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Abstract
Purpose We sought to identify the developing maturity of walking and running in young children. We assessed gait patterns 
for the presence of flight and double support phases complemented by mechanical energetics. The corresponding classi-
fication outcomes were contrasted via a shotgun approach involving several potentially informative gait characteristics. A 
subsequent clustering turned out very effective to classify the degree of gait maturity.
Methods Participants (22 typically developing children aged 2–9 years and 7 young, healthy adults) walked/ran on a treadmill 
at comfortable speeds. We determined double support and flight phases and the relationship between potential and kinetic 
energy oscillations of the center-of-mass. Based on the literature, we further incorporated a total of 93 gait characteristics 
(including the above-mentioned ones) and employed multivariate statistics comprising principal component analysis for data 
compression and hierarchical clustering for classification.
Results While the ability to run including a flight phase increased with age, the flight phase did not reach 20% of the gait 
cycle. It seems that children use a walk-run-strategy when learning to run. Yet, the correlation strength between potential and 
kinetic energies saturated and so did the amount of recovered mechanical energy. Clustering the set of gait characteristics 
allowed for classifying gait in more detail. This defines a metric for maturity in terms of deviations from adult gait, which 
disagrees with chronological age.
Conclusions The degree of gait maturity estimated statistically using various gait characteristics does not always relate 
directly to the chronological age of the child.
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Introduction

Running and walking—two everyday types of locomotion 
in humans—are distinguishable to the naked eye by obvi-
ous differences in kinematics and kinetics. When adults 
run, there is a well-defined flight phase during which none 
of the legs are in contact with the ground, unlike walking 
that comprises a double support phase during which both 
legs are on the ground together. It, therefore, comes as no 
surprise that the presence or absence of a flight phase is 
the most commonly used classifier to distinguish walking 
from running.

Turning to a more biomechanical perspective, walk-
ing may be modelled as an inverted pendulum swing: the 
center-of-mass (CoM) vaults over the stance leg (Alexan-
der 1976) resulting in peaks in the CoM trajectory during 
mid-stance and an out-of-phase exchange between poten-
tial and kinetic energies (Saibene and Minetti 2003). Run-
ning, on the other hand, may be modelled as a spring, at 
least in adults: the stance leg compresses (Carriero et al. 
2009; Courtine et al. 2009; Dewolf et al. 2020; Dominici 
et al. 2012; Fortney 1983; Friedli et al. 2015; Ivanenko 
et al. 2007a; Phinyomark et al. 2018; Roberts et al. 2017; 
Van Hooren et al. 2019; Vasudevan et al. 2016; Wenger 
et al. 2016) resulting in a CoM trajectory with the lowest 
point at mid-stance and in-phase oscillations of poten-
tial and kinetic energies. In adults walking, the amount 
of saved energy, typically quantified as percentage of the 
recovered energy, is about 65% at the most optimal speed. 
In adults running, by contrast, the energy recovery does 
not depend on speed and fluctuates around 5% (Cavagna 
et al. 1964, 1976). This observation motivates an alter-
native and, by now, likewise accepted measure to distin-
guish walking from running, namely out-of-phase versus 
in-phase oscillations of potential and kinetic energies as 
well as the exchange between them.

In children, the ability to walk develops slowly from 
first independent steps to about 7 years of age, both in 
terms of mechanical energy and kinematics (Cheron et al. 
2001a, b; Dominici et al. 2010; Hallemans et al. 2004; 
Ivanenko et al. 2004, 2005, 2007b). It seems that the effi-
cient use of the pendulum mechanism during walking 
develops gradually, the recovery of mechanical energy 
is lower in toddlers during their first independent steps 
than in toddlers aged two and up who have more walking 
experience (Ivanenko et al. 2004), and it is much lower 
than in adults walking at comparable speeds (Hallemans 
et al. 2004).

Running in children is not as well researched. Vasude-
van et al. (2016) showed that infants are able to take some 
steps with a flight phase when supported on a treadmill but 
that their kinematic patterns disagree with adult running. 

An earlier study in children running revealed instances 
in which the energy recovery exceeded 11% during slow 
running (Schepens et al. 1998) and, hence, about twice 
as high as one may expect for running in adults. Since 
the corresponding experimental trials were excluded from 
further analysis, it remains opaque whether or not exagger-
ated energy recovery values at slow speeds are part of the 
development of running. In any case, though, a mature and 
efficient walking pattern seems to develop gradually. This 
lets us believe that an equivalent gradual change should be 
visible in the development of running.

Current studies on energetics in children typically 
assessed over-ground locomotion with one or two strides 
recorded per trial (Ivanenko et al. 2004; Schepens et al. 
2004, 2001; Schepens and Detrembleur 2009). However, 
over-ground locomotion often introduces more variabil-
ity in the gait speed than treadmill locomotion. Arguably, 
speed is easier to correct on the treadmill (Cavagna et al. 
1977), but certainly, one can record more strides per par-
ticipant potentially providing more statistical power in the 
subsequent analyses. It is for that reason that we adopted 
this experimental design to answer: (i) how does running 
on a treadmill develop in children when running is defined 
as having a flight phase; and (ii) how does this change when 
defining running as the in-phase oscillations of kinetic and 
potential energies?

If ‘proper’ running in children is meant to resemble running 
patterns of adults in some sense, then the development of run-
ning implies an increasing degree of gait maturity. Yet, adult 
gait already comes with substantial variability, raising doubts 
as to whether identifying the presence of a flight phase or pin-
pointing phase relationship between the CoM’s kinetic and 
potential energy will indeed provide a robust means to deter-
mine this degree of gait maturity. That is, while (i) & (ii) are 
relevant questions to ask, one may wonder whether or not the 
two characteristics they address suffice to quantify the (devel-
opment of) running in children. In fact, the literature offers a 
plenitude of kinematic and kinetic parameters and other gait 
characteristics that might be informative about the gait matu-
rity. We, therefore, supplemented flight phase presence and 
energy relationship by a large set of parameters that we chose 
based on previous studies that proved their capacity for catego-
rizing gait patterns (Carriero et al. 2009; Courtine et al. 2009; 
Dewolf et al. 2020; Dominici et al. 2012; Fortney 1983; Friedli 
et al. 2015; Ivanenko et al. 2007a; Phinyomark et al. 2018; 
Roberts et al. 2017; Van Hooren et al. 2019; Vasudevan et al. 
2016; Wenger et al. 2016). Without informed pre-selection of 
parameters, however, such a shotgun approach faces the chal-
lenge that parameters may covary and—when combined—do 
not only yield redundant information but may cause a classifi-
cation bias. Principal component analysis (PCA) is a common 
means to remove such covariation and, as such, it comes as no 
surprise that it has been applied extensively to identify types 
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of locomotion in experimental settings (Courtine et al. 2009; 
Dominici et al. 2012; Friedli et al. 2015; Wenger et al. 2016). 
Here, we first applied PCA to rank-reduce our parameter set 
before clustering the parameters (DeCann et al. 2014; Phiny-
omark et al. 2015; Sherrill et al. 2005) to classify gait patterns 
in children by the degree they deviate from gait patterns in 
adults. With this two-step procedure, we sought to answer (iii) 
if our ‘blind’ approach allows for pinpointing details of the 
development of gait in children, and whether it can serve to 
discriminate between mature and immature locomotion.

Methods

Participants

This study included 22 typically developing children aged 
2–9 years and 7 young healthy adults as controls for mature 
patterns, where mature patterns here refer to adult perfor-
mance. Exclusion criteria were known neurological and 
developmental diseases. Table 1 provides an overview of the 
relevant participant characteristics.

The adult participants and the guardians/parents of the chil-
dren provided written informed consent in compliance with 
the Declaration of Helsinki. The children provided assent. The 
experimental design was approved by The Scientific and Ethi-
cal Review Board of the Faculty of Behavioural & Movement 
Sciences, Vrije Universiteit Amsterdam, Netherlands (File 
number: VCWE-2016-149R1).

Setup

The experiment consisted of comfortable walking and running 
on the treadmill. Every condition was recorded for a minimum 
of 20 strides where possible and for a maximum of 100 strides.

Participants could familiarize themselves for several min-
utes on the treadmill during which walking and running were 
practiced. No set time was imposed. Subsequently, the com-
fortable speed was determined for both walking and running 
conditions by starting at a slow speed and increasing in inter-
vals of 0.1 km/h until the participant reported a comfortable 
speed. In the following, the walking and running conditions 
refer to the prescribed condition that the participant was asked 
to perform (i.e., walking and running) during the specific 
recording.

Children participants wore a full-body climbing har-
ness (CAMP Bambino Full Body Harness, CAMP USA, 

Colorado) modified to also have a secure attachment point 
on the back. All participants wore their own shoes for the 
duration of the experiment.

Data acquisition

Kinematic data were recorded using an active marker sys-
tem (Optotrak Motion System, NDI Measurement Sciences, 
ON, Canada) at 100 Hz. A camera was placed diagonally 
behind the treadmill on either side and one camera was 
placed diagonally in front on the right-hand side of the par-
ticipant. Single markers were attached to the skin overly-
ing the following bony landmarks on the right head of  5th 
metatarsal, right lateral malleolus (LM), right lateral femoral 
epicondyle (LE), and right greater trochanter (GT), right 
and left calcaneus (HE), right and left glenohumeral joint, 
right and left lateral humeral epicondyle, and right and left 
ulnar styloid. Kinematics of the right and left upper limbs 
were of poor quality and did not allow for further analysis. 
Kinematics could not be recorded in all participants (see 
Online Resource 3).

Vertical, mediolateral, and forwards ground reaction 
forces (Fv, Fml, Ff GRFs) were sampled at 1 kHz for each 
belt via the two force plates in the instrumented dual-belt 
treadmill (Motek Medical BV, Culemborg, the Netherlands).

Foot switches (piezo-resistive pressure sensitive sen-
sors: Zerowire; Cometa, Bareggio, Italy) were placed on the 
skin on the heel and the head of the first metatarsal under-
neath the right and the left foot and were secured with tape 
where necessary. Shoes and socks were placed over the foot 
switches. The foot switch signals were sampled at 2 kHz. 
Full-body electromyography recordings were made but not 
analyzed here. Kinematics, ground reaction forces, and foot 
switch data were synchronized. At the end of the recording 
session, anthropometric measurements were taken for every 
participant. These included mass ( m ) and stature of the par-
ticipant as well as the lengths of the main body segments.

Data analysis

Flight and double support phases

Step events (heel strike and toe-off bilaterally) were 
determined based on the kinetic and kinematic data. The 
vertical ground reaction forces ( Fv ) were pre-processed 
with a Savitzky-Golay polynomial filter (third order, 121 

Table 1  Participant 
characteristics

Median (25th–75th percentile). Age is the full range

Age (range) Gender (m/f) Height (cm) Weight (kg)

Children 26–106 months 10/12 122 (110–130) 22.5 (18.5–25.7)
Adults 22–28 years 4/3 180 (176–182) 69 (66–78)
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samples; Savitzky and Golay 1964). We defined heel strike 
(HS) and toe-off (TO) events as the first samples cross-
ing a fixed threshold (mean(Fv)/10). First and last HS and 
TO were excluded for further analysis to avoid transients. 
The HE markers in the vertical direction served to detect 
step events from the kinematics (Roerdink et al. 2008). 
The foot switch detection was based on a simple ‘on/off’ 
algorithm. All events were manually inspected and events 
were added or removed when needed (e.g., when dragging/
jumping). Events were primarily detected based on the Fv, 
but we supplemented with events based on kinematic and 
foot-switch detections whenever single foot GRF data were 
missing or did not allow for event detection. All relevant 
data were re-sampled to 1 kHz for this application. From 
the step events, we determined double support and flight 
phases as well as the corresponding means and standard 
deviations over all strides per participant and condition. 
We also computed the walking Froude (Alexander and 
Jayes 1983) for all participants and conditions based on 
the treadmill speed and leg length using:

Potential and kinetic energies

The combined forces from the right and left force plates 
of the treadmill served to estimate the kinetic (Ek) and 
potential energy (Ep) of the CoM in the sagittal plane, 
following Cavagna (1975); Ivanenko et al. (2004); Sai-
bene and Minetti (2003); Schepens et al. (2004); Schepens 
and Detrembleur (2009). For full calculations see Online 
Resource 1. In brief, the kinetic energy Ek was estimated 
based on the CoM’s velocity in the vertical and the for-
ward directions. Here, we would like to note that changes 
of kinetic energy in the medio-lateral direction are usually 
much smaller than those observed in the vertical and for-
ward directions (Tesio et al. 1998; Tesio and Rota 2019), 
and that the lateral work can be assumed less than 10% of 
total work. That is, lateral components can be considered 
negligible (Schepens and Detrembleur 2009). The poten-
tial energy Ep was determined via the CoM’s position in 
the vertical direction by integrating the corresponding 
velocity. Then, we estimated the Pearson correlation coef-
ficients r between Ek and Ep for each stride to quantify the 
degree of in-phase and out-of-phase oscillations of the 
energies.

To quantify the amount of mechanical energy that can 
be saved via a pendulum mechanism (see Introduction) 
we determined the relative recovered mechanical energy 
as (Cavagna et al. 1976):

Fr =
v2

g ⋅ l

where the external work (Wext) was based on the sum of 
(Ek + Ep)-increments over a stride and the work in forward 
and vertical directions (Wf and Wv) on the sum of increments 
of the forward and vertical CoM energies, respectively (Cav-
agna et al. 1976).

PCA and clustering

Based on the kinetics and right-side kinematics, numerous 
spatiotemporal, kinetic, and kinematic parameters were cal-
culated that provided a comprehensive quantification of gait 
features. In total 93 parameters were determined for every 
participant when kinematic measurements were available 
(n = 18 participants; 13 children and 5 adults). The parame-
ters can be split into themes that represent modalities of gait. 
To build on the findings of the ability to run with a flight 
phase and have in-phase oscillations of potential and kinetic 
energies during running, we supplemented these parameters 
with additional temporal features (in total 9 parameters), 
additional features of the pendulum/swing mechanisms (in 
total 11 parameters), limb endpoint trajectories (12 param-
eters), stability measures (3 parameters), segmental and joint 
angles (21 parameters) and velocities (9 parameters), kinet-
ics (6 parameters), intra-limb coordination (2 parameters), 
intersegmental coordination (14 parameters), and interlimb 
coordination (6 parameters). By including parameters from 
several strides per participant, we implicitly incorporated 
the variance across strides as this is a common measure 
for gait variability. For a detailed list of parameters see 
Online Resource 2. We normalized the parameters that were 
directly related to the size of the participant to body-size/
body-weight (e.g., step length, step height, vertical force; 
see Online Resource 2 for details). All the parameters were 
combined in a [(number of participants × condition × number 
of strides) × number of parameters] matrix [1530 × 93] and 
z-scored along the first dimension prior to PCA. As outlined 
above, PCA primarily served to rank-reduce the parameter 
matrix, which eliminates parameter covariations and, by 
this, allows for an unbiased classification via conventional 
clustering (see below). We selected the leading three prin-
cipal components (PCs) as they turned out to suffice for our 
classification purposes (Courtine et al. 2009; Dominici et al. 
2012; Friedli et al. 2015; Phinyomark et al. 2015). To which 
degree the different 93 parameters influenced the first three 
PCs can be given by the corresponding loadings = u ⋅

√

� , 
where u denotes the eigenvector of a PC and � its eigen-
value. We considered a parameter a strong contributor to a 
PC when its loading exceeded the 95% confidence threshold 
CI95 = 1.96∕

√

n , with  n=93.

R = 1 −
Wext

Wf + Wv
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Finally, we applied hierarchical clustering. In doing so, 
we first built a dendrogram or cluster tree (Milligan 1980; 
Murtagh and Contreras 2011; Xu and Wunsch 2005) using 
average links (unweighted pair group method with arithme-
tic mean) based on the correlation distances across the 3D 
reduced parameter set (we also tested other distance meas-
ures, like Euclidean and Mahalanobis distances, but none of 
them yielded comparably proper clusters). The dendrogram 
was thresholded based on the cophenetic correlation coef-
ficients (CCC; Sokal and Rohlf 1962) and, for comparison, 
also by visual inspection, with the latter focusing on both 
categorization of walking versus running and classification 
of mature and immature locomotion. To distinguish mature 
from immature locomotion, we computed the average pair-
wise correlation distance from every participant belonging 
to a distinct walking cluster to the adults walking and from 
every participant belonging to a distinct running cluster to 
the adults running. Put differently, that distance measures 
gait maturity with the adult gait pattern as reference.

Statistics

We assessed the influence of age on the presence of a flight 
phase (FP) during running, as well as the influence of age 
and condition on the presence a double support (DS) phase. 
For this, we used two linear regression models across both 
children and adults, the first one with FP as response varia-
ble and age as predictor, the second one with DS as response 
variable and age, condition, and the interaction between the 
two as predictors. For both models we considered  p <0.05 
statistically significant.

We quantified the age-dependence of the correlation coef-
ficients r and of the relative recovered energy R by least 
squares fitting exponential functions a ⋅ e−

1

�(age−�) + b , where 
τ was the time constant, and a, b, γ three constants, and 
report their explanatory power, in terms of adjusted R2-val-
ues, unless specified otherwise.

Results

Although 29 participants were included in the analysis on 
the mechanical energies of the CoM, only 18 participants 
were included in the analysis of the effects of kinematic and 
kinetic parameters on distinguishing mature from immature 
gait and walking from running. All participant characteris-
tics, as well as the numbers of strides included in each part 
of the analysis, can be found in Online Resource 3. It is 
worthwhile adding that the minor differences between stride 
numbers relate to the quality of the data varying between 
data sets. The youngest participants that we recorded 
(< 50 months of age) were all locomoting with handhold 

from the experimenter or parent/guardian. We confirmed 
that this did not affect the kinetics post-recording.

Flight and double support phases

We expressed FP and DS relative to the gait cycle (Fig. 1a). 
For the running condition, a FP was present in some partici-
pants and the linear regression revealed a significant effect of 
age ( p < 2 × 10–16), i.e., FP increased with age. DS revealed 
main effects of both age and condition ( p < 2 × 10–16, p = 0, 
respectively), and it decreased for running. We also found 
an interaction effect ( p = 5.8 × 10–6) as summarized in 
Table 2. The normalized speeds given as Froude values dif-
fered between conditions for all participants; see Fig. 1b.

The corresponding stick figures, vertical hip displace-
ments, and knee joint angles of four representative partici-
pants are presented in Fig. 2. For all participants, the vertical 
GT displacement  (GTv) was maximal during mid-stance of 
the load-bearing leg, adhering to the double-peaked profile 
of the pendular mechanism of the CoM during walking. Dur-
ing running, the  GTv was minimal during mid-stance of the 
load-bearing leg, suggesting a spring leg behavior of run-
ning. However, this was only present in the three oldest par-
ticipants. In the youngest participants during running,  GTv 
was maximal at mid-stance. In Fig. 2,  GTv and the knee joint 
angle for five strides for each of the displayed participants 
show a less pronounced pattern in the youngest participants 
compared to the adult, which suggests a more immature gait 
pattern in the younger participants and a mature one for the 
adult participant.

Potential and kinetic energies

We found a moderate exponential relationship between age 
and the correlation coefficients r for walking and running 
(R2 = 0.53, R2 = 0.51, respectively; Fig. 3a), while the rela-
tive recovered energy R was strongly correlated with age for 
both walking and running (R2 = 0.59, R2 = 0.70, respectively; 
Fig. 3b).

Shotgun and clustering

The first three PCs accounted for 57% of the total variance 
of the data while this might be considered a low proportion 
in conventional PCA, one has to realize that we z-scored the 
input variables which let us consider three PCs to cover a 
sufficient portion of data variance. The scatterplots in Fig. 4 
illustrate the separation between the prescribed walking and 
running patterns (filled and unfilled markers, respectively) 
with clear correlations illustrated in the PC1/PC2 plane. The 
loadings associated with these three PCs revealed that all 
parameters except for three were significantly larger than the 
95% confidence interval, and thus uniformly influenced the 
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variance in the data. The three exceptions were parameters 
75, 76, and 82 (cf., Online Resources 2 and 4).

The average linkage and correlation distance had a CCC 
of 0.92. There were no clear distinctions between the number 
of clusters when analyzing dissimilarity values. However, 
visual inspection of the dendrogram indicated that either 
four or eight clusters adequately represented the original 
data (see Online Resource 5). A Calinski Harabasz stopping 
rule (Milligan and Cooper 1985) applied for 1–10 clusters 

confirmed this split, at least in parts, as it revealed two of the 
four clusters. Since we aimed for distinguishing mature from 
immature patterns as well as walking from running patterns, 
we continued with the four clusters identified visually.

In Fig. 5, each of the clusters is represented with the 
relation every participant had to them. We expected adults 
to have a mature walking and running pattern and, accord-
ingly, we grouped them together as a single node (indi-
cated as ‘A’ in Fig. 5). The thickness of the lines repre-
sents the percentage of strides, larger than 5%, belonging 
to a certain cluster. Every cluster is plotted in an indi-
vidual color. Cluster 1 contained the adults running and 
94.7% of the running strides from the participant aged 
93 months. Cluster 2 contained between 74.6% and 100% 
of all prescribed running strides from the participants aged 
71 to 106 months bar the participant of 93 months (5.3% 
of the strides from this participant belonged to cluster 
2), together with around 50% of the prescribed running 
strides from the participants of 62 and 59 months. Cluster 
3 covered between 42 and 100% of the prescribed walking 
strides from the participant aged 62 months to the adults 
and 16.1% of the walking strides from the participant of 

Fig. 1  Temporal patterns during walking and running and normal-
ized speed. a Double support phase (positive numbers) and flight 
phase (negative numbers) expressed as a percentage of the gait cycle 
(mean ± SD) for walking (upper panel) and running (lower panel), 
as a function of age (months-rounded to the nearest whole integer) 
for each child participant and adults as a grand average. b Normal-

ized speed expressed as the Froude value (v2/g·l) for each participant 
and condition (walking in blue and running in red). Error bars sig-
nify standard deviations between participants for adults and differ-
ences between trials for the walking condition of the participants of 
82 and 91 months and running condition for the second participant of 
106 months

Table 2  Linear regression of the effects of age and condition on dou-
ble-support and flight phases

DS double support, FP flight phase, SE standard error, t t-statistics

Factor Estimate SE t p-value

DS Intercept 31.03 0.26 117.50 0
Age −0.01 0.00 −9.57  < 2 × 10–16

Condition_running −24.40 0.38 −64.35 0
Age:condition_running −0.01 0.00 −4.54 5.8 × 10–6

�� Intercept 4.63 0.38 12.24  < 2 × 10–16

Age 0.06 0.00 25.62  < 2 × 10–16
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59 months. Finally, cluster 4 contained around 50% of the 
prescribed running strides from participants of 59 and 
62 months, 25% of the prescribed running strides from the 
participants of 71 months and all prescribed running and 
walking strides from the participant of 40 months, together 
with some walking strides from older participants, most 
importantly, around 80% of walking strides from the par-
ticipant of 59 months, around 50% of the walking strides 
from the participants aged 82, and 40% of the walking 
strides of the participant of 106  months (see Online 
Resource 6 for further details on the spread of strides into 
every cluster). As shown in Fig. 5a, the younger children 
were grouped in separate clusters from the adult partici-
pants. The average pairwise distance to the adult patterns 
for walking and running separately, i.e., our measure for 
gait maturity is depicted in Fig. 5b. Obviously, there was 

no directed relationship between our measure of gait matu-
rity and the participants’ age. To illustrate this further in 
Fig. 5c, we ordered participants based on their respective 
distance to the mature pattern of the adults depending on 
whether their strides fall into the walking or running clus-
ters, but here we also included the corresponding ages 
on the top x-axes. The participant of 40 months is only 
present in the walking clusters as the strides belonging to 
the prescribed running conditions are clustered with the 
walking strides of the other participants. Some participants 
are present twice as their strides fall into more clusters 
(see above). In Fig. 5d, the order of the participants has 
been re-arranged following the maturity order in Fig. 5c. 
When a participant had strides falling into two clusters, 
they were ordered based on the position in which most of 
their strides belong to.

Fig. 2  Kinematics during walking and running. Stick figures of rep-
resentative strides of four representative participants during walking 
(upper panel) and running (lower panel). The black parts of the stick 
figures correspond to stance phase and the colored to the swing phase 
(blue for walking; red for running). Below, five representative strides 
are presented for each participant for left and right leg. Ensemble 

averages (± SD of five gait cycles) of knee joint angle and vertical 
hip displacement  (GTv) for each participant and condition. Gait cycle 
bars represent mean stance and swing duration for each participant 
with the horizontal black bar representing the standard deviation 
between strides.  GTv is expressed in relative units (normalized by the 
limb length l)
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Discussion

The aim of this paper was to investigate the development 
of running on a treadmill. Gait classification traditionally 
relies on the presence of a flight phase or the display of in-
phase oscillations of kinetic and potential energies during 
running. Expectedly, both measures have their limitation 
in quantifying subtle changes in gait patterns. Hence, we 
supplemented them by a substantial set of alternative gait 
characteristics and followed a statistics-based classifica-
tion of walking and running and the development thereof.

Not all children were able to run with a flight phase. Their 
running patterns clearly differed from that of adults, but also 
from (their own) walking. As such, their prescribed running 
should not be classified as walking. We found exponen-
tially saturating changes in the correlation between kinetic 
and potential energies and the total amount of recovered 
mechanical energy, implying there were in-phase oscilla-
tions of kinetic and potential energies during running and 
out-of-phase oscillations during walking. On top of that, 
our cluster analysis revealed the absence of a direct rela-
tionship between chronological age and maturity of the 

Fig. 3  Effects of the mechanical energy of the CoM on age. a The 
correlation coefficient r between Ek and Ep as a function of age for 
walking (blue) and running (red). There is an exponential relation-
ship between age and r for both walking and running. b The relative 

recovered energy R as a function of age for walking (blue) and run-
ning (red). There is an exponential relationship between R and age for 
both walking and running

Fig. 4  Principal component analysis (PCA) outcomes for walking 
and running. a The outcome of the PCA in PC1-PC2 space. b The 
outcome of the PC1-PC3 space. Each dot represents a stride and the 

color-coding refer to the age in months of the participants. The filled 
circles are the prescribed walking condition and the un-filled circles 
are the prescribed running condition
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(prescribed) walking and running patterns in children aged 
40–106 months.

Flight and double support phases

Running can be defined as having a flight phase. We showed 
that young children who are asked to run on a treadmill 
at comfortable speeds are not able to do so. This might be 
interpreted as they are in fact not running. At first glance, 
the gait patterns remind one of walking, but a closer look 
reveals that they are not walking either. It seems that chil-
dren learning to run make use of what could be called a 
“walk-run strategy” that contains both double support and 
flight phases. The (relative) duration of the double support 
phase in running, is of course not comparable to that seen in 
walking. Interestingly, this also extends to the in-phase and 
out-of-phase oscillations of kinetic and potential energies.

Potential and kinetic energies

We already mentioned in the introduction that Schepens 
et al. (1998) studied running in children aged 2–16 years. 
In that study all trials were excluded in which the relative 
energy recovery R exceeded 11% as they were deemed not 
to be running trials. This is unfortunate as our finding sup-
port the idea that in the learning period the gait is a mix of a 
walking and a running pattern. That is, R may occasionally 
exceed 11% during running, in our case in six participants. 
When incorporating the correlation coefficients r , however, 
it is still possible to distinguish between conditions for all 
participants as the potential energy oscillates out-of-phase 
for the walking conditions ( r being negative) and in-phase 
for the running conditions ( r being positive). In fact, the 
two types of locomotion (walking and running) are differ-
ent in speed for all participants in our study (see Fig. 1b 
and Online Resource 1), and despite the young participants 
sometimes running with double support phase, this is still 
different from the double support phases observed in the 
walking condition.

Yet, we have to admit that the overall findings in the ener-
getics, with the exponential relationships between R and r 
and age are mostly influenced by the youngest participants. 
It seems that the energetics are not fine-grained enough to 
distinguish between older children and adults and thus will 
not reveal how running matures from children older than 
3.5 years to adults.

Shotgun and clustering

Chronological age and gait maturity of treadmill locomotion 
are not directly related in children aged 3.5–9 years. Matu-
rity of one type of locomotion is also not directly linked to 
that of the other type of locomotion and as such, a child can 

display mature walking, but not mature running and vice 
versa. We defined gait maturity as the pairwise correlation 
distance from adult patterns and thus used the mean of the 
adult walking and running patterns, respectively, as a refer-
ence for mature patterns. This allowed us to rank participants 
based on their individual distance to the mature patterns of 
walking and running, separately.

These results appear more complete, indeed, when com-
pared to those on flight phases and energetics only. We are, 
therefore, inclined to argue that a shotgun approach with 
proper pattern classification can provide additional insight in 
the development of running in children. In an earlier study, 
Phinyomark et al. (2015) already showed that two distinct 
kinematic running patterns in adults running can be iden-
tified combining PCA and clustering analysis on separate 
kinematic waveforms. In our eight-cluster analysis, we found 
one adult with a separate running pattern from all other par-
ticipants and this finding could be related to differences 
in the running pattern (see Online Resource 5). However, 
we here considered the adult group as a single group as, 
despite differences between adults they display a ‘mature’ 
pattern, and as such we chose the four-cluster result as the 
main result.

We ‘blindly’ selected 93 parameters, with which we suc-
ceeded to categorize gait patterns and classify their change 
in the course of development. The obvious next step is to 
identify which of these parameters have significant contribu-
tions to the classification. One can in fact isolate subsets of 
the parameter by their contribution to principal components 
(see, e.g., Kaptein et al. 2014). In doing so, we found that 
the temporal parameters (such as flight phase/double support 
phase) and pendulum/swing mechanisms (e.g., the oscilla-
tions of kinetic and potential energies) do greatly influence 
PC1. However, others were also adding to it, like leg/joint 
velocities and limb endpoint velocities. That is, when it 
comes to the time course of development, many if not all 
these parameters seem to covary, a fact that of course also 
extends to PC2 and PC3. From the composition of PC1 one 
may conclude that—albeit important—the mere presence 
of flight phase and in-phase oscillations of potential and 
kinetic energies does not suffice to distinguishing walking 
from running. More information is needed to pinpoint the 
(type of) gait pattern and define its degree of maturity. Yet, 
one has to realize that in our gait classification PCA primar-
ily served for rank reduction followed by hierarchical clus-
tering. Isolating relevant parameters in the space spanned 
by three principal components for their contribution to the 
correlation distance based hierarchical clustering is clearly 
less trivial. Here we hope for future work to provide rigorous 
methods to determine which specific parameters play a role 
for each of the clusters; more advanced statistical models 
like genetic algorithms may help with this. Only if this or 
alternative methods will succeed, can our shotgun approach 
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not only ‘describe’ the change of gait patterns, but may serve 
as unbiased means to determine which parameters are cru-
cial for this change.

Limitations and choices

In the current data set participants of around 4 years of age 
are absent due to recruitment or measurement issues. This 
leaves a relatively large gap of 19 months between the child 
of 40 months and the child of 59 months. We do not expect 
our outcomes to change qualitatively when that gap is filled, 
but without a doubt it can provide further information on the 
maturity of locomotion in the younger children.

The type of locomotion referred to throughout this paper 
is the prescribed locomotion and this means that despite ask-
ing the children to run and either them or their parent/guard-
ian confirmed it as running, they might not have been able to 
run as they would have over ground. Despite this potential 
limitation, we are positive that –in our experiments– the 
prescribed running patterns were not like those one would 
expect for walking or even fast walking.

Our participants were walking and running on a treadmill 
at a constant comfortable speed during the whole trial, with 
the advantage that the amounts of strides analyzed for each 
condition varied between 15 and 76 strides (Online Resource 
3). This is in contrast to most other studies on the mechanics 
of locomotion, where participants walk or ran over ground 
and thus did not record more than two or three steps per trial 
with up to ten trials per participant (Ivanenko et al. 2004; 
Schepens et al. 2004, 1998; Schepens and Detrembleur 

2009) amounting to a 10–15 strides per participant. Moreo-
ver, it is more difficult to control the speed of the participant 
when locomoting over ground compared to on a treadmill 
and as such more fluctuations in the speed of the participant 
are expected. Speed fluctuations are important to account for 
when analyzing the energetics during average locomotion 
(Cavagna et al. 1977).

A final note on data ‘pre’-processing: Prior to perform-
ing PCA, data were z-scored along the first dimension. The 
normalization of parameters across strides results in the 
adult values not skewing the PCA and cluster analysis in 
terms of amplitude. When looking at Fig. 4, it seems that the 
variability between and within participants was not larger 
in the older children than in the adults, arguably due to the 
normalization. Variability within participants hence appears 
an unlikely cause for larger correlation distances from the 
young children to the adults in our clustering approach. 
Moreover, not all parameters were normalized to body-size/
body-weight (see Online Resource 2) prior to the z-scoring, 
PCA, and subsequent clustering. The ones that were nor-
malized directly relate to the size of the participant (e.g., 
step length, step height, vertical force), whereas for example 
joint and segmental angles are already considered dimen-
sionless (see, e.g., Hof 1996). One may argue, however, that 
(almost) all the parameters might have been influenced by 
both the participants’ size and the speeds performed. Yet, 
there were several instances of a single participant being 
split into more than one cluster, while maintaining the same 
speed. We hence do not believe, that speed or body size were 
influencing factors in our cluster results.

Kinematic and kinetic parameters are influenced by neu-
ral factors and vice versa. A recent comprehensive review 
on the neural circuitries and biomechanics of walking and 
running in development (Dewolf et al. 2020) showed that 
running patterns mature during childhood but that the under-
lying mechanisms are still not thoroughly investigated. Here, 
we give some insights into the underlying kinematics and 
kinetics of this development. However, we did not investi-
gate the muscular components as part of this study. We know 
from adults that the muscle activity patterns differ between 
adults walking and running and that there is a reduction in 
the duration of contraction with age for both the medial 
gastrocnemius muscle in walking for typically developing 
children (Cappellini et al. 2016; Tirosh et al. 2013), as well 
as in the thumb adductor during pinching movements (Daya-
nidhi et al. 2013). These findings suggest that the immature 
locomotor patterns found in this study could be correlated to 
increased contraction time. A recent study in children with 
cerebral palsy showed that it was possible to change their 
kinematic gait patterns without influencing their selective 
motor control (Booth et al. 2019). However, whether this 
also applies to typically developing children should be con-
firmed with further analysis of the muscle activity signals. 

Fig. 5  Clustering output. a Output of clustering ordered based on 
age (months), with the youngest participant on the right side and the 
adults (A) on the left side for walking (blue circles) and running (red 
circles). The size of the clusters (C1-C4) depends on the amounts of 
strides belonging to each cluster, similarly the thickness of the lines 
connecting each cluster with a participant depends on the percentage 
of data from each participant belonging to that cluster. b Calculated 
average pairwise correlation distance to the mature walking patterns 
of the adults (A) (upper panel) and to the mature running patterns of 
the adults (A) (lower panel) as a function of age. c Calculated aver-
age pairwise correlation distance to the mature walking patterns of 
the adults (A) (upper panel) and the mature running patterns of the 
adults (A) (lower panel) as a function of gait maturity. The upper axis 
in both plots represents the age of the participants in months (rounded 
to nearest whole integer). Note that the increase in age is not mono-
tonic as it is a function of gait maturity (immature from left going to 
mature on right). Note also that the lower axis in both plots is not in 
units of the correlation distance (which is shown on the y-axis) but 
set to arbitrary values (indices of sorting); that is, the seeming expo-
nential decay should not be interpreted as such. Color notation is the 
same as in a), C4 represents immature walking, C3 represents mature 
walking, C2 represents immature running and C1 represents mature 
running. The size of the circles depends on the amounts of strides 
belonging to each cluster. d Output of clustering based on maturity 
with the least mature patterns on the right side and the most mature 
(adults: A) on the left side. For a full overview of the percentage of 
strides belonging to each cluster, see Online Resource 6

◂
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Another recent study investigating muscle activity patterns 
during running in preschoolers and adults with different 
training experience revealed substantial developmental and 
training-related plasticity suggesting a long-term reorgani-
zation to satisfy the biomechanical changes and functional 
requirements of locomotion (Cheung et al. 2020).

Conclusion

Clustering revealed that there is no direct agreement between 
chronological age and gait maturity in young children walk-
ing and running when comparing their gait patterns to those 
of adults. When learning to run, young children employ a 
“walk-run-strategy”. This strategy provides the ability to 
run with a combination of strides with double support and 
flight phase and yields in-phase oscillations of potential and 
kinetic energies.

Acknowledgements We would like to acknowledge Jennifer N. Kerk-
man and Annike Bekius for their support in data acquisition and all 
participants for their participation in the study

Author contributions MMB and ND conceived and designed the study. 
MMB conducted the experiments. MMB, AD, and ND analyzed the 
data. The first draft of the manuscript was written by MMB and all 
authors commented on previous versions of the manuscript. All authors 
read and approved the final manuscript.

Funding This project has received funding from the European 
Research Council (ERC) under the European Union’s Horizon 2020 
research and innovation programme (grant agreement n° 715945 
Learn2Walk) and from the Dutch Organisation for Scientific Research 
(NWO) VIDI grant (016.156.346 FirSTeps).

Availability of data and material The data that support the findings of 
this study are available upon request from the corresponding author 
(ND). The custom-made code used to analyze data for this publication 
is also available upon request from the corresponding author (ND).

Compliance with ethical standards 

Conflicts of interest The authors declare that they have no conflict of 
interest.

Ethics approval The adult participants and the guardians/parents of 
the children provided written informed consent in compliance with the 
Declaration of Helsinki. The children provided assent. The experimen-
tal design was approved by The Scientific and Ethical Review Board of 
the Faculty of Behavioural & Movement Sciences, Vrije Universiteit 
Amsterdam, Netherlands (File number: VCWE-2016-149R1).

Consent to participate The adult participants and the guardians/parents 
of the children provided written informed consent in compliance with 
the Declaration of Helsinki. The children provided assent.

Consent for publication Not applicable.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

References

Alexander R (1976) Mechanics of bipedal locomotion Perspectives in 
experimental biology. Perspect Exp Biol 1:493–504

Alexander RM, Jayes AS (1983) a dynamic similarity hypothesis for 
the gaits of quadrupedal mammals. J Zool 201:135–152

Booth ATC, van der Krogt MM, Harlaar J, Dominici N, Buizer AI 
(2019) Muscle synergies in response to biofeedback-driven 
gait adaptations in children with cerebral palsy. Front Physiol 
10:1208. https ://doi.org/10.3389/fphys .2019.01208 

Cappellini G, Ivanenko YP, Martino G, MacLellan MJ, Sacco A, 
Morelli D, Lacquaniti F (2016) Immature spinal locomotor out-
put in children with cerebral palsy. Front Physiol 7:478. https ://
doi.org/10.3389/fphys .2016.00478 

Carriero A, Zavatsky A, Stebbins J, Theologis T, Shefelbine SJ 
(2009) Determination of gait patterns in children with spastic 
diplegic cerebral palsy using principal components. Gait Pos-
ture 29:71–75. https ://doi.org/10.1016/j.gaitp ost.2008.06.011

Cavagna GA (1975) Force platforms as ergometers. J Appl Physiol 
39:174–179

Cavagna GA, Saibene FP, Margaria R (1964) Mechanical work in 
running. J Appl Physiol 19:249–256. https ://doi.org/10.1152/
jappl .1964.19.2.249

Cavagna GA, Thys H, Zamboni A (1976) The sources of external 
work in level walking and running. J Physiol 262:639–657. https 
://doi.org/10.1113/jphys iol.1976.sp011 613

Cavagna GA, Heglund NC, Taylor CR (1977) Mechanical work in 
terrestrial locomotion: two basic mechanisms for minimizing 
energy expenditure. Am J Physiol 233:R243-261. https ://doi.
org/10.1152/ajpre gu.1977.233.5.R243

Cheron G, Bengoetxea A, Bouillot E, Lacquaniti F, Dan B (2001a) 
Early emergence of temporal co-ordination of lower limb seg-
ments elevation angles in human locomotion. Neurosci Lett 
308:123–127. https ://doi.org/10.1016/s0304 -3940(01)01925 -5

Cheron G, Bouillot E, Dan B, Bengoetxea A, Draye JP, Lacquaniti 
F (2001b) Development of a kinematic coordination pattern in 
toddler locomotion: planar covariation. Exp Brain Res 137:455–
466. https ://doi.org/10.1007/s0022 10000 663

Cheung VCK, Cheung BMF, Zhang JH, Chan ZYS, Ha SCW, Chen 
C-Y, Cheung RTH (2020) Plasticity of muscle synergies through 
fractionation and merging during development and training of 
human runners. Nat Commun 11(1):4356. https ://doi.org/10.1038/
s4146 7-020-18210 -4

Courtine G et al (2009) Transformation of nonfunctional spinal cir-
cuits into functional states after the loss of brain input. Nat 
Neurosci 12:1333–1342. https ://doi.org/10.1038/nn.2401

Dayanidhi S, Kutch JJ, Valero-Cuevas FJ (2013) Decrease in muscle 
contraction time complements neural maturation in the develop-
ment of dynamic manipulation. J Neurosci 33:15050–15055. 
https ://doi.org/10.1523/JNEUR OSCI.1968-13.2013

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fphys.2019.01208
https://doi.org/10.3389/fphys.2016.00478
https://doi.org/10.3389/fphys.2016.00478
https://doi.org/10.1016/j.gaitpost.2008.06.011
https://doi.org/10.1152/jappl.1964.19.2.249
https://doi.org/10.1152/jappl.1964.19.2.249
https://doi.org/10.1113/jphysiol.1976.sp011613
https://doi.org/10.1113/jphysiol.1976.sp011613
https://doi.org/10.1152/ajpregu.1977.233.5.R243
https://doi.org/10.1152/ajpregu.1977.233.5.R243
https://doi.org/10.1016/s0304-3940(01)01925-5
https://doi.org/10.1007/s002210000663
https://doi.org/10.1038/s41467-020-18210-4
https://doi.org/10.1038/s41467-020-18210-4
https://doi.org/10.1038/nn.2401
https://doi.org/10.1523/JNEUROSCI.1968-13.2013


1085European Journal of Applied Physiology (2021) 121:1073–1085 

1 3

DeCann B, Ross A, Culp M (2014) On clustering human gait pat-
terns. In: 22nd International conference on pattern recognition. 
IEEE, pp 1794–1799. doi: https ://doi.org/10.1109/icpr.2014.315

Dewolf AH, Sylos-Labini F, Cappellini G, Lacquaniti F, Ivanenko 
Y (2020) Emergence of different gaits in infancy: relationship 
between developing neural circuitries and changing biomechan-
ics. Front Bioeng Biotechnol 8:473. https ://doi.org/10.3389/
fbioe .2020.00473 

Dominici N et al (2012) Versatile robotic interface to evaluate, ena-
ble and train locomotion and balance after neuromotor disor-
ders. Nat Med 18:1142–1147. https ://doi.org/10.1038/nm.2845

Dominici N, Ivanenko YP, Cappellini G, Zampagni ML, Lacquaniti F 
(2010) Kinematic strategies in newly walking toddlers stepping 
over different support surfaces. J Neurophysiol 103:1673–1684. 
https ://doi.org/10.1152/jn.00945 .2009

Fortney VL (1983) The kinematics and kinetics of the running pat-
tern of two-, four-, and six-year-old children. Res Q Exerc Sport 
54:126–135. https ://doi.org/10.1080/02701 367.1983.10605 284

Friedli L et al (2015) Pronounced species divergence in corticospinal 
tract reorganization and functional recovery after lateralized 
spinal cord injury favors primates. Sci Transl Med 7:302ra134. 
https ://doi.org/10.1126/scitr anslm ed.aac58 11

Hallemans A, Aerts P, Otten B, De Deyn PP, De Clercq D (2004) 
Mechanical energy in toddler gait. A trade-off between econ-
omy and stability? J Exp Biol 207:2417–2431. https ://doi.
org/10.1242/jeb.01040 

Hof AL (1996) Scaling gait data to body size. Gait Posture 4:222–223. 
https ://doi.org/10.1016/0966-6362(95)01057 -2

Ivanenko YP, Dominici N, Cappellini G, Dan B, Cheron G, Lacquaniti 
F (2004) Development of pendulum mechanism and kinematic 
coordination from the first unsupported steps in toddlers. J Exp 
Biol 207:3797–3810. https ://doi.org/10.1242/jeb.01214 

Ivanenko YP, Dominici N, Cappellini G, Lacquaniti F (2005) Kin-
ematics in newly walking toddlers does not depend upon postural 
stability. J Neurophysiol 94:754–763

Ivanenko YP, Cappellini G, Dominici N, Poppele RE, Lacquaniti F 
(2007a) Modular control of limb movements during human loco-
motion. J Neurosci 27:11149–11161. https ://doi.org/10.1523/
JNEUR OSCI.2644-07.2007

Ivanenko YP, Dominici N, Lacquaniti F (2007b) Development of inde-
pendent walking in toddlers. Exerc Sport Sci Rev 35:67–73. https 
://doi.org/10.1249/JES.0b013 e3180 3eafa 8

Kaptein RG, Wezenberg D, Ijmker T, Houdijk H, Beek PJ, Lamoth 
CJ, Daffertshofer A (2014) Shotgun approaches to gait analysis: 
insights & limitations. J Neuroeng Rehabil 11:120. https ://doi.
org/10.1186/1743-0003-11-120

Milligan GW (1980) An examination of the effect of six types of error 
perturbation on fifteen clustering algorithms. Psychometrika 
45:325–342

Milligan GW, Cooper MC (1985) An examination of procedures for 
determining the number of clusters in a data set. Psychometrika 
50:159–179. https ://doi.org/10.1007/bf022 94245 

Murtagh F, Contreras P (2011) Algorithms for hierarchical clustering: 
an overview WIREs. Data Min Knowl Disc 2:86–97. https ://doi.
org/10.1002/widm.53

Phinyomark A, Osis S, Hettinga BA, Ferber R (2015) Kinematic 
gait patterns in healthy runners: a hierarchical cluster analy-
sis. J Biomech 48:3897–3904. https ://doi.org/10.1016/j.jbiom 
ech.2015.09.025

Phinyomark A, Petri G, Ibanez-Marcelo E, Osis ST, Ferber R (2018) 
Analysis of big data in gait biomechanics: current trends and 
future directions. J Med Biol Eng 38:244–260. https ://doi.
org/10.1007/s4084 6-017-0297-2

Roberts M, Mongeon D, Prince F (2017) Biomechanical parameters 
for gait analysis: a systematic review of healthy human gait. Phys 
Ther Rehabil. https ://doi.org/10.7243/2055-2386-4-6

Roerdink M, Coolen BH, Clairbois BH, Lamoth CJ, Beek PJ (2008) 
Online gait event detection using a large force platform embedded 
in a treadmill. J Biomech 41:2628–2632. https ://doi.org/10.1016/j.
jbiom ech.2008.06.023

Saibene F, Minetti AE (2003) Biomechanical and physiological aspects 
of legged locomotion in humans. Eur J Appl Physiol 88:297–316. 
https ://doi.org/10.1007/s0042 1-002-0654-9

Savitzky A, Golay MJE (1964) Smoothing and differentiation of data 
by simplified least squares procedures. Anal Chem 36:1627–1639. 
https ://doi.org/10.1021/ac602 14a04 7

Schepens B, Detrembleur C (2009) Calculation of the external work 
done during walking in very young children. Eur J Appl Physiol 
107:367–373. https ://doi.org/10.1007/s0042 1-009-1132-4

Schepens B, Willems PA, Cavagna GA (1998) The mechanics of 
running in children. J Physiol 509(Pt 3):927–940. https ://doi.
org/10.1111/j.1469-7793.1998.927bm .x

Schepens B, Willems PA, Cavagna GA, Heglund NC (2001) Mechan-
ical power and efficiency in running children. Pflugers Arch 
442:107–116. https ://doi.org/10.1007/s0042 40000 511

Schepens B, Bastien GJ, Heglund NC, Willems PA (2004) Mechani-
cal work and muscular efficiency in walking children. J Exp Biol 
207:587–596. https ://doi.org/10.1242/jeb.00793 

Sherrill DM, Moy ML, Reilly JJ, Bonato P (2005) Using hierarchical 
clustering methods to classify motor activities of COPD patients 
from wearable sensor data. J Neuroeng Rehabil 2:16. https ://doi.
org/10.1186/1743-0003-2-16

Sokal RR, Rohlf FJ (1962) The comparison of dendrograms by objec-
tive methods. Taxon 11:33–40

Tesio L, Rota V (2019) The motion of body center of mass during 
walking: a review oriented to clinical applications. Front Neurol 
10:999. https ://doi.org/10.3389/fneur .2019.00999 

Tesio L, Lanzi D, Detrembleur C (1998) The 3-D motion of the centre 
of gravity of the human body during level walking. II Lower limb 
amputees. Clin Biomech 13:83–90. https ://doi.org/10.1016/s0268 
-0033(97)00081 -8

Tirosh O, Sangeux M, Wong M, Thomason P, Graham HK (2013) 
Walking speed effects on the lower limb electromyographic vari-
ability of healthy children aged 7–16 years. J Electromyogr Kine-
siol 23:1451–1459. https ://doi.org/10.1016/j.jelek in.2013.06.002

Van Hooren B et al (2019) Is motorized treadmill running biomechan-
ically comparable to overground running? a systematic review 
and meta-analysis of cross-over studies. Sports Med. https ://doi.
org/10.1007/s4027 9-019-01237 -z

Vasudevan EV, Patrick SK, Yang JF (2016) Gait transitions in human 
infants: coping with extremes of treadmill speed. PLoS ONE 
11:e0148124. https ://doi.org/10.1371/journ al.pone.01481 24

Wenger N et al (2016) Spatiotemporal neuromodulation therapies 
engaging muscle synergies improve motor control after spi-
nal cord injury. Nat Med 22:138–145. https ://doi.org/10.1038/
nm.4025

Xu R, Wunsch D 2nd (2005) Survey of clustering algorithms. 
IEEE Trans Neural Netw 16:645–678. https ://doi.org/10.1109/
TNN.2005.84514 1

Publisher’s Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/icpr.2014.315
https://doi.org/10.3389/fbioe.2020.00473
https://doi.org/10.3389/fbioe.2020.00473
https://doi.org/10.1038/nm.2845
https://doi.org/10.1152/jn.00945.2009
https://doi.org/10.1080/02701367.1983.10605284
https://doi.org/10.1126/scitranslmed.aac5811
https://doi.org/10.1242/jeb.01040
https://doi.org/10.1242/jeb.01040
https://doi.org/10.1016/0966-6362(95)01057-2
https://doi.org/10.1242/jeb.01214
https://doi.org/10.1523/JNEUROSCI.2644-07.2007
https://doi.org/10.1523/JNEUROSCI.2644-07.2007
https://doi.org/10.1249/JES.0b013e31803eafa8
https://doi.org/10.1249/JES.0b013e31803eafa8
https://doi.org/10.1186/1743-0003-11-120
https://doi.org/10.1186/1743-0003-11-120
https://doi.org/10.1007/bf02294245
https://doi.org/10.1002/widm.53
https://doi.org/10.1002/widm.53
https://doi.org/10.1016/j.jbiomech.2015.09.025
https://doi.org/10.1016/j.jbiomech.2015.09.025
https://doi.org/10.1007/s40846-017-0297-2
https://doi.org/10.1007/s40846-017-0297-2
https://doi.org/10.7243/2055-2386-4-6
https://doi.org/10.1016/j.jbiomech.2008.06.023
https://doi.org/10.1016/j.jbiomech.2008.06.023
https://doi.org/10.1007/s00421-002-0654-9
https://doi.org/10.1021/ac60214a047
https://doi.org/10.1007/s00421-009-1132-4
https://doi.org/10.1111/j.1469-7793.1998.927bm.x
https://doi.org/10.1111/j.1469-7793.1998.927bm.x
https://doi.org/10.1007/s004240000511
https://doi.org/10.1242/jeb.00793
https://doi.org/10.1186/1743-0003-2-16
https://doi.org/10.1186/1743-0003-2-16
https://doi.org/10.3389/fneur.2019.00999
https://doi.org/10.1016/s0268-0033(97)00081-8
https://doi.org/10.1016/s0268-0033(97)00081-8
https://doi.org/10.1016/j.jelekin.2013.06.002
https://doi.org/10.1007/s40279-019-01237-z
https://doi.org/10.1007/s40279-019-01237-z
https://doi.org/10.1371/journal.pone.0148124
https://doi.org/10.1038/nm.4025
https://doi.org/10.1038/nm.4025
https://doi.org/10.1109/TNN.2005.845141
https://doi.org/10.1109/TNN.2005.845141

	The development of mature gait patterns in children during walking and running
	Abstract
	Purpose 
	Methods 
	Results 
	Conclusions 

	Introduction
	Methods
	Participants
	Setup
	Data acquisition
	Data analysis
	Flight and double support phases
	Potential and kinetic energies
	PCA and clustering

	Statistics

	Results
	Flight and double support phases
	Potential and kinetic energies
	Shotgun and clustering

	Discussion
	Flight and double support phases
	Potential and kinetic energies
	Shotgun and clustering
	Limitations and choices

	Conclusion
	Acknowledgements 
	References




