band-
passed filtered (10–500 Hz) and converted to digital signal 
at 2048 Hz by a 16-bit wireless amplifier (Sessantaquattro, 
OTBioelettronica, Torino, Italy), before being stored for 
offline analysis. Since the grid adapter device (AD2 × 32SE, 
OTBioelettronica, Torino, Italy) has only two channels for 
electrode connection, each intensity of the protocol had to be 
performed twice, once with electrodes connected to the gas-
trocnemii and a second time with the electrodes connected 
SOL, this order was randomised for each intensity. Torque 
signal was recorded and analysed with OT Biolab + soft-
ware. HD-EMG signal was recorded and analysed offline, 
decomposed into motor unit spike trains, then converted 
into instantaneous discharge rates with specialised software 
using blind source separation decomposition technique using 
DEMUSE tool software (v.4.1; The University of Maribor, 
Slovenia) (Vecchio et al. 2020). For each muscle and for 
each intensity, the 2 best contractions, with the lowest devia-
tion from trapezoidal torque trajectory, were combined in 
one file and motor unit tracked across the 2 contractions at 
the same intensity for analysis. All motor units were visu-
ally inspected, erroneous discharge times were excluded, and 
missed discharges included (Vecchio et al. 2020). Manual 
inspection is required to reduce automatic decomposition 
discharge errors and improve data reliability (Martinez-
Valdes et al. 2016). Reliability for manual inspection across 
operators is very high for motor unit mean discharge rate 
and recruitment with intra-class correlation coefficient (ICC) 
of > 0.99 (Hug et al. 2021). We have also calculated ICC for 
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our data for motor unit discharge rate across the 2 contrac-
tions for each intensity, per muscle for each group and it is 
shown in Table 1. Only motor units with a pulse-to-noise 
ratio (PNR) > 30 dB, sensitivity > 90%, were used for data 
analysis (Vecchio et al. 2019, 2020). For participants that 
yield no good quality motor units (PNR > 30 dB) after motor 
unit tracking across the 2 contractions at the same intensity 
(Orssatto et al. 2021; Frančič and Holobar 2021), the best 
single contraction (higher PNR per motor units) was used 
for analysis with the motor unit discharge characteristics 
inspected as mentioned above. Due to the reduced number 
of the same motor units found across intensities, motor unit 
tracking across intensities was not feasible and, therefore, 
not used for analysis. Assessor who performed motor unit 
analysis process was not blinded by group. Motor units were 
collected from the 10 s isometric plateau, the first and last 
two seconds were excluded and analysis of mean motor unit 
mean discharge rate, coefficient of variation of motor unit 
discharge rate and torque steadiness were performed from 
the central 6 s of the isometric plateau. Motor unit mean 
discharge rates and coefficient of variation of motor unit 
discharge rates were then calculated for each muscle (SOL, 
GM and GL) and intensity tested (10 and 20% peak torque).

Torque steadiness was analysed as the coefficient of vari-
ation in torque for each torque intensity tested. Torque was 
filtered (10 Hz, 4th order, low pass). To reduce intrasubject 
variability, data from the coefficient of variability of torque 
were averaged across the 4 contractions for each of the two 
torque intensities tested, the 2 contractions recorded during 
gastrocnemii testing and from the 2 contractions during SOL 
testing (Jakobi et al. 2020).

Statistical analysis

All analyses were performed using R studio (version 
1.3.1093). Models were fitted using the lme4 package (Bates 
et al. 2015). Separate linear mixed-effect models were used 
to compare motor unit mean discharge rates and coefficient 
of variation of motor unit discharge rate of identified motor 
units for each muscle (SOL, GM, GL); between intensities 
(10 and 20%) and groups (AT and control). We tested the 
model using a random intercept (participant ID) and slope 
(recruitment threshold by intensity) for each participant in 
the study to account for the influence of motor unit popula-
tions and the correlation between repeated observations in 
each participant. The estimated marginal mean difference 
and 95% confidence intervals (CI) for all variables (motor 
unit mean discharge rate, coefficient of variation of motor 
unit discharge rate, between groups and torque steadiness) 
were determined using the emmeans package (Lenth 2016). 
Normality assumptions were confirmed by analysis of the 
histogram of residuals, Q–Q Plot, and the residual-predicted 
scatterplot. Independent t test was used to compare torque 

Fig. 1  Schematic representation of electrode positioning used for data 
acquisition for all three muscles of the triceps surae (GM gastrocne-
mius medialis, GL gastrocnemius lateralis and SOL soleus. One elec-
trode was placed over GM, one electrode over GL, and two electrodes 
over SOL, one medially and one laterally to the Achilles tendon
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steadiness between groups for each torque intensity. An 
alpha level of 5% was set for statistical significance for all 
tests, and when appropriate, Bonferroni post hoc analysis 
was performed. Data are presented as mean ± 95% CI. Data 
for total number of motor units per group are presented as 
(mean ± SD).

Results

Motor unit identification

We found a total of 1.055 motor units, 518 motor units in the 
AT group (43.1 ± 7.0, per participant) and 537 motor units in 
the control group (41.4 ± 6.3, per participant) across all mus-
cles and intensities. The total number, mean and standard 
deviation of identified motor units per group, muscle, and 

contraction intensity are reported in Table 2. The number 
of identified motor unit for each participant per muscle and 
intensity is reported in Supplementary material 1. GL was 
the muscle with the least amount motor unit found in single 
contractions, and some were lost during motor unit tracking 
between the two contractions of the same intensity.

Motor unit discharge rate

Analysis of SOL motor unit mean discharge rate showed 
difference between torque intensities (F = 20.118, 
p < 0.001, η2p = 0.04) but no differences between groups 
(F = 0.324, p = 0.574) or intensity × group interaction 
(F = 0.512, p = 0.474). There was an increase in motor unit 
mean discharge rate in both groups as torque increased. In 
the AT group, motor unit mean discharge rate increased 
from 6.98 pps (6.72–7.24) at 10% peak torque to 7.29 

Table 1  ICC for MU discharge 
rate across the 2 contractions for 
each intensity, per muscle for 
each group

Data are presented as intra-class correlation coefficient-ICC with lower to upper 95% confidence interval in 
brackets, and coefficient of variation-CV

Muscle % peak torque AT-ICC (95% CI) AT-CV Control-ICC (95% CI) Control-CV

SOL 10% peak torque 0.91 (0.88–0.93) 5.6 0.94 (0.92–0.60) 4.3
SOL 20% peak torque 0.93 (0.90–0.95) 4.4 0.86 (0.79–0.90) 6.5
GM 10% peak torque 0.86 (0.80–0.90) 5.6 0.97 (0.96–0.98) 3
GM 20% peak torque 0.95 (0.95–0.97) 2.6 0.98 (0.97–0.99) 1.8
GL 10% peak torque 0.71 (0.37–0.86) 8 0.95 (0.93–0.97) 3.9
GL 20% peak torque 0.90 (0.82–0.95) 6.4 0.82 (0.64–0.90) 7.7

Table 2  Total number, mean and SD of identified motor units per group, muscle, and contraction intensity

Data represent mean (standard deviation) number of MU per participant. It is also reported the number of participants (n) who yield MU and 
total number of MU found per muscle and per contraction intensity. Participants who had no MU were not included in this analysis

AT (%) Mean (±SD) n Total 
number of 
MU

SOL (10) 10 (±5.5) 12 120
SOL (20) 10 (±5.5) 12 120
GM (10) 11.2 (±8.3) 9 101
GM (20) 11.6 (±9.0) 11 128
GL (10) 2.8 (±2.2) 7 20
GL (20) 3.6 (±2.1) 8 29

Control (%) Mean n Total 
number of 
MU

SOL (10) 9.7 (±6.6) 13 127
SOL (20) 9.5 (±6.6) 12 114
GM (10) 9.4 (±5.9) 12 113
GM (20) 11.4 (±6.4) 10 114
GL (10) 5.3 (±6.0) 8 43
GL (20) 3.7 (±2.8) 7 26
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pps (7.02–7.55) at 20%; the motor unit mean discharge 
rate in the control group also increased, from 7.40 pps 
(7.16–7.63) at 10% peak torque to 7.86 pps (7.55–8.16) 
(Fig. 2).

Similar to SOL, in GM analysis, we observed differ-
ences in motor unit mean discharge rate between differ-
ent torque intensities (F = 75.554, p < 0.001, η2p = 0.15) 
but no differences between groups (F = 0.488, p = 0.492) 
or intensity × group interaction (F = 1.063, p = 0.303). In 
both groups, motor unit mean discharge rate increases with 
the increase in torque intensity. In the AT group, motor 
unit mean discharge rate increased as torque increased 
from 10%, 8.38 pps (7.44–9.33) to 20% peak torque, 9.54 
pps (8.61–10.48). The same was observed in the con-
trol group, motor unit mean discharge rate increased as 
torque increased from 10%, 8.63 pps (7.75–9.51) to 20%, 
10.10 pps (9.21–11.00) (Fig. 3). On the other hand, in 
GL, we found an intensity × group interaction (F = 27.955, 
p = 0.001, η2p = 0.11). While in the AT group, motor unit 
mean discharge rate did not change as torque increased 
from 10% peak torque, 8.24 pps (7.08–9.41) to 20%, 
8.52 pps (7.41–9.63, p = 0.540); however, in the control 
group, motor unit mean discharge rate increased as torque 
increased from 10%, 8.39 pps (7.25–9.53) to 20% peak 
torque, 10.07 pps (8.89–11.25, p < 0.001), (Fig.  4, ** 
denotes statistical difference). The control group had a 

higher motor unit mean discharge rate at 20% torque com-
pared to the AT group.

Coefficient of variation of motor unit discharge rate

SOL had no difference in coefficient of variation of motor 
unit discharge rate between intensities (F = 2.963, p = 0.086) 
or between groups (F = 0.151, p = 0.700). In the AT group, 
the coefficient of variation of motor unit discharge rate was 
10.3% (8.8–11.8) at 10% peak torque and 9.3% (7.9–10.7) 
at 20% peak torque; in the control group, the coefficient of 
variation of motor unit discharge rate was 10.2% (8.8–11.7) 
at 10% peak torque and 10.0% (8.6–11.5) at 20% peak 
torque. GM presented difference in coefficient of variation 
of motor unit discharge rate between intensities (F = 51.203, 
p < 0.001, η2p = 0.10) but not between groups (F = 3.673, 
p = 0.07) and had no intensity × group interaction (F = 0.872, 
p = 0.350). In the AT group, the coefficient of variation of 
motor unit discharge rate was 12.15% (11.1–13.1) at 10% 
peak torque and 9.16% (8.1–10.1) at 20% peak torque; in 
the control group, the coefficient of variation of motor unit 
discharge rate was 10.75% (9.8–11.7) at 10% peak torque 
and 8.45% (7.4–9.5) at 20% peak torque. In GL, as well as in 
GM, we observed difference between intensities (F = 5.222, 
p = 0.024, η2p = 0.05) but not between groups (F = 0.661, 
p = 0.428) or intensity × group interaction (F = 2.779, 
p = 0.098). In the AT group, the coefficient of variation 

Fig. 2  Motor unit mean discharge rate of soleus during 10 and 20% peak isometric contraction. Each dot represents a single motor unit data 
point, coloured by participants. Mean and 95% confidence interval are offset to the left to facilitate visualisation. pps pulse per second
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Fig. 3  Motor unit mean discharge rate of gastrocnemius medialis dur-
ing 10 and 20% peak isometric contraction. Each dot represents a sin-
gle motor unit data point, coloured by participants. Mean and 95% 

confidence interval are offset to the left to facilitate visualisation. pps 
pulse per second

Fig. 4  Motor unit mean discharge rate of gastrocnemius lateralis dur-
ing 10 and 20% peak isometric contraction. Each dot represents a sin-
gle motor unit data point, coloured by participants. Mean and 95% 

confidence interval are offset to the left, to facilitate visualisation. pps 
pulse per second
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of motor unit discharge rate was 10.9% (8.5–13.2) at 10% 
peak torque and 11.9% (9.6–14.0 at 20% peak torque; in 
the control group, the coefficient of variation of motor unit 
discharge rate was 12.7% (10.5–14.9) at 10% peak torque 
and 12.9% (10.5–15.2) at 20% peak torque.

Torque steadiness

There were no differences in torque steadiness analysis 
between groups in either of the two intensities analysed. 
Mean coefficient of variation of torque at 10% peak torque, 
in the AT group was 1.06 (0.79–1.32) and 1.13 (0.90–1.37, 
p = 0.656) in the control group; and at 20%, mean coefficient 
of variation in torque in the AT group was 0.80 (0.57–1.03) 
and 0.92 (0.73–1.11, p = 0.375) in the control group.

Discussion

Main findings

The present study aimed to determine if runners with chronic 
mid-portion AT had lower neural drive to the triceps surae 
and if there were muscle-specific differences in motor unit 
discharge characteristics within the triceps surae. For that, 
we analysed motor unit mean discharge rate and coefficient 
of variation of motor unit discharge rate of each individual 
muscle of the triceps surae during isometric contractions of 
increasing intensities. We also aimed to determine if the AT 
group had lower torque steadiness.

Our data indicate that runners with AT have lower neural 
drive to GL during the increase in plantar flexor isometric 
torque output. We confirmed our primary hypothesis, dem-
onstrating a muscle-specific difference in neural drive in the 
AT group and a lower neural drive to GL during the increase 
in plantar flexor torque, not observed in the control group. 
However, we had also hypothesised that the neural drive 
to the triceps surae of the AT group would be lower, but 
GM and SOL were no different from controls. Furthermore, 
we did not confirm our second hypothesis, as we found no 
differences in the coefficient of variation of motor unit dis-
charge rate in any of the muscles, nor did we find differences 
in triceps surae torque steadiness between groups.

Mean motor unit discharge rates

It has been previously identified that the three muscles 
of the triceps surae, although synergists as ankle plan-
tar flexors, may have an independent neural drive from 
one another, allowing independent recruitment strate-
gies for better joint control Hug et al. 2020. Our study 
also observed independent neural drive within the tri-
ceps surae. Individuals have a unique muscle activation 

pattern (Hug et al. 2022). Such activation signature has 
been shown robust for triceps surae isometric contractions 
across days and contractions (Hug et al. 2022; Crouzier 
et al. 2019). Further, we found different neural strategies 
between groups in only one of the three muscles of the 
triceps surae. Our data show that the AT group does not 
use the GL as effectively as healthy controls to match the 
increase in plantar flexor torque intensity. The AT group 
had lower motor unit mean discharge rate with the increase 
in torque, outlining a change in muscle coordination in 
GL that was not observed in the control group. During a 
voluntary contraction, muscle force is dependent of the 
number of the MU recruited and the rate of which they 
discharge (Enoka and Duchateau 2017). One possible 
explanation for the lower discharge rate observed in GL 
in the AT group during the submaximal isometric con-
tractions, without an increase in GM or SOL discharge 
rate while matching same torque, is the increase in the 
number of motor unit recruited in GM and/or SOL rather 
than the increase in motor unit discharge rate. It is also 
possible instead of the increase in neural drive in GL from 
10 to 20% observed in the control group, in the AT group 
this neural drive was distributed between GM and SOL, 
yet not sufficiently large to be observed in our sample. 
Another possible explanation is that the AT group used 
other muscles to increase plantarflexion torque such as 
flexor hallucis longus (FHL), which was not measured in 
this study. Increased FHL EMG activity has been reported 
in the painful side of unilateral AT presentations during 
isometric submaximal plantarflexion contractions, com-
pared to asymptomatic side and to controls side (Masood 
et al. 2014).

Similar findings of lower GL activity have been reported 
in another study with runners with AT Crouzier et al. 2020. 
The authors used the physiological cross-sectional area and 
normalised RMS EMG to calculate the index of force of 
each muscle and estimate individual muscles’ contribution to 
triceps surae force production. GL had a significantly lower 
contribution to overall triceps surae force output; suggest-
ing a lower neural drive compared to healthy counterparts. 
Muscle force depends on motor unit discharge rate, which 
is proportional to the neural drive to the muscle. In healthy 
individuals, motor unit discharge rate increases to adjust for 
an increase in torque intensity (Enoka and Duchateau 2017). 
Contrary to what was previously suggested in the literature 
(O’Neill et al. 2019), we found no differences in SOL motor 
unit mean discharge during the increase in torque, which 
suggests that at least for the condition and type of task con-
sidered in the current study, SOL contribution to plantar 
flexor force is not impaired in AT.

The lower neural drive to GL observed in our study seems 
relevant in the persistent muscle deficits observed in AT (Sil-
bernagel et al. 2007). Perhaps current treatment strategies for 
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AT fail in effectively rehabilitating GL function; therefore, 
maintaining this lower neural drive and contribution to force 
production during ankle plantar flexion.

The neural drive to each individual muscles of the tri-
ceps surae can be influenced independently by strategies 
such as modified feet position during plantar flexion (Hug 
et al. 2020). Therefore, utilising strategies to increase GL 
recruitment and contribution during exercise is important, as 
altered muscle coordination may lead to unequal loading to 
the Achilles tendon (Hug and Tucker 2017). Performing heel 
raises with the foot positioned with toes pointed inwards sig-
nificantly increased GL motor unit discharge rate compared 
to toes neutral in healthy individuals (Hug et al. 2020). Foot 
position, in healthy individuals, can also selectively affect 
GM and GL hypertrophy (Nunes et al. 2020). Therefore, 
implementing different foot positions during rehabilitation 
could help increase GL activity during plantar flexor resist-
ance training. Rehabilitation programs using different foot 
positions during triceps surae resistance training should 
be studied in patients with AT to explore how this lower 
contribution of GL in triceps surae torque, impacts AT and 
if implementing treatment strategies to increase the neural 
drive to GL would influence tendon pain and function in AT.

Coefficient of variation of motor unit discharge rate 
and torque steadiness

Torque variability was measured during 10 and 20% rela-
tive peak isometric torque plateau. We found no differences 
between groups in coefficient of variation of motor unit dis-
charge in any of the muscles of the triceps surae nor did we 
find differences in triceps surae torque steadiness. All three 
muscles of the triceps surae were equally matched to con-
trols in the two submaximal intensities tested. Coefficient of 
variation of motor unit discharge represents, at an individual 
muscle level, the ability to effectively control muscle torque 
and it is an important measures that can help explain motor 
performance (Enoka and Farina 2021; Negro et al. 2009). 
Fluctuations in torque, coefficient of variation of motor unit 
discharge rate and torque steadiness are more variable in 
lower intensities than in higher torque intensities, hence why 
10 and 20% intensities were used for analysis (Enoka and 
Farina 2021).

Based on our findings, the ability of the triceps surae in 
controlling torque during submaximal contractions is not 
affected in runners with AT, which aligns with another 
study (Vallance et al. 2019). Torque steadiness is affected 
by pain (Rice et al. 2015), and lower torque steadiness has 
been reported in other chronic (Rice et al. 2015) and pain-
ful musculoskeletal conditions (Martinez-Valdes et al. 2019; 
Telianidis et al. 2014). In our study, we used submaximal 
torque intensities and none of our participants reported pain 
during testing; however, we cannot assert if such changes in 

torque steadiness and coefficient of variation of motor unit 
discharge rate would not occur during activities that provoke 
pain in this group, such as running.

Limitations

We were unable to effectively track the same motor unit 
across from 10 to 20% peak torque. We tried tracking the 
same motor units across the two intensities, but this has 
markedly reduced the number of motor units left for analy-
sis. Therefore, we cannot say with certainty the change in 
motor unit discharge rate, or lack of thereof, observed from 
10 to 20% MVIC across muscles occur in the same motor 
unit. Although both intensities used in this study are con-
sidered as of low threshold, each motor unit is unique from 
another, and motor unit tracking would have provided more 
robust information about each motor unit unique response 
to the increase in torque. The EMG device used was limited 
to up to 2 × 32-channel adaptor, not allowing sampling of 
all three muscles at the same time. Our study shows pre-
liminary evidence of a possibly lower neural drive to GL. 
However, it is worth mentioning the reduced number of MU 
found in GL per participant, which reduced sample sizes in 
both groups. Thus, future studies with larger sample sizes 
should consider recording all three muscles using electrodes 
with more channels (i.e. 64-electrode grid) to increase the 
number of motor unit identified during decomposition when 
estimating neural drive to the triceps surae allowing tracking 
of the same motor unit between intensities to confirm our 
findings. Another limitation that should be highlighted is 
the type of contraction used for analysis. HD-EMG analy-
sis provides reliable estimates of motor unit discharge rates 
(Martinez-Valdes et al. 2016); however, it requires isometric 
contractions for motor unit analysis. Thus, the observations 
of neural drive from this study cannot be extrapolated into 
dynamic tasks such as heel raises or running. Furthermore, 
we used submaximal intensities of relative peak isometric 
torque, as this facilitates motor unit identification; therefore, 
it is possible that during higher torque intensities, which 
demand more torque of each individual muscles, the differ-
ences observed in this study would be greater.

Conclusion

Our data suggest that runners with mid-portion AT have a 
muscle-specific deficit in the triceps surae, possibly creating 
heterogeneous loading to the Achilles tendon and contribut-
ing for the high recurrences (Martin et al. 2018) of AT. We 
observed lower motor unit discharge rate, (i.e. lower neu-
ral drive) in GL during the increase in plantar flexor torque 
demands but not in GM or SOL. This deficit in neural drive 
in GL might be greater during activities that require greater 
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plantar flexor torque, which could contribute to overload the 
Achilles tendon. Different strategies to try and increase GL 
activation during plantar flexion resistance training could 
be beneficial for AT, such as adopting different feet posi-
tion during heel raise. Such rehabilitation strategy should 
be studied in patients with AT to further understand how the 
lower contribution of GL impacts Achilles tendinopathy and 
how implementing strategies to increase the neural drive to 
GL would affect AT patient outcomes.
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