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Abstract
Purpose  The force–velocity relationship of muscular contraction has been extensively studied. However, previous research 
has focussed either on isolated muscle or single-joint movements, whereas human movement consists of multi-joint move-
ments (e.g. squatting). Therefore, the purpose of this study was to investigate the force–velocity relationship of isovelocity 
squatting.
Methods  Fifteen male participants (24 ± 2 years, 79.8 ± 9.1 kg, 177.5 ± 6 cm) performed isovelocity squats on a novel 
motorised isovelocity device (Kineo Training System) at three concentric (0.25, 0.5, and 0.75 m s−1) and three eccentric 
velocities (− 0.25, − 0.5, and − 0.75 m s−1). Peak vertical ground reaction forces, that occurred during the isovelocity phase, 
were collected using dual force plates (2000 Hz) (Kistler, Switzerland).
Results  The group mean squat force–velocity profile conformed to the typical in vivo profile, with peak vertical ground reac-
tion forces during eccentric squatting being 9.5 ± 19% greater than isometric (P = 0.037), and occurring between − 0.5 and 
− 0.75 m s−1. However, large inter-participant variability was identified (0.84–1.62 × isometric force), with some participants 
being unable to produce eccentric forces greater than isometric. Sub-group analyses could not identify differences between 
individuals who could/could not produce eccentric forces above isometric, although those who could not tended to be taller.
Conclusions  These finding suggest that variability exists between participants in the ability to generate maximum eccentric 
forces during squatting, and the magnitude of eccentric increase above isometric cannot be predicted solely based on a 
concentric assessment. Therefore, an assessment of eccentric capabilities may be required prior to prescribing eccentric-
specific resistance training.
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Abbreviations
AEL	� Accentuated eccentric loading
ANOVA	� Analysis of variation
F–V	� Force–velocity
LOA	� Limits of agreement

Introduction

The force–velocity (F–V) relationship defines an impor-
tant dynamic property of muscle contraction (Alcazar et al. 
2019; Fenn and Marsh 1935; Hill 1938). In isolated mus-
cles, eccentric forces during lengthening of an active muscle 
are known to be up to 80% greater than isometric forces 
(Edman 1988). However, in vivo, where muscle forces are 
applied and measured as joint moments, the moment-veloc-
ity relationships display smaller and more variable differ-
ences between eccentric and isometric joint moments. The 
magnitude of this difference depends on the joints involved; 
for elbow flexion/extension 12–25% (Chapman et al. 2005; 
Hortobágyi and Katch 1990; Komi 1973), for ankle dorsi/
plantar-flexion 12–18% (Connelly and Vandervoort 2000; 
Liederbach and Hiebert 1997), for knee extension 0–22% 
(Dudley et al. 1990; Melo et al. 2016; Pain and Forrester 
2009), and for hip extension 8–11% (Boling et al. 2009).

Communicated by Toshio Moritani.

 *	 R. Armstrong 
	 R.Armstrong@2014.ljmu.ac.uk

1	 Research Institute for Sport and Exercise Sciences, 
Liverpool John Moores University, Tom Reilly Building, 
Byrom Street, Liverpool L3 3AF, UK

http://orcid.org/0000-0002-3064-7206
http://crossmark.crossref.org/dialog/?doi=10.1007/s00421-021-04875-2&domain=pdf


770	 European Journal of Applied Physiology (2022) 122:769–779

1 3

The reduced eccentric enhancement of joint moments 
in vivo is thought to be due to a unique eccentric neural 
activation strategy (Enoka 1996) that decreases; voluntary 
activation (~ 15%) (Babault et al. 2001; Beltman et al. 2004), 
motor unit firing rate (~ 35%) (Del Valle and Thomas 2005), 
and cortical and spinal excitability (Duclay et al. 2011, 
2014), when compared to isometric contractions. It is theo-
rised that if it were not for these neural factors, the eccentric 
joint moment would be ~ 60% greater than typically observed 
(Pain and Forrester 2009). Due to these neural constraints 
and the variability of their effect, F–V relationships must be 
established in vivo so that the complexity of co-ordinating 
human movement may be considered, rather than relying 
on ex-vivo measurements, before eccentric loading recom-
mendations for applied training can be made.

Our current understanding of the eccentric portion of the 
F–V relationship in vivo has primarily been derived from 
single-joint movements, e.g. hip extension (Boling et al. 
2009), knee extension (Dudley et al. 1990; Melo et al. 2016; 
Pain and Forrester 2009), and plantar-flexion (Connelly and 
Vandervoort 2000; Liederbach and Hiebert 1997). Although 
single-joint models account for the neural constraints of 
voluntary contractions and are experimentally appealing 
as they allow tighter control of movement variables (e.g. 
joint/muscle/fibre velocity, angle/muscle length, and range 
of movement), human movement is not isolated into single-
joints, but is rather a combination of multi-joint movement 
patterns. Due to the increased complexity of multi-joint and 
differing neural activation strategies (Behm et al. 2003) com-
pared to single-joint movements, multi-joint F–V relation-
ships are likely to differ from single-joint F–V relationships.

Studies of the multi-joint F–V relationship have demon-
strated that the concentric portion of multi-joint F–V rela-
tionships, for example the rising phase of a loaded squat, are 
typically quasilinear (Bobbert 2012; Rahmani et al. 2001; 
Zivkovic et al. 2017). This is in contrast to single-joint F–V 
relationships, which are described as curvilinear (de Brito 
Fontana et al. 2014; Hauraix et al. 2017; Pain and For-
rester 2009). These multi-joint F–V relationships have been 
performed in both traditional movements (e.g. squatting) 
(Spudić et al. 2020), and ballistic movements (e.g. sprinting, 
jumping, push-offs) (Morin and Samozino 2016; Samozino 
et al. 2010). This has resulted in practitioners being able to 
identify performance characteristics for improvement, that 
can then be targeted with training interventions, based upon 
the slope of the concentric F–V curve compared to a calcu-
lated optimal profile (Samozino et al. 2012).

Unfortunately, the majority of the multi-joint F–V 
research has focussed on the concentric portion (Spudić et al. 
2020), and much less evidence exists regarding the nature of 
the eccentric portion of the multi-joint force–velocity rela-
tionship in vivo, likely due to the difficulty, and inherent 
risk, of applying supra-maximal external loads during high 

movement velocities. To our knowledge, there is only one 
study to date which has investigated the eccentric portion of 
the F–V relationship in a lower body multi-joint task (Hahn 
et al. 2014). Utilising a leg-press model, eccentric ground 
reaction forces were up to 15% greater than isometric forces. 
Eccentric force production peaked at a knee flexion velocity 
of − 60°/s and decreased as eccentric velocity increased to 
− 180°/s (Hahn et al. 2014). This suggests that the eccentric 
portion of multi-joint F–V relationship is similar in shape 
to the single-joint F–V relationship, albeit with a reduced 
eccentric enhancement. However, the leg-press as used by 
Hahn et al. (2014) does not allow for full hip extension, and 
is not as effective at improving athletic performance qualities 
as the squat (Wirth et al. 2016). Although previous stud-
ies have examined the force characteristics of the eccentric 
phase of the squat (McNeill et al. 2021; Frohm et al. 2007), 
to our knowledge, no previous study has investigated the 
eccentric portion of the F–V relationship in the squat.

Studying the F–V profile of squatting is complicated 
because the muscular effort required to control the speed of 
descent of any given load increases throughout the eccen-
tric phase as the hips and knees flex (Bryanton et al. 2012). 
Although an individual may be able to withstand a supra-
maximal load at the start of a squat, there is an increased 
likelihood of failure, concomitant with risk of injury, dur-
ing the approach to a deeper squat position. Furthermore, 
movement velocity varies over the duration of the movement 
(Miletello et al. 2009), so accurately measuring eccentric 
force and velocity over repeated trials may prove challeng-
ing. To overcome these difficulties, advances in technol-
ogy, using the Kineo Training System (v7.0, Globus, Italy) 
(Fig. 1), allow for the application of multi-joint isovelocity 
movements, by manipulating the external force at a constant 
velocity over the duration of the exercise. This would, there-
fore, allow concentric and eccentric isovelocity squatting to 
occur in a safe, controlled manner whilst collecting ground 
reaction forces, thus overcoming the limitations of previous 
eccentric loading approaches.

Therefore, the primary aim of this study was to establish 
the complete F–V relationship during isovelocity squatting. 
This knowledge will allow the development of evidence-
based training recommendations for future eccentric over-
load interventions. In current practice, accentuated eccentric 
training loads (AEL) are typically up to 20% greater than the 
concentric one-repetition max (Harden et al. 2020). How-
ever, this relies on the assumption that this overload is suita-
ble for all individuals which may not be correct as the maxi-
mum eccentric strength of individuals may vary. Therefore, a 
secondary aim of this study was to identify whether concen-
tric strength influences the magnitude of the eccentric force 
increases above the isometric level. It was hypothesised that 
(1) eccentric squatting forces would be greater than isomet-
ric, but less than the 30% above isometric force common in 
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single-joint eccentric contractions; and (2) that the ability to 
produce eccentric squatting forces above isometric would be 
associated with squatting ability, as reflected by performance 
in conventional concentric squatting.

Methods

Participants

Fifteen resistance trained males (age 24 ± 2 years, body 
mass 79.8 ± 9.1  kg, height 177.5 ± 6  cm, training age 
3.5 ± 1.5 years) volunteered for this study. All participants 
could demonstrate a good squatting technique, as determined 
by a qualified strength and conditioning coach, and fre-
quently (> 1 × per week) performed the squat (or variation) 
within their habitual resistance training practice. Resistance-
trained participants were selected for this study to limit the 
known negative effects of the eccentric neural activation 
strategy in untrained participants (Aagaard 2018). Prior to 
participation, written informed consent was completed and 
this study received ethical approval from Liverpool John 
Moores University research ethics committee (19/SPS/038).

Experimental protocol

Participants reported to the Liverpool John Moores labora-
tories on three occasions. The first and second visits were 
used for participant familiarisation with the experimental 

protocols, and to measure body mass (to the nearest 0.1 kg, 
on electronic scales; SECA, Germany), and height (to the 
nearest 0.5 cm, with a stadiometer; SECA, Germany). Par-
ticipants completed a standardised warmup following the 
RAMP protocol (Jeffreys 2006), which was concluded with 
several progressively heavier isotonic squats on the Kineo 
Training System on which all experimental trials were also 
completed. Following the warmup, participants underwent a 
familiarisation session inclusive of concentric and eccentric 
isovelocity squatting. Squat stance was standardised with 
feet shoulder-width apart and externally rotated ~ 20°. Squat-
ting range of motion was determined, whereby the eccentric 
phase started with the participant standing with hips and 
knees fully extended and lasted until the participant had 
squatted down to a depth where the top of the thigh was 
parallel to the ground. The concentric phase began after the 
eccentric phase finished and until the participant had fully 
extended the hips and knees (Fig. 1). Squatting depth was 
confirmed by analysis of cable displacement during experi-
mental trials. Pilot data (n = 4) from our laboratory identified 
that following two familiarisation sessions, forces produced 
during the − 0.5 m s−1 eccentric trail produced a variation of 
1.9%, this is in line with previous research and recommen-
dations (Hahn 2018; McMaster et al. 2014), and therefore, 
sufficient familiarisation was achieved.

Experimental data were collected during the third visit, 
4–10 days following the last familiarisation session. Par-
ticipants refrained from strenuous physical activity for 
48 h prior to testing and were asked to arrive in a fed and 

Fig. 1   Kineo Training System; 
participant is connected to 
an electric motor via a hip/
shoulder harness attached to 
a cable pulley system. A The 
start of the eccentric phase/end 
of concentric phase, B the end 
of the eccentric phase/start of 
the concentric phase. Two addi-
tional force plates, one under 
each foot, where added to this 
experimental setup (not shown) 
to measure vertical ground reac-
tion forces (N)
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hydrated state. Following the standardised warmup, partici-
pants completed a total of six maximum effort isovelocity 
trials at 0.75, 0.5, 0.25, − 0.25, − 0.5, and − 0.75 m s−1, 
whereby positive and negative values were indicative of 
concentric and eccentric directions, respectively, with three 
repetitions per trial.

During concentric trials, participants began by standing 
with the hips and knees extended, performed a submaxi-
mal (~ 80% perceived effort) eccentric isovelocity squat at 
− 0.25 m s−1, immediately followed by a maximum effort 
isovelocity concentric squat at the prescribed trial veloc-
ity (Fig. 2). Participants were provided visual feedback to 
ensure they produced an effort of 80% during the submaxi-
mal eccentric phase, with this value having been identified 
during the second familiarisation session.

During eccentric trials, participants began by standing 
with the hips and knees extended, performed a submaxi-
mal eccentric isovelocity squat (~ 80% perceived effort, 
− 0.25 m s−1), followed by a near-maximal concentric isove-
locity squat (~ 90% perceived effort, 0.25 m s−1), before per-
forming the maximal effort isovelocity eccentric squat for 
which data were recorded (Fig. 3). Visual feedback was pro-
vided as per the concentric trials. The near-maximal concen-
tric effort immediately prior to the maximal eccentric effort 
ensured preload on the musculature, which is required for 
maximal eccentric efforts (Hahn 2018; Linnamo et al. 2006). 
During the maximal eccentric trial, the participant maxi-
mally resisted the downwards displacement of the external 
cable at the respective velocity until the end of the range of 

motion. Three repetitions were completed at each velocity, 
with 5-min passive rest between each trial.

Data acquisition and analyses

During all trials, ground reaction forces (N) under each foot 
were collected via a dual force plate system (9287c, Kistler, 
Switzerland), sampling at 2000 Hz. Analogue signals were 
amplified and converted to a digital signal prior to being 
collected in Qualisys Track Manager (Qualisys, Sweden) 
and then exported to Visual 3D (C-Motion, USA) for sub-
sequent analysis. The greatest peak vertical ground reaction 
forces from each of the six experimental conditions (Con-
centric; 0.75, 0.5, and 0.25 m s−1, Eccentric; − 0.25, − 0.5, 
& − 0.75 m s−1) were used for analysis. Ground reaction 
forces were then processed via a fourth-order Butterworth 
filter with a cutoff frequency of 6 Hz; then, the forces of the 
dominant and non-dominant limb were summed together.

During these trials, only forces that occurred during the 
isovelocity phase of the squat were used, which were defined 
from the measured movement velocity profile. To confirm 
actual squat velocity for each defined trial, reflective mark-
ers were placed on the cables which attached the participant 
to the Kineo Training System, and monitored by three 3D 
motion capture cameras (Opus 3 series, Qualisys, Sweden), 
sampling at 200 Hz.

Forces were plotted against the target velocity to create 
F–V relationships for each participant. Forces were nor-
malised against a predicted isometric force. A joint-angle 
specific maximum isometric force could not be measured 
as peak forces occur at different joint angles during the con-
centric and eccentric phase (Melo et al. 2016), and between 

Fig. 2   Schematic of concentric isovelocity squatting trials. A Start 
position, B submaximal eccentric squat to parallel squat depth, and 
C maximal effort concentric squat. Arrows represents direction of 
movement, solid-black arrow denotes maximum effort trial that is 
recorded for data analysis

Fig. 3   Schematic of eccentric isovelocity squatting trials. A Start 
position, B submaximal eccentric squat to parallel squat depth, C 
near-maximal concentric squat to full hip/knee extension to preload, 
and D maximal effort eccentric squat. Arrows represents direction 
of movement, solid-black arrow denotes maximum effort trial that is 
recorded for data analysis
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participants. Instead, isometric force was calculated for zero 
velocity from a cubic polynomial regression equation fitted 
to each participant’s measured force–velocity profile. Cal-
culating isometric force in this manner has been previously 
used (Morin and Samozino 2016; Samozino et al. 2010) and 
shown to be robust.

Statistical analyses

All data were statistically analysed using SPSS (version 26, 
IBM, USA). A one-way repeated measures ANOVA with 
six factor levels was used to test for differences in the peak 
force from each velocity. As there was a violation of spheric-
ity (P < 0.001), a Greenhouse–Geisser correction was used 
(Atkinson 2001). A two-way repeated measures ANOVA 
(2 × 6) was used to test for differences between the dominant 
and non-dominant limbs. Finally, a one-way repeated meas-
ures ANOVA was used to tests for differences in the squat 
depth (%) at which peak force occurred (whereby 0% is the 
position at which the hips and knees are fully extended, and 
100% is the position at which the thighs were parallel to the 
ground). Significance was accepted when P < 0.05. Statisti-
cally significant results underwent a Holm–Bonferroni post 
hoc analysis. All data are presented as mean ± SD, unless 
otherwise stated. Correlation analysis was performed to 
determine if maximal concentric strength influenced eccen-
tric force production. Absolute and normalised peak force 
from all eccentric trials (− 0.25, − 0.5, and − 0.75 m s−1) 
were correlated against the trial in which the greatest con-
centric force was produced (0.25 m s−1).

Coefficients of variation and intraclass correlation coef-
ficients were performed to identify the reliability of ground 
reaction forces between repetitions at each velocity. Intra-
class correlation coefficient was interpreted in line with 
recent guidelines (Koo and Li 2016). Lastly, Bland–Altman 
analyses (Bland and Altman 1986) and limits of agreement 
(LOA) were used to identify if the measured velocity dif-
fered from the target velocity.

Results

The group mean force during isovelocity squatting con-
formed to the expected in  vivo F–V profile, with the 
maximum force 1.095 times greater than isometric, which 
was recorded during the highest velocity eccentric trial 
(−  0.75  m  s−1) (Fig.  4). There was a significant main 
effect of squat velocity on vertical ground reaction force 
(F1.85, 25.87 = 22.059, P < 0.001).

Post hoc analysis identified that the eccentric − 0.75 m s−1 
velocity trial (P = 0.037, 95% CI of Δ = 24 to 657 N) and the 
− 0.5 m s−1 velocity trial (P = 0.037, 95% CI of Δ = 18 to 
509 N) both produced greater mean peak forces than the 
highest recorded concentric velocity trial (0.25 m  s−1). 
However, the difference in the peak force between the 
eccentric − 0.25 m s−1 and concentric 0.25 m s−1 trials did 
not reach significance (P = 0.288, 95% CI of Δ = − 14 to 
287 N), nor between the eccentric − 0.75 and − 0.5 m s−1 
trials (P = 0.300, 95% CI of Δ = − 86 to 258 N). Peak forces 
occurred at 36–41% (± 6–14%) of squat depth regardless of 
squat direction and velocity (F5 = 0.846, P = 0.521).

There was an asymmetry in the forces produced between 
the dominant and non-dominant limbs (F15 = 10.002, 
P = 0.007), with the smallest limb asymmetries identified 
during the higher velocities (~ 3%), and largest asymmetries 
occurring during the slow velocities (~ 6%). However, there 
was not a significant interaction of the dominant vs non-
dominant limb on the magnitude of forces produced at each 
velocity (F5 = 0.522, P = 0.759), and thus did not change the 
shape of the F–V relationship.

Individual responses

There was large inter-participant variability between the 
eccentric forces produced. Analyses of individual data 
revealed that some participants did not produce eccentric 
forces greater than isometric (Fig. 5). Table 1 summarises 
the characteristic differences between those individuals who 
had no eccentric increase (normalised eccentric force ≤ 1.0 
across all trials) and those who had an eccentric increase 

Fig. 4   Group mean ± SD 
force–velocity relationships of 
isovelocity squatting. A Vertical 
ground reaction force (N). B 
Normalised force relative to 
isometric. Concentric velocities 
are +ve, eccentric velocities 
are -ve
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(> 1.0). No significant differences were found between 
groups (P = 0.059–0.971), although the no eccentric-
increase group tended to be taller and heavier.

In addition, there was a modest to high positive correla-
tion between absolute peak concentric force (0.25 m s−1) and 
absolute peak eccentric force (− 0.75 m s−1; r15 = 0.544, 95% 
CI of Δ = 0.04 to 0.83, P = 0.036, − 0.5 m s−1; r15 = 0.745, 

95% CI of Δ = 0.38 to 0.91, P = 0.001, −  0.25  m  s−1; 
r15 = 0.738, 95% CI of Δ = 0.36–0.91, P = 0.002) (Fig. 6A). 
However, there was no significant correlation between 
absolute peak concentric force (0.25 m s−1) and the isomet-
ric-normalised eccentric force (− 0.75 m s−1; P = 0.757, 
− 0.5 m s−1; P = 0.19, − 0.25 m s−1; P = 0.628) (Fig. 6B).

Fig. 5   Force–velocity relationship from isovelocity squatting in A 
sub-group of participants that did not achieve an eccentric force 
increase (normalised eccentric force ≤ 1.0) (n = 4) and B sub-group of 

participants that did achieve an eccentric force increase group (nor-
malised eccentric force > 1.0) (n = 11)

Table 1   Individual and means ± SD for characteristics of participants who did not achieve an eccentric increase in force (n = 4) and those who 
did (n = 11)

Data are in ascending rank order for normalised maximum eccentric force

Participant Normalised 
eccentric force 
(− 0.75 m s−1)

Body mass (kg) Height (cm) Age (years) Barbell squat 
1RM (kg)

Train-
ing age 
(years)

Squat 1RM/BM

No eccentric 
increase

k6 0.84 85.65 193.5 26 120 3 1.40
k5 0.90 83.6 179.5 22 150 2 1.79
k4 0.97 82.85 182 25 120 3 1.45
k9 0.99 94 173 25 200 7 2.13

Mean ± SD 0.93 ± 0.07 86.5 ± 5 182 ± 8.5 25 ± 2 147.5 ± 37.5 4 ± 2 1.69 ± 0.33
Eccentric 

increase
k12 1.00 80.7 182 24 127.5 4 1.58
k2 1.01 69 178.5 23 105 5 1.52
k3 1.03 68.6 171 20 125 3 1.82
k8 1.04 63 172 24 92.5 1 1.47
k11 1.06 81.3 178.5 23 150 4 1.85
k10 1.08 87.4 175 23 140 5 1.60
k1 1.11 65.5 174 24 115 4 1.76
k7 1.19 88.3 178.5 27 140 2 1.59
k14 1.26 82.7 172 21 132.5 4 1.60
k15 1.31 84.1 181.5 27 140 4 1.66
k13 1.62 81 171 26 120 2 1.48

Mean ± SD 1.16 ± 0.18 77 ± 9.5 175 ± 4 24 ± 2 126 ± 18 3 ± 2 1.63 ± 0.13
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Analysis of repetition-to-repetition variation of verti-
cal ground reaction forces within each velocity identified 
acceptable coefficients of variation (6.1–9.2%) and intra-
class correlation coefficients (0.84–0.93) (McMaster et al. 
2014). These values are similar to those reported for both 
traditional (Fairus et al. 2016), and isometric squats (Palmer 
et al. 2018). Finally, measured cable velocity was, on aver-
age ~ 0.02 m s−1 greater than that of each target velocity 
(P < 0.001, LOA = 0.002:0.037) [exact velocities (and per-
centage difference) are as follows; − 0.767 m s−1 (2.2%), 
− 0.519 m s−1 (3.7%), − 0.261 m s−1 (4.3%), 0.268 m s−1 
(6.9%), 0.522  m  s−1 (4.3%), and 0.769  m  s−1 (2.5%)]. 
Therefore, the conclusions would be the same if we had 
used measured velocity rather than target velocity in our 
calculations.

Discussion

The main findings of this study establish that maximal 
isovelocity squatting conforms to the well-established pat-
tern of the force–velocity relationship, with peak eccentric 
forces being ~ 10% greater than isometric forces. However, 
large inter-participant variability existed at higher eccen-
tric velocities. Although most participant conformed to the 
expected F–V profile, some individuals did not produce 
eccentric forces greater than isometric, whilst one produced 
an extremely high eccentric force (Table 1, participant K13).

We accept the first hypothesis since the group mean 
eccentric force peak was ~ 10% greater than isometric 
(Fig. 4), but this is much smaller than the 30% difference 
previously reported in single-joint F–V relationships (Alca-
zar et al. 2019). These values are both far below isolated 
muscle forces which can reach up to 80% greater than iso-
metric (Edman 1988). These differences are likely explained 

by altered activation levels occurring during multi-joint 
movements compared to single-joint movements (Behm 
et al. 2003), which may impair the ability to produce maxi-
mal force (Maffiuletti et al. 2016). In addition, the greater 
the degrees of freedom within a movement, the more unsta-
ble a joint becomes (Wuebbenhorst and Zschorlich 2011), 
requiring the musculature to stabilise the movement rather 
than produce maximal force (Kornecki and Zschorlich 1994; 
Wuebbenhorst and Zschorlich 2012). These two neural 
mechanisms could cause a general decrease in force produc-
tion, which is consistent with previous literature (Bryanton 
et al. 2012) showing that during concentric squatting, the 
lower body musculature can only produce 60–80% of its pre-
dicted maximum force compared to when tested in a single-
joint isometric state. Rapid increases in neural activation 
levels have been shown during eccentric-specific resistance 
training (i.e. modulation of the load/velocity of the eccen-
tric phase of an exercise) (Seynnes et al. 2007), therefore, it 
may be hypothesised that rapid improvements in eccentric 
squatting strength may be achieved by overcoming the neu-
ral limitations of eccentric squatting following a short-term 
training intervention.

In addition, unlike single-joint movements where kine-
matics are constrained, the kinematics of squatting can differ 
between the concentric and eccentric phase (Swinton et al. 
2012), which may prevent the hip and knee joints simulta-
neously being at their optimal angle to produce maximal 
joint moments, despite squat depth remaining constant. 
The combined contribution of the two joints to the ground 
reaction force could, therefore, be reduced (Beckham et al. 
2018), in particular during the eccentric trials compared to 
the concentric trials, reducing the eccentric squatting force. 
Future studies should utilise inverse dynamics to study the 
individual joint contributions to eccentric squatting, and 
assess squatting kinematics, rather than just squat depth, 

Fig. 6   Scatter plots showing A positive linear correlation between concentric force and eccentric force at − 0.75 (P = 0.036), − 0.5 (P = 0.001), 
& − 0.25 m s−1 (P = 0.002). B No correlation between concentric force and normalised eccentric force (P = 0.19–0.757)
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to better understand the mechanisms contributing to the 
strength capacity during eccentric squatting and inform tar-
geted training prescription guidance.

The F–V relationship of squatting followed the same 
sigmoidal shape that exists in single-joint actions and iso-
lated muscle (Alcazar et al. 2019), reflecting the estab-
lished mechanics of muscle contraction. The shape of the 
force–velocity curves produced in this study were also sim-
ilar between the dominant and non-dominant limbs, with 
the asymmetries between limbs (< 6%) being similar to the 
asymmetries previously reported in bilateral movements 
(Simon and Ferris 2008). However, following the initial 
increase in eccentric force from − 0.25 m s−1 to − 0.5 m s−1, 
there was a plateau between − 0.5 m s−1 and − 0.75 m s−1. In 
practical terms, it appears that there exists an optimal veloc-
ity range that facilitates the greatest production of eccentric 
forces, which in turn should produce the greatest physiologi-
cal response (Rindom et al. 2019). Our data suggest that 
the greatest forces occur between − 0.5 and − 0.75 m s−1. 
However, due to the individual differences when performing 
eccentric actions (discussed below), it may be prudent to 
perform assessments of eccentric capabilities prior to pre-
scribing eccentric resistance training protocols.

Individual differences

When exploring our data, it becomes evident that a greater 
variation existed amongst the eccentric trials than amongst 
the concentric trials (see the standard deviations in Fig. 4). 
At − 0.75 m s−1, the normalised force ranged from 0.84 to 
1.62 around a mean of 1.1, indicating that although many 
individuals generated the physiologically expected eccentric 
force above isometric (Fig. 5B), some did not (Fig. 5A), even 
though all participants were familiar with resistance training 
and the squat. This large inter-participant variability was still 
apparent even when excluding the participant who achieved 
1.6 × isometric. Variability between individuals in the ability 
to produce eccentric moments has been reported previously 
during knee extension/flexion (Hahn 2018). Group mean 
knee moments were reported as 1.2 × isometric, however, 
some individuals were shown to be capable of producing 
moments 1.8 × isometric (Hahn 2018). Therefore, our meas-
urement of a maximal eccentric force of 1.6 × the isometric 
agrees with the limited previous data.

We assessed whether the individual ability to generate 
eccentric forces was associated with overall squatting ability. 
However, the normalised eccentric force was not correlated 
with absolute concentric force (Fig. 6B), and so we find that 
strength itself did not determine whether an individual pro-
duced eccentric forces greater or less than isometric. This 
is supported by previous research that has shown that we 
cannot accurately predict eccentric strength from a concen-
tric strength test (Harden et al. 2019). Therefore, we reject 

hypothesis 2. Previous training interventions have demon-
strated that eccentric-specific resistance training causes an 
increase in eccentric force production (Seger et al. 1998; 
Spurway et al. 2000), probably due to movement-specific 
improvements in muscle activation and a greater lengthen-
ing of muscle fascicles (Franchi et al. 2014). Therefore, we 
would expect individuals with a history of eccentric-specific 
resistance training to display a greater normalised eccentric 
force. However, although all participants had a history of 
resistance training (3.5 ± 1.5 years) and could squat a mini-
mum of 1.4 × body weight (Table 1), none of these partici-
pants had a notable history of eccentric-specific resistance 
training, so this does not explain the variances found in this 
study.

There are other factors that may influence eccentric 
squatting force that this study did not specifically assess, 
but comparison of the sub-groups (Table 1) may offer some 
insight. Although all participants squatted to a depth where 
the centre of the hip was below the centre of the knee, squat-
ting technique varies between individuals (Myer et al. 2014). 
Although not statistically significant, the group that had no 
eccentric increase was taller. Taller individuals may adopt a 
more hip-dominant squatting technique to counter balance 
(Myer et al. 2014), and this technique can change between 
the concentric and eccentric phase. This may result in differ-
ing hip, knee, and ankle joint ranges of motion, which would 
influence the amount of force exerted into the ground (Beck-
ham et al. 2018), and thus the profile of the F–V relationship. 
Future research may explore the effects of height and limb 
lengths on the joint contributions and their effect on exploit-
ing the greater strength capacity of eccentric squatting.

Another factor worth considering is the ability to acti-
vate the musculature during eccentric squatting. This could 
explain the large inter-participant variability. Although it 
was not assessed in this study, the ability to activate skeletal 
muscle has been shown to correlate with force production 
(Folland et al. 2014). Eccentric contractions have a unique 
neurological activation, compared to concentric/isomet-
ric (Enoka 1996) and activation capacity is known to dif-
fer between individuals (Avrillon et al. 2021), furthermore 
eccentric activation can be trained (Aagaard et al. 2000). 
Therefore, measurements of eccentric activation should be 
included in future research.

Regardless of the reasons why certain individuals were 
able to produce more or less eccentric normalised force, 
practitioners and researchers need to be aware that this vari-
ability is real and of a large magnitude, and future research 
on eccentric-specific resistance training should take this into 
consideration.
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Practical applications

Our data suggest that maximal concentric strength does not 
influence the ability to maximise relative eccentric force 
production, and therefore practitioners should attempt to 
measure eccentric capability prior to prescribing eccentric-
specific resistance training rather than relying on standard-
ised loads relative to concentric maximums (Harden et al. 
2020). This lack eccentric-specific assessment, and thus 
individualisation of training programs, may explain why 
the efficacy of eccentric-specific resistance training (e.g. 
accentuated eccentric loading) has been debated in the past 
(Douglas et al. 2018).

In many applied settings, eccentric-specific assessment 
is achieved under external load (Harden et al. 2019), which 
will dictate movement velocity, rather than the imposition of 
isovelocity movements. This presents practical challenges if 
done using traditional weightlifting techniques. In this study, 
however, the Kineo training system proved effective in deliv-
ering the fast eccentric squatting efforts required to identify 
a plateau in eccentric force, allowing individualised F–V 
profiles to be developed. However, for practitioners that do 
not have access to this equipment, field-based assessment of 
eccentric capabilities may need to be developed to individu-
alise eccentric-specific resistance training. Future research 
should also examine the effects of different eccentric proto-
cols on movement velocity, and subsequent force production, 
and the ability of resistance training interventions to train 
and improve these aspects of performance.

Although this study focussed on establishing underpin-
ning knowledge of the multi-joint force velocity curve, some 
findings may be extrapolated to applied practice. In applied 
settings, AEL is often coupled with a slower eccentric veloc-
ity, which results in an eccentric phase duration of 3–4 s 
(Harden et al. 2020), equivalent to a velocity slower than 
− 0.25 m s−1. However, our data suggest that at this slow 
eccentric velocity, AEL squatting may only provide a 2% 
benefit in terms of peak forces imposed on the body, when 
compared to maximal effort traditional squatting. In con-
trast, the data reported here demonstrate that many trained 
individuals are able to generate larger forces and experience 
greater training loads in faster eccentric trials, which may 
provide an accentuated stimulus for adaptation. However, 
future studies will need to be performed to confirm this.

Lastly, there are some limitations to this study. First, 
this study did not assess the kinematics of squatting, and as 
such, we do not know the joint angles at which peak ground 
reaction force occurred, nor do we know if taller individu-
als adopted a different squatting technique (as proposed in 
the individual differences section). An analysis of squat-
ting kinematics could solve these limitations, and therefore, 
should be included in future research. Second, this study 
only assessed three eccentric velocities, and found that peak 

eccentric force occurred between − 0.5 and − 0.75 m s−1. 
Therefore, future research should examine the effects of a 
greater range of velocities (targeted at the faster velocities) 
on ground reaction forces, and attempt to identify the par-
ticipant characteristics that determine individual differences.

Conclusion

The main finding from this investigation is that the isove-
locity squatting F–V relationship conforms to the typical 
in vivo F–V profile with eccentric forces greater than iso-
metric. However, the group mean normalised eccentric 
forces (1.1 × isometric) were lower than those typically 
reported in single-joint contractions (1.3 × isometric). 
Large inter-participant variability existed in the eccentric 
forces produced, with some participants producing eccentric 
forces up to 1.62 × isometric, but others half of that and not 
exceeding isometric (0.84 × isometric). Concentric strength 
and training age did not appear to determine the ability to 
maximise eccentric force production. Our data suggest that 
higher eccentric velocities result in greater force production, 
therefore, practitioners may wish to select AEL protocols 
that permit safe application of a velocity of ~ − 0.5 m s−1, 
or an eccentric tempo of ~ 1 s, if maximising eccentric force 
production is the objective of a training session. However, 
an assessment of eccentric capabilities is important to indi-
vidualise training interventions, owing to the large inter-
participant variability in eccentric force production (Fig. 6).
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