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Abstract
Purpose Kinetics of cardiorespiratory parameters (CRP) in response to work rate (WR) changes are evaluated by pseudo-
random binary sequences (PRBS testing). In this study, two algorithms were applied to convert responses from PRBS testing 
into appropriate impulse responses to predict steady states values and responses to incremental increases in exercise intensity.
Methods 13 individuals (age: 41 ± 9 years, BMI: 23.8 ± 3.7 kg  m−2), completing an exercise test protocol, comprising a 
section of randomized changes of 30 W and 80 W (PRBS), two phases of constant WR at 30 W and 80 W and incremental 
WR until subjective fatigue, were included in the analysis. Ventilation ( V̇

E
 ),  O2 uptake ( V̇O

2
 ),  CO2 output ( V̇CO

2
 ) and heart 

rate (HR) were monitored. Impulse responses were calculated in the time domain and in the frequency domain from the 
cross-correlations of WR and the respective CRP.
Results The algorithm in the time domain allows better prediction for V̇O

2
 and V̇CO

2
 , whereas for V̇

E
 and HR the results 

were similar for both algorithms. Best predictions were found for V̇O
2
 and HR with higher (3–4%) 30 W steady states and 

lower (1–4%) values for 80 W. Tendencies were found in the residuals between predicted and measured data.
Conclusion The CRP kinetics, resulting from PRBS testing, are qualified to assess steady states within the applied WR 
range. Below the ventilatory threshold, V̇O

2
 and HR responses to incrementally increasing exercise intensities can be suf-

ficiently predicted.

Keywords Exercise testing · PRBS · Kinetics · Prediction

Abbreviations∼

h
FD(t)  Non-normalized Impulse response function 

resulting from frequency domain analysis∼

h
TD(t)  Non-normalized Impulse response function 

resulting from time-domain analysis
ŴR

PRBS(t)  Approximation of WR in the PRBS interval
ϕxx(jω)  Power-spectral density
ϕxx(t)  Auto-correlation function
ϕxy(jω)  Cross-spectral density

ϕxy(t)  Cross-correlation function
δ  Constant time for a PRBS level
a  Gain
ACF  Auto-correlation functions
b  Offset
BMI  Body mass index
CCF  Cross-correlation function
CRP  Cardiorespiratory parameters
CRPPRBS(t)  CRP during the PRBS interval
FD  Frequency domain
h(t)  Normalized impulse response function
HERA  Human Exploration Research Analogue
HFD(jω)  Transfer function
hFD(t)  Normalized impulse response function 

resulting from frequency domain analysis
HR  Heart rate
hTD(t)  Normalized impulse response function 

resulting from time-domain analysis
PRBS  Pseudorandom binary sequence
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Introduction

The response of cardio-respiratory parameters (CRP), 
such as oxygen uptake ( V̇O

2
 ), ventilation ( V̇

E
 ),  CO2 output 

( V̇CO
2
 ) and heart rate (HR) to changes in work rate (WR) 

are measured during cardio-pulmonary exercise tests. 
From these data, the regulation of aerobic metabolism, 
ventilation and the cardio-vascular system can be derived 
(see Poole and Jones 2012 for a comprehensive overview). 
In terms of control technology, the CRP responses to 
exercise can be described as a single-input/single-output 
system (i. e. WR-CRP). The description of these systems 
allows to identify the influence of factors such as type of 
exercise (Koschate et al. 2019a, b), ambient conditions 
(Drescher et al. 2018) and individual characteristics, e. 
g. age (Koschate et al. 2016a, b; Ebine et al. 2018; Patti 
et al. 2021) or fitness (Beltrame et al. 2020; Inglis et al. 
2021), on the regulation of the cardiorespiratory system. 
From the individual kinetics and other characteristics of 
regulation, interventions, e. g. exercise prescriptions for 
athletes and patients, can be defined. Furthermore, the 
combination of exercise tests with information from other 
non-invasive methods to assess cardiovascular data, e. g. 
continuous blood pressure measurements, cardiac output 
and pulse-oximetry, can improve the diagnostic outcome 
(Oyake et al. 2021).

Typically, kinetics are analyzed and described using 
step responses in combination with data fitting proce-
dures to approximate single mono-exponential functions or 
sums thereof (Whipp and Rossiter 2005; Keir et al. 2014; 
Murias et al. 2011). The disadvantage of these methods is 
twofold: (1) Due to an unfavourable signal-to-noise ratio, 
several repetitions of the WR steps are required, which 
extends the test duration significantly and may necessi-
tate more than one test session. This may exclude specific 
groups of subjects, as older persons, persons with limited 
endurance, or persons with a tight schedule, from testing. 
(2) This kind of modelling requires the assumption of an 
explicit model with fixed parameters, e. g. a first-order 
system with time delay (e.g. Ma et al. 2010). The model 
parameters are determined by iterative least-square criteria 
and steady states are mandatory. However, if responses to 
increases (on-step) and decreases in WR (off-steps) are 
evaluated separately (e.g. Özyener et al. 2001; Fukuoka 
et al. 2002), potential asymmetries indicate objections to 
the assumption of dynamic linearity to describe the system 
response. Changes in step amplitudes may result in differ-
ences for the model parameters which is in contradiction 
to dynamic linearity.

Another approach excites the CRP by WR changes via 
pseudo-random binary sequences (PRBS) (Hoffmann et al. 
2013). This approach requires dynamic linearity between 

WR and the analyzed CRP, but no explicit model. One 
PRBS sequence consists of Z intervals that remain con-
stant for a fixed time � and are pseudo randomly assigned 
to changes between two input levels, i.e. WR levels. The 
resulting sequence with a duration δ Z will be repeated 
and analysed by time-series analyses in terms of auto- and 
cross-correlation functions (ACF, CCF). The periodic 
ACF of the PRBS approximates a periodic impulse func-
tion with the periodicity δ Z. In the frequency domain the 
power spectrum remains flat over a chosen range of fre-
quencies (see Khoo 2018, p. 250ff for a detailed overview).

Z and � can be adjusted to concentrate the exciting fre-
quency range to the corresponding frequencies of the CRP 
dynamics (Seborg et al. 2016, p. 113) and, therefore, the test 
can be adapted to the given process. For the description of a 
linear, time-invariant (LTI-) single-input/single-output sys-
tem the resulting CCF of the input, i.e. WR, and the output, 
i.e. a CRP, allows a kinetics description in both the time and 
the frequency domain. The resulting non-parametric descrip-
tion is strongly recommended, when the “…actual model 
order or time delay is unknown…” and the dynamic behav-
iour “…cannot be described by standard low-order models” 
(Seborg et al. 2016, p. 373f).

Both analyses can be summarized by an impulse response 
function h(t). This function h(t), in combination with any 
input signal x(t), allows a prediction of the output y(t) by 
applying the convolution integral for any LTI-system:

While h(t) can easily be derived for parametric models, e. 
g. single mono-exponential functions, the conversion of the 
resulting CCF from a PRBS test is more complex.

In the following, the application of two different algo-
rithms to convert the CCF of WR-CRP from a PRBS testing 
into an appropriate impulse response h(t) will be demon-
strated. We hypothesize that steady states and the response 
to incremental WR can be predicted by convolution with the 
impulse response.

This attempt also reduces the complications caused by the 
signal-to-noise ratio for the CRP and, by that, reduces the 
testing time significantly.

Methods

Subjects, test protocol and instrumentation

The data for this analysis were taken from the baseline tests 
of the four missions of campaign four inside the Human 
Exploration Research Analogue (HERA) facility at NASA 
Johnson Space Center (see Koschate et al. 2021 for details). 

(1)y(t) = ∫
∞

−∞

h(�)x(t − �)d�
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Ethical approval was obtained from the Institutional Review 
Board at the NASA Johnson Space Center (Protocol number: 
Pro2320) as well as the Ethical Committee of the German 
Sport University Cologne (Protocol number: 074/2016). 
Written informed consent was derived from all participants 
prior to the experiments.

13 subjects (age: 41 ± 9 years, BMI: 23.8 ± 3.7 kg  m−2) 
were included in the analysis. The tests were performed 
on a cycle ergometer in the upright body position, using 
a complex exercise protocol, which comprised a section 
with randomized changes between 30 and 80 W (PRBS), 
two phases of constant WR at 30 W and 80 W and finally 
an incremental test until subjective fatigue (see Fig. 1). The 
PRBS consisted of two identical sequences of 300 s. Each 
sequence was divided into Z = 15 intervals of � = 20s which 
were pseudo-randomly assigned to 30 W or 80 W.

During the exercise test, V̇O
2
 , V̇CO

2
 and V̇

E
 were meas-

ured breath by breath using a metabolic cart (Metalyzer 3B, 
Cortex Biophysik GmbH, Leipzig, Germany). In addition, 
beat-to-beat HR was obtained using a wireless ECG belt 
system (CustoGuard 3, Customed, Ottobrunn, Germany). A 
constant sampling period t = 1s was realized by synchroniz-
ing and interpolating all input (WR) and CRP output data 
( V̇O

2
 , V̇CO

2
 , V̇

E
 , HR). Breath-by-breath data were interpo-

lated stepwise and beat-to-beat data linearly.

Calculation of kinetics response from data 
in the PRBS interval

The ACF Φxx(t) and CCF Φxy(t) were derived, using 
the PRBS samples of the WR as input signal x(t), i. e. 
 WRPRBS(t), and the corresponding CRP data as output 
y(t), i. e.  CRPPRBS(t). As illustrated in Fig. 2, two differ-
ent approaches were taken to get impulse response func-
tions,h̃TD(t) and h̃FD(t) , respectively:

First, in the time domain (TD) the impulse response func-
tion h̃TD(t) was calculated according to Bo et al. (2006):

where C =

(
1 +

1

Z

)
� and 0 ≤ t <

δZ

2
.

For the second approach, the correlation functions were 
converted into frequency domain signals, using Fast Fourier 
transformation. Since the signal power mainly distributes on 
a few low frequencies for the sequence chosen, the cut-off 
frequency was determined to be half the PRBS shift fre-
quency (Uhrig 1970, p. 297). Thus, a lowpass filter with 
passband frequency 25 mHz, which corresponds to the sev-
enth harmonic frequency of this sequence, was applied to 
the spectral-density functions Φxx(j�) and Φxy(j�) . Next, the 
transfer function HFD(j�) was calculated according to the 
known input–output relation in the frequency domain:

(2)h̃TD(t) =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

Φxy(t)−Φxy(−t)

C
for 𝛿 ≤ t

Φxy(t)−Φxy(−t)�
1

2
+

t

𝛿

�
1−

t

2𝛿

��
C

for 0 < t < 𝛿

2[Φxy(0)−Φxy(−𝛿)]

C
for t = 0

Fig. 1  WR protocol, individual measured V̇O
2
 and predicted V̇O

2
 

response from the calculated impulse response hTD(t) (see text). 1: 
interval to calculate the mean at 30  W; 2: PRBS interval for hTD(t) 
calculation; 3: interval to calculate the mean at 80 W; 4: interval to 
calculate the response to incrementally increansing WR. WR work 
rate; V̇O

2
 oxygen uptake. Differences for predictions from hTD(t) and 

hFD(t) were not visible for this subject

Fig. 2  Obtaining an impulse response function from both, time 
domain (hTD(t)) and frequency domain (hFD(t)) analysis, respectively. 
Starting with PRBS changes in WR and the related CRP response, the 
CCF is calculated and converted into hTD(t)) and hFD(t)
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Applying the inverse Fast Fourier transformation to 
HFD(j�) , a second impulse response function h̃FD(t) was 
obtained.

For h̃TD(t) the valid range is limited to 0s ≤ t < 150s due 
to the composition of the PRBS. Although, h̃FD(t) is defined 
for a range 0 ≤ t < 300s , for the following calculations 
only the range 0s ≤ t < 150s was considered, assuming that 
under physiological conditions the response is completed 
after 150 s. To get a comparable basis, h̃(t) was normalized 
through its sum over the range 0s ≤ t < 150s:

In the last step, the normalized impulse response func-
tions hTD(t) and hFD(t) , must be converted into a relation of 
WR and the CRP of interest. By convolution of the input 
WRPRBS(t) with the normalized response function h(t)

and a following linear regression with ŴRPRBS and 
CRPPRBS the coefficients gain a and offset b are obtained. 
Therefore, the predictions PredTD(t) and PredFD(t) as a 
response to any WR are given for each CRP of interest by:

where h(t) represents hTD(t) and hFD(t) , respectively, and the 
regression parameters a and b vary with TD, FD, and each 
CRP.

Data analysis

The measured data ( V̇O
2
 , V̇CO

2
 , V̇

E
 , HR) as well as the pre-

dictions PredTD(t) and PredFD(t) were individually averaged 
for the last 30 s of the constant WR phases at 30 W and 
80 W (refer to Fig. 1). For the PRBS interval and the phase 
of incremental WR from 80 to 175 W, the Pearson correla-
tion coefficients of measured and predicted data were indi-
vidually calculated (rPRBS, r80–175 W).

Relative residuals Res(t) were individually calculated by:

for each second and each CRP. For the PRBS interval and 
the phase of incremental exercise (80–175 W) individual 
means  (ResME), the related standard error  (ResSE), and the 

(3)HFD(j�) =
Φxy(j�)

Φxx(j�)

(4)h(t) =
h̃(t)∑149

0
h̃(t)

for 0 ≤ t < 150

(5)ŴRPRBS(t) = ∫
∞

−∞

h(�)WRPRBS(t − �)d�

(6)Predx(t) = a∫
∞

−∞

h(�)WR(t − �)d� + b

(7)Res(t) =
PredTD(t) − CRP(t)

CRP(t)

individual correlation coefficients  (Resr) between Res(x) and 
measured data were calculated.

Statistical analyses

For the comparisons of rPRBS and r80–75 W resulting from 
 PredTD and  PredFD paired t-tests were applied. Two-way 
ANOVA for repeated measurements was used to analyse the 
steady states (factors: WR and method) as well as  ResME, 
 ResSE and  Resr with the factors “interval” (PRBS interval 
and the phase of incremental exercise (80–175 W)) and 
“parameter” ( V̇O

2
 , V̇CO

2
 , V̇

E
 , HR). In case of significant 

effects, post-hoc Bonferroni-tests were applied to compare 
single means. Level of significance was set to P ≤ 0.05.

Results

Figure 1 shows an individual example for a calculation of 
V̇O

2
 in response to the complete exercise protocol.

The CCF data from the PRBS phase and the resulting 
impulse responses hTD(t), hFD(t) are given in Fig. 3. The time 
courses for the different CRP differ significantly between 
the two algorithms (Fig. 3b, c). In contrast to a theoreti-
cal first-order model with an instantaneous increase to the 
maximum and an exponential decrease, the smooth increase 
(indicated as grey line in Fig. 3b, c), visible for the first 
seconds (0 < t ≤ 10 s), had to be expected, considering the 
characteristics of the CCF. The averaging over the individual 
results with potential time-delays may result in a further 
smoothing of the signal. In this interval (0 < t ≤ 10 s), hTD(t) 
of HR showed the fastest response followed by the responses 
of V̇O

2
 and, similarly, V̇

E
 and V̇CO

2
 . For hFD(t), different 

observations can be summarized: hFD(t) of HR started less 
steep and the maximum for hFD(t) of V̇O

2
 is much higher 

compared to hTD(t) of V̇O
2
.

All impulse responses (Fig. 3b, c) calculated from the 
CCF (Fig. 3a) showed a slow decrease towards t = 150 s. 
Only for HR a steep decrease can be observed after the 
maximum until approximately t = 40 s. While hTD(t) is zero 
by definition at t = 0 and t = 150 s, whereas hFD(t) shows 
deviations from 0.

The predicted steady-state calculations for 30 W and 
80 W were compared with averages from measured data 
(Table 1). Both algorithms predicted higher 30 W and lower 
80 W steady states for all parameters. Remarkably, the high-
est absolute differences were found for V̇O

2
 predicted via 

 PredFD. Applying the impulse in the time domain  (PredTD), 
V̇O

2
 levels at 30 W and 80 W can be predicted with small 

deviations from measured data (− 3%, 1%).
Another criterion to evaluate the algorithm can be 

derived from the correlations between measured and pre-
dicted values (rPRBS, r80–175 W). Significant differences 
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were found for the two prediction algorithms (P < 0.05) 
for HR (rPRBS only), V̇O

2
 and V̇CO

2
 (Table 1). The high-

est correlations for rPRBS were found for HR followed by 
V̇O

2
 . V̇CO

2
 showed slightly lower values compared to V̇O

2
 

while V̇
E
 showed the lowest correlations. The wider data 

range of the CRP data for the increasing WRs compared 
to the PRBS is the explanation that coefficients r80–175 W 
were higher than rPRBS in all cases. It can be noted that 
the ranking between V̇O

2
 and V̇CO

2
 changed for r80–175 W.

A more detailed analysis can be derived from the resid-
uals as differences between predicted and measured data 
(Table 2 and Fig. 4 for  PredTD). The relative residuals 
 (ResME) and standard errors of these  (ResSE) (see Eq. 7) 
differ between HR and V̇

E
 , V̇O

2
 , as well as V̇CO

2
 . For all 

CRP, the measured data from increasing WR (80–175 W) 
were significantly underestimated according to the indi-
vidual means. However, in most cases remarkable cor-
relations between the residual (measured—PredTD) were 
found. The course of residuals (Fig. 4) indicates another 
aspect for the quality of the predictions: In most cases, 
systematic decreases of ∆ with increasing values of the 
respective parameter are visible. Only for HR, a range 
of stagnation can be identified for lower HR and in the 
80–175 W interval.

Discussion

The results of the applied analyses demonstrate the pos-
sibility to describe the kinetics of the CRP by an impulse 
response, and the predictability of CRP steady states as 
well as responses to increasing WR within certain lim-
its from the PRBS data assessed applying moderate WR 
intensities. The quality of analysis and prediction must 
be evaluated separately for each CRP. For all parameters 
of interest, contradictions to dynamic linear models were 
identified.

The algorithms

Both analytical approaches (hTD, hFD) assume dynamic 
linearity between WR and the respective CRP, since they 
were calculated from the CCF for the respective CRP. 
Hence, the mentioned contradictions to the assumptions 
of dynamic linearity might introduce uncertainties regard-
ing the reliability of the predictions. However, the applied 
analytical approaches allow to avoid the assumption of a 
specific model, as used e. g. for exponential fits. However, 

Fig. 3  Cross-correlation function (CCF) (a) and the resulting impulse 
responses hTD(t) (b), hFD(t) (see text for details) (c) for the different 
cardiorespiratory parameters (means ± SE, N = 13). The grey lines in 

the background of b/c indicate theoretical responses of first-order sys-
tems with time constants τ = 20 s, τ = 30 s and τ = 40 s calculated with 
these algorithms
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as demonstrated in Fig. 3, the resulting impulse response 
may be compared to explicit, e.g. first-order models.

The application of the CCF in conjunction with rand-
omized WR changes of 30 W and 80 W has a disadvantage: 
The PRBS chosen (15 intervals, 20 s each, total duration 
300 s per sequence) has a limited frequency bandwidth. 
Therefore, rapid changes cannot be analysed. Consequently, 
in the frequency domain, the analysis must be restricted to 
the first seven harmonics (period length of 43 s) of the Fast 
Fourier transformation (Eq. 3) and its inverse (Uhrig 1970, 
p. 297). This explains the transient increase in the first few 
seconds of the impulse response for both, hTD and hFD. 
Even in a theoretical first-order system a mono-exponential 
decrease, as demonstrated in Fig. 3, cannot be identified. The 
analysis of simulated responses of first-order systems do not 
show the typical rapid increase at t = 0 s and the exponential 
decrease (see also Fig. 3).

V̇O
2
 showed significant differences between hTD(t) 

and hFD(t). This difference is the result of the applied 
normalisation (Eq. 4). While the hTD (t) returns to zero 
at t = 150 s, this must not be true for hFD(t). For hFD(t) 
of V̇O

2
 there was a significant undershoot (see Fig. 3, 

t > 110 s). This results in a small normalization coeffi-
cient 

∑149

0
h̃i(t) and an amplified hFD(t). As stated in the 

methods section, for hFD(t) the impulse response was cut 

at t > 150 s. The reason for this cut is that for t > 150 s no 
further physiological origin can be expected as impulse 
response. However, for some single data sets, calculations 
were performed with hFD(t) in the range 0 < t < 300 s but 
these analyses yielded non-reasonable and inconsistent 
results, with higher  ResME. Hence, the applied algorithm 
in the frequency domain must be regarded as less quali-
fied for the prediction  (PredFD(t)). The further discussion 
will be focussed on the  PredTD (t) for V̇O

2
 and the other 

CRP.

Predictability for the CRP responses

The predictability for the different CRP during moderate 
exercise, i. e. between 30 and 80 W, can be ranked by means 
of different criteria and aims. For the steady states, HR and 
V̇O

2
 were found in a similar range with a slightly better pre-

dictability of V̇O
2
 at the 80 W level. rPRBS in Table 1,  ResME, 

and  ResSE (Table 2) indicate the best predictability for HR 
for the PRBS. The tendency to overestimate lower and to 
underestimate higher CRP values during the PRBS (Fig. 4) 
can be assigned to restriction of the analysis to a time frame 
of 150 s as result from the PRBS applied. The alternative 
would be an extension of the protocol (Khoo 2018, p. 250). 

Table 1  Characteristics for the 
estimated data and the results 
from steady-state analysis

SteadyState: individual average over 30  s for measured CRP;  PredTD: Prediction calculated from hTD(t); 
 PredFD: Prediction calculated from hFD(t); rPRBS: individual correlation coefficient for measured and pre-
dicted data of the PRBS interval; r80–175 W: individual correlation coefficient for measured and predicted 
data of the incremental exercise interval
a: SteadyState vs.  PredTD

b: SteadyState vs.  PredFD

c:  PredTD vs.  PredFD

Parameter Method 30 W 80 W rPRBS r80–175 W

mean ± SD ∆ mean ± SD ∆

HR  [min−1] SteadyState 91 ± 11 120 ± 16
PredTD 95 ± 13 − 4% 115 ± 15 4% 0.64 ± 0.12 0.91 ± 0.09
PredFD 94 ± 13 − 3% 116 ± 15 4% 0.68 ± 0.11 0.91 ± 0.09
Significance a, c a, b, c c

V̇
E
 [L  min−1] SteadyState 21.0 ± 2.5 32.6 ± 2.5

PredTD 22.2 ± 2.2 − 6% 31.2 ± 2.6 4% 0.45 ± 0.10 0.78 ± 0.14
PredFD 22.4 ± 1.9 − 7% 31.0 ± 2.7 5% 0.47 ± 0.08 0.78 ± 0.14
Significance b a, b

V̇O
2
 [L  min−1] SteadyState 0.71 ± 0.07 1.18 ± 0.08

PredTD 0.73 ± 0.07 − 3% 1.17 ± 0.09 1% 0.62 ± 0.09 0.82 ± 0.07
PredFD 0.80 ± 0.07 − 12% 1.08 ± 0.09 8% 0.59 ± 0.09 0.82 ± 0.07
Significance b, c b, c c c

V̇CO
2
 [L  min−1] SteadyState 0.62 ± 0.08 1.09 ± 0.08

PredTD 0.66 ± 0.09 − 7% 1.05 ± 0.1 4% 0.57 ± 0.09 0.86 ± 0.06
PredFD 0.7 ± 0.07 − 13% 1.01 ± 0.08 8% 0.55 ± 0.09 0.86 ± 0.06
Significance b, c b, c c c
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However, the intention was to create a feasible, short test, 
which can be applied to subjects and patients with restric-
tions regarding exercise duration and intensity.

The main challenge of this analysis was the prediction of 
the parameter’s behaviour for higher WRs (here 80–175 W). 
The high correlations (r80–175 W) are not surprising due to 

Table 2  Analysis of relative 
residuals (Res) between  PredTD 
and measured data

Mean  (ResME), standard error  (ResSE) and correlation  (Resr) were calculated individually for each CRP in 
intervals PRBS and 80–175 W. The results were analysed by two-way ANOVA and post-hoc comparisons
a P < 0.05 for all other CRP
b V̇O

2
-V̇CO

2
 : p < 0.05

c HR-V̇CO
2
 , HR-V̇

E
 : p < 0.05

d V̇
E
-V̇O

2
 , V̇O

2
-V̇CO

2
 : p < 0.05

x̄ , mean
s, standard deviation

HR V̇
E

V̇O
2

V̇CO
2

ResME PRBS x̄ − 0.002 − 0.008 − 0.009 − 0.009
s 0.001 0.005 0.005 0.005

a
80–175 W x̄ − 0.071 − 0.115 − 0.037 − 0.103

s 0.049 0.062 0.041 0.055
a

ResSE PRBS x̄ − 0.002 − 0.005 − 0.005 − 0.005
s 0.001 0.001 0.001 0.001

a
80–175 W x̄ − 0.002 − 0.007 − 0.006 − 0.006

s 0.001 0.002 0.001 0.002
a

Resr PRBS x̄ 0.753 − 0.762 − 0.887 − 0.794
s 0.100 0.077 0.050 0.072

a b
80–175 W x̄ − 0.248 − 0.533 − 0.827 − 0.790

s 0.472 0.219 0.137 0.145
c d

Fig. 4  Differences ∆ 
(=  PredTD—measured data) for 
the different CRP related to the 
rounded measured values for the 
PRBS phase (black lines) and 
in the range for 80–175 W (grey 
lines) (means ± SE, N = 13)
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the increasing CRP values. More interesting are the relative 
residuals. The significantly lowest mean  (ResME) was found 
for V̇O

2
 , slightly higher variations were observed for HR and 

the largest variations were demonstrated for V̇
E
 and V̇CO

2
.

With increasing WR the predictability becomes less accu-
rate, especially for V̇

E
 and V̇CO

2
 . This might be related to the 

increase of anaerobic metabolism and additional ventilatory 
drives compared to the moderate WR during PRBS. Further 
research might be focussed on the relation with ventilatory 
thresholds (see Galán-Rioja et al. 2020 for an overview).

Dynamic linearity

The CRP impulse responses hTD(t) deviate from responses of 
first-order systems and its time constants as reported in the 
literature (e.g. Linnarsson 1974; Scheuermann et al. 2002). 
The shape of the HR hTD(t) seems to be close to a first-order 
system with a 40 s time constant, even though this would 
be a much slower response compared with other published 
data with τ < 30 s (e. g. Linnarsson 1974; Tiedt et al. 1975; 
DeLorey et al. 2004). For the respiratory parameters, as V̇O

2
 , 

V̇CO
2
 , and V̇

E
 show a constant decrease after their maxima 

which is untypical for first order systems per se. Therefore, 
these are important arguments to characterize the kinetics 
of CRP without explicit models.

Although the relative residuals for  PredTD (Table 2) for 
the V̇O

2
 data indicate impressively low deviations from 

measured data, this parameter like all others showed sig-
nificant trends towards higher values (Fig. 4). This is an 
indication for the need of a non-linear model which will be 
the subject for further development. The reasons for these 
non-linearities should be different for each CRP. Commonly, 
PRBS testing comprises both on- and off-stimuli. The lin-
ear modelling implies symmetrical on- and off-responses 
which might not meet physiological reality. For HR, regu-
lation of blood pressure and vasomotor control are poten-
tial physiological explanations for asymmetries. V̇O

2
 and 

V̇CO
2
 , as pulmonary parameters, might be influenced by 

non-linearities from venous transport. The portion of anaero-
bic metabolism leads to additional ventilatory drives with a 
strong influence on both, V̇

E
 and V̇CO

2
 . It can be speculated 

that such non-linearities are caused by the influence from the 
circulatory system (Eßfeld et al. 1991). Therefore, at least 
the non-linearities of V̇

E
 and V̇CO

2
 might be influenced by 

aerobic capacity and/or aerobic-anaerobic threshold. This 
might also be true for higher WRs for HR and V̇O

2
.

Limitations

The PRBS protocol applied in this study should be adapted 
to the abilities and capacities of the subjects. As demon-
strated by Kusenbach et  al. (1999) maximal WR in the 

PRBS protocol may be adapted to specific requirements 
of the tested subjects. Other modifications were already 
shown by applications with other modes of exercise, e.g. 
treadmill (Koschate et al. 2016a, b) or arm cranking exercise 
(Drescher et al. 2015). With a certain loss of reliability, the 
PRBS could be shortened, e.g. from 600 to 450 s, which 
might be a compromise for specific groups.

For V̇O
2
 and V̇CO

2
 analysis, some further improvements 

might be expected if algorithms are applied to model the 
alveolar gas exchange more precisely (Koschate et al. 2019a, 
b).

Conclusions

In summary, the PRBS test, and the resulting kinetics, 
described by the impulse response, are qualified to describe 
the kinetics and to assess steady states within the applied 
WR range. At least below the ventilatory threshold, V̇O

2
 and 

HR responses to incrementally increasing exercise intensi-
ties can be sufficiently predicted from the kinetics derived 
in the PRBS WR range of 30 W and 80 W. This offers the 
possibility to assess static as well as kinetics information of 
subjects with a 10 min moderate exercise test. These data 
can give important information about the actual state of fit-
ness of the subject which can be used to prescribe physical 
training or to define its success.
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