Skip to main content
Log in

Nutritional interventions for reducing the signs and symptoms of exercise-induced muscle damage and accelerate recovery in athletes: current knowledge, practical application and future perspectives

  • Invited Review
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

This review provides an overview of the current knowledge of the nutritional strategies to treat the signs and symptoms related to EIMD. These strategies have been organized into the following sections based upon the quality and quantity of the scientific support available: (1) interventions with a good level of evidence; (2) interventions with some evidence and require more research; and (3) potential nutritional interventions with little to-no-evidence to support efficacy.

Method

Pubmed, EMBASE, Scopus and Web of Science were used. The search terms ‘EIMD’ and ‘exercise-induced muscle damage’ were individually concatenated with ‘supplementation’, ‘athletes’, ‘recovery’, ‘adaptation’, ‘nutritional strategies’, hormesis’.

Result

Supplementation with tart cherries, beetroot, pomegranate, creatine monohydrate and vitamin D appear to provide a prophylactic effect in reducing EIMD. β-hydroxy β-methylbutyrate, and the ingestion of protein, BCAA and milk could represent promising strategies to manage EIMD. Other nutritional interventions were identified but offered limited effect in the treatment of EIMD; however, inconsistencies in the dose and frequency of interventions might account for the lack of consensus regarding their efficacy.

Conclusion

There are clearly varying levels of evidence and practitioners should be mindful to refer to this evidence-base when prescribing to clients and athletes. One concern is the potential for these interventions to interfere with the exercise-recovery-adaptation continuum. Whilst there is no evidence that these interventions will blunt adaptation, it seems pragmatic to use a periodised approach to administering these strategies until data are in place to provide and evidence base on any interference effect on adaptation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

adapted from Howatson et al. (2016). Hormesis theory in the context of nutritional interventions for the management of EIMD. This framework suggests that the adaptive response to EIMD presents as a bell-shaped curve. A positive effect of the exercise stress exists to a point when the exposure becomes too great, and thereafter there is an impaired adaptive response. Using this theory, we suggest a conceptual region for intervention (yellow text box) where the exercise stress impairs timely return to training and competition or is detrimental to adaptation

Fig. 3

Similar content being viewed by others

Abbreviations

EIMD:

Exercise-induced muscle damage

ROM:

Range of motion

CK:

Creatine kinase

LDH:

Lactate dehydrogenase

MYO:

Myoglobin

CRP:

C-reactive protein

ACTN3:

Gene that encodes the α-actinin-3 protein

TNF:

Tumour necrosis factor

IL-6:

Interleukin-6

IGF2:

Insulin-like growth factor 2

ECM:

Extracellular matrix

RBE:

Repeated bout effect

E-C:

Excitation contraction

NGF:

Nerve growth factor

GDNF:

Glial cell line-derived neurotrophic factor

PLA2 :

Phospholipase A2

FFA:

Free fatty acids

EPA:

Eicosapentaenoic acid

DHA:

Docosahexaenoic acid

CMJ:

Countermovement jump

RSI:

Reactive strength index

BCAA:

Branched chain amino acids

CMJ:

Counter movement jump

AST:

Aspartate aminotransferase

ALT:

Alanine aminotransferase

1-RM:

One-repetition-maximum

MDA:

Malondialdehyde

PC:

Protein carbonyls

MSM:

Methylsulfonylmethane

RONS:

Reactive oxygen and nitrogen species

MVC:

Maximal voluntary contraction

PNS:

Polar-nonpolar-sandwich

VAS:

Visual analogic scale

TBARS:

Thiobarbituric acid reactive substances

References

  • Abbey EL, Rankin JW (2011) Effect of quercetin supplementation on repeated-sprint performance, xanthine oxidase activity, and inflammation. Int J Sport Nutr Exerc Metab 21:91–96

    CAS  PubMed  Google Scholar 

  • Abbott W, Brashill C, Brett A, Clifford T (2019a) Tart cherry juice: no effect on muscle function loss or muscle soreness in professional soccer players after a match. Int J Sports Phys Perform 1–6

  • Abbott W, Brett A, Cockburn E, Clifford T (2019b) Presleep casein protein ingestion: acceleration of functional recovery in professional soccer players. Int J Sports Physiol Perform 14:385–391

    PubMed  Google Scholar 

  • Amalraj A, Jude S, Varma K, Jacob J, Gopi S, Oluwafemi OS, Thomas S (2017) Preparation of a novel bioavailable curcuminoid formulation (CureitTM) using polar-nonpolar-sandwich (PNS) technology and its characterization and applications. Mater Sci Eng C Mater Bio Appl 75:359–367

    CAS  Google Scholar 

  • Amalraj A, Divya C, Gopi S (2020) The effects of bioavailable curcumin (Cureit) on delyaed-onset muscle soreness induced by eccentric continuous exercise: a randomized, placebo-controlled, double-blind clinical study. J Med Food 23(5):545–553. https://doi.org/10.1089/jmf.2019.4533

    Article  CAS  PubMed  Google Scholar 

  • Ammar A, Turki M, Chtourou H, Hammaouda O, Trabelsi K, Kallel C, Abdelkarim O, Hoekelmann A, Bouaziz M, Ayadi F, Driss T, Souissi N (2016) Pomegranate supplementation accelerates recovery of muscle damage and soreness and inflammatory markers after a weightlifting training session. PLoS ONE 11:e0160305

    PubMed  PubMed Central  Google Scholar 

  • Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB (2007) Bioavailability of curcumin: problems and promises. Mol Pharm 4:807–818

    CAS  PubMed  Google Scholar 

  • Arazi H, Taati B, Suzuki K (2018) A review of the effects of leucine metabolite (β-hydroxy β-methylbutyrate) supplementation and resistance training on inflammatory markers: a new approach to oxidative stress and cardiovascular risk factors. Antioxidants (Basel) 7(10):148

    Google Scholar 

  • Arazi H, Hosseini Z, Asadi A, Ramirez-Campillo R, Suzuki K (2019) β-Hydroxy β-methylbutyrate-free acid attenuates oxidative stress induced by a single bout of plyometric exercise. Front Physiol 10:776

    PubMed  PubMed Central  Google Scholar 

  • Arent SM, Senso M, Golem DL, McKeever KH (2010) The effect of theaflavin-enriched black tea extract on muscle soreness, oxidative stress, inflammation, and endocrine responses to acute anaerobic interval training: a randomized, double-blind, crossover study. J Int Soc Sports Nutr 7:11

    PubMed  PubMed Central  Google Scholar 

  • Armstrong RB (1984) Mechanisms of exercise-induced delayed onset muscular soreness: a brief review. Med Sci Sports Exerc 16:529–538

    CAS  PubMed  Google Scholar 

  • Asadi A, Arazi H, Suzuki K (2017) Effects of β-hydroxy β-methylbutyrate-free acid supplementation on strength, power and hormonal adaptations following resistance training. Nutrients 9(12):1316

    PubMed Central  Google Scholar 

  • Asai A, Miyazawa T (2000) Occurrence of orally administered curcuminoid as glucuronide and glucuronide/sulphate conjugates in rat plasma. Life Sci 67:2785–2793

    CAS  PubMed  Google Scholar 

  • Askari G, Ghiasvand R, Karimian J, Feizi A, Paknahad Z, Sharifirad G, Hajishafiei M (2012) Does quercetin and vitamin C improve exercise performance, muscle damage, and body composition in male athletes? J Res Med Sci 17:328–331

    PubMed  PubMed Central  Google Scholar 

  • Bach HV, Kim J, Myung SK, Cho YA (2016) Efficacy of ginseng supplements on fatigue and physical performance: a meta-analysis. J Korean Med Sci 31:1879–1886

    PubMed  PubMed Central  Google Scholar 

  • Baratloo A, Rouhipour A, Forouzanfar MM, Safari S, Amiri M, Negida A (2016) The role of caffeine in pain management: a brief review. Anesth Pain Med 6:e33193

    PubMed  PubMed Central  Google Scholar 

  • Barbosa CV, Silva AS, de Oliveira CV, Massa NM, de Sousa YR, da Costa WK, Silva AC, Delatorre P, Carvalho R, Braga VA, Magnani M (2017) Effects of Sesame (Sesamum indicum L.) supplementation on creatine kinase, lactate dehydrogenase, oxidative stress markers, and aerobic capacity in semi-professional soccer players. Front Physiol 8:196

    PubMed  PubMed Central  Google Scholar 

  • Barker T, Henriksen VT, Martins TB, Hill HR, Kjeldsberg CR, Scheneider ED, Dixon BM, Weaver LK (2013a) Higher serum 25-hydroxyvitamin D concentrations associate with a faster recovery of skeletal muscle strength after muscular injury. Nutrients 5:1253–1275

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barker T, Scheneider ED, Dixon BM, Henriksen VT, Weaver LK (2013b) Supplemental vitamin D enhances the recovery in peak isometric force shortly after intense exercise. Nutr Metab 10:69

    Google Scholar 

  • Barmaki S, Bohlooli S, Khoshkhahesh F, Nakhostin-Roohi B (2012) Effect of methylsulfonylmethane supplementation on exercise-induced muscle damage and total antioxidant capacity. J Sports med Phys Fitness 52:170–174

    CAS  PubMed  Google Scholar 

  • Basham SA, Waldman HS, Krings BM, Lamberth J, Smith JW, McAllister MJ (2019) Effect of curcumin supplementation on exercise-induced oxidative stress, inflammation, muscle damage, and muscle soreness. J Diet Suppl 26:1–14

    Google Scholar 

  • Bassit RA, Curi R, Costa Rosa LF (2008) Creatine supplementation reduces plasma levels of pro-inflammatory citokines and PGE2 after a hal-ironman competition. Amino Acids 35:425–431

    CAS  PubMed  Google Scholar 

  • Bassit RA, Pinheiro CH, Vitzel KF, Sproesser AJ, Silveira LR, Curi R (2010) Effect of short-term creatine supplementation on markers of skeletal muscle damage after strenous contractile activity. Eur J Appl Physiol 108:945–955

    CAS  PubMed  Google Scholar 

  • Baumert P, Lake MJ, Stewart CE, Drust B, Erskine RM (2016) Genetic variation and exercise-induced muscle damage: implications for athletic performance, injury and ageing. Eur J Appl Physiol 116:1595–1625

    PubMed  PubMed Central  Google Scholar 

  • Bazzucchi I, Patrizio F, Ceci R, Duranti G, Sgrò P, Sabatini S, Di Luigi L, Sacchetti M, Felici F (2019) The effects of quercetin supplementation on eccentric exercise-induced muscle damage. Nutrients 11(1):205

    CAS  PubMed Central  Google Scholar 

  • Beals K, Allison KF, Darnell M, Lovalekar M, Baker R, Nieman DC, Vodovotz Y, Lephart SM (2017) The effects of a tart cherry beverage on reducing exercise-induced muscle soreness. Isokinetics and Exercise Science 25:53–63

    Google Scholar 

  • Beaton LJ, Tarnopolsky MA, Phillips SM (2002) Contraction-induced muscle damage in humans following calcium channel blocker administration. J Physiol 544:849–859

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beck TW, Housh TJ, Johnson GO, Schimidt RJ, Housh DJ, Coburn JW, Malek MH, Mielke M (2007) Effect of a protease supplement on eccentric exercise-induced markers of delayed-onset muscle soreness and muscle damage. J Strength Cond Res 21:661–667

    PubMed  Google Scholar 

  • Beelen M, Burke LM, Gibala MJ, van Loon LJC (2010) Nutritional strategies to promote postexercise recovery. Int J Sport Nutr Exerc Metab 20:515–532

    CAS  PubMed  Google Scholar 

  • Belcastro AN (1993) Skeletal muscle calcium-activated neutral protease (calpain) with exercise. J Appl Physiol 74:1381–1386

    CAS  PubMed  Google Scholar 

  • Belcastro AN, Shewchuk LD, Raj DA (1998) Exercise-induced muscle injury: a calpain hypothesis. Mol Cell Biochem 179:135–145

    CAS  PubMed  Google Scholar 

  • Bell PG, McHugh MP, Stevenson E, Howatson G (2014a) The role of cherries in exercise and health. Scand J Med Sci Sports 24:477–490

    CAS  PubMed  Google Scholar 

  • Bell PG, Walshe IH, Davison GW, Stevenson E, Howatson G (2014b) Montmorency cherries reduce the oxidative stress and inflammatory responses to repeated days high-intensity stochastic cycling. Nutrients 6:829–843

    PubMed  PubMed Central  Google Scholar 

  • Bell PG, Walshe IH, Davison GW, Stevenson EJ, Howatson G (2015) Recovery facilitation with montmorency cherries following high-intensity, metabolically challenging exercise. Appl Physiol Nutr Metab 40:414–423

    PubMed  Google Scholar 

  • Bell PG, Stevenson E, Davison GW, Howatson G (2016) The effects of Montmorency tart cherry concentrate supplementation on recovery following prolonged, intermittent exercise. Nutrients 8(7):441

    PubMed Central  Google Scholar 

  • Black CD, O’Connor PJ (2010) Acute effects of dietary ginger on muscle pain induced by eccentric exercise. Phytother Res 24:1620–1626

    PubMed  Google Scholar 

  • Black CD, Oconnor PJ (2008) Acute effects of dietary ginger on quadriceps muscle pain during moderate-intensity cycling exercise. Int J Sport Nutr Exerc Metab 18:653–664

    CAS  PubMed  Google Scholar 

  • Black CD, Herring MP, Hurley DJ, O’Connor PJ (2010) Ginger (Zingiber officinale) reduces muscle pain caused by eccentric exercise. J Pain 11:894–903

    PubMed  Google Scholar 

  • Black KE, Witard OC, Baker D, Healey P, Lewis V, Tavares F, Christensen S, Pease T, Smith B (2018) Adding omega-3 fatty acids to a protein-based supplement during pre-season training results in reduced muscle soreness and the better maintenance of explosive power in professional Rugby Union players. Eur J Sport Sci 18:1357–1367

    PubMed  Google Scholar 

  • Blacker SD, Williams NC, Fallowfield JL, Bilzon JLJ, Willems ME (2010) Carbohydrate vs protein supplementation for recovery of neuromuscular function following prolonged moad carriage. J Int Soc Sports Nutr 7:2

    PubMed  PubMed Central  Google Scholar 

  • Bloomer RJ, Fry A, Schilling B, Chiu L, Hori N, Weiss L (2005) Astaxanthin supplementation does not attenuate muscle injury following eccentric exercise in resistance-trained men. Int J Sport Nutr Exerc Metab 15:401–412

    CAS  PubMed  Google Scholar 

  • Bloomer RJ, Larson DE, Fisher-Wellman KH, Galpin AJ, Schilling BK (2009) Effect of eicosapentaenoic and docosahexaenoic acid on resting and exercise-induced inflammatory and oxidative stress biomarkers: a randomized, placebo controlled, cross-over study. Lipids Health Dis 8:36

    PubMed  PubMed Central  Google Scholar 

  • Bohlooli S, Barmaki S, Khoshkhahesh F, Nakhostin-Roohi B (2015) The effect of spinach supplementation on exercise-induced oxidative stress. J Sports Med Phys Fitness 55:609–614

    CAS  PubMed  Google Scholar 

  • Bongiovanni T, Pasta G, Tarantino G (2019) Sucrosomial® iron and folic acid supplementation is able to induce IL-6 levels variation in healthy trained professional athletes, regardless of the hemoglobin and iron values. Sci Sport 34:165–172

    Google Scholar 

  • Borsa PA, Kaiser KL, Martin JS (2013) Oral consumption of electrokinetically modified water attenuates muscle damage and improves postexercise recovery. J Appl Physiol 114:1736–1742

    CAS  PubMed  Google Scholar 

  • Bowtell JL, Summers DP, Dyer A, Fox P, Mileva KN (2011) Montmorency cherry juice reduces muscle damage caused by intensive strength exercise. Med Sci Sports Exerc 43:1544–1551

    CAS  PubMed  Google Scholar 

  • Brown MA, Stevenson EJ, Howatson G (2018) Whey protein hydrolysate supplementation accelerates recovery from exercise-induced muscle damage in females. Appl Physiol Nutr Metab 43:324–330

    CAS  PubMed  Google Scholar 

  • Brown MA, Stevenson EJ, Howatson G (2019) Montmorency tart cherry (Prunus cerasus L.) supplementation accelerates recovery from exercise-induced muscle damage in females. Eur J Sport Sci 19:95–102

    PubMed  Google Scholar 

  • Buchwald-Werner S, Naka I, Wilhelm M, Schütz E, Schoen C, Reule C (2018) Effects of lemon verbena extract (Recoverben®) supplementation on muscle strength and recovery after exhaustive exercise: a randomized, placebo-controlled trial. J Int Soc Sports Nutr 15:5

    PubMed  PubMed Central  Google Scholar 

  • Buckley JD, Thomson RL, Coates AM, Howe PR, DeNichilo MO, Rowney MK (2010) Supplementation with a whey protein hydrolysate enhances recovery of muscle force-generating capacity following eccentric exercise. J Sci Med Sport 13:178–181

    PubMed  Google Scholar 

  • Buford TW, Cooke MB, Redd LL, Hudson GM, Shelmadine BD, Willoughby DS (2009) Protease supplementation improves muscle function after eccentric exercise. Med Sci Sports Exerc 41:1908–1914

    CAS  PubMed  Google Scholar 

  • Burke LM (2008) Caffeine and sports performance. Appl Phys Nutr Metab 33:1319–1334

    CAS  Google Scholar 

  • Byrne C, Twist C, Eston R (2004) Neuromuscular function after exercise-induced muscle damage: theoretical and applied implications. Sports Med 34:49–69

    PubMed  Google Scholar 

  • Caldwell AR, Tucker MA, Butts CL, McDermott BP, Vingren JL, Kunces LJ, Lee EC, Munoz CX, Williamson KH, Armstrong LE, Ganio MS (2017) Effect of caffeine on perceived soreness and functionality following an endurance cycling event. J Strength Cond Res 31:638–643

    PubMed  Google Scholar 

  • Caldwell LK, DuPont WH, Beeler MK, Post EM, Barnhart EC, Hardesty VH, Anders JP, Borden EC, Volek JS, Kraemer WJ (2018) The effects of a Korean Ginseng, GINST15, on perceptual effort, psychomotor performance, and physical performance in men and women. J Sports Sci Med 17:92–100

    PubMed  PubMed Central  Google Scholar 

  • Candia-Luján R, De Paz Fernández JA, Costa Moreira O (2014) Are antioxidant supplements effective in reducing delayed onset muscle soreness? A systematic review. Nutr Hosp 31:32–45

    PubMed  Google Scholar 

  • Carvalho-Peixoto J, Moura MR, Cunha FA, Lollo PC, Monteiro WD, Carvalho LM, Farinatti Pde T (2015) Consumption of açai (Euterpe oleracea Mart.) functional beverage reduces muscle stress and improve effort tolerance in elite athletes: a randomized controlled intervention study. Appl Physiol Nutr Metab 40:725–733

    CAS  PubMed  Google Scholar 

  • Castell JV, Friedrich G, Kuhn CS, Poppe GE (1997) Intestinal absorption of undegraded proteins in men: presence of bromelain in plasma after oral intake. Am J Physiol 273:G139–G146

    CAS  PubMed  Google Scholar 

  • Chappell AJ, Allwood DM, Johns R, Brown S, Sultana K, Anand A, Simper T (2018) Citrulline malate supplementation does not improve german volume training performance or reduce muscle soreness in moderately trained males and females. J Int Soc Sports Nutr 15:42

    PubMed  PubMed Central  Google Scholar 

  • Charoenngam N, Shirvani A, Holick MF (2019) Vitamin D for skeletal and non-skeletal health: what we should know. J Clin Orthop Trauma 10:1082–1093

    PubMed  PubMed Central  Google Scholar 

  • Cheikh M, Makhlouf K, Ghattassi K, Graja A, Ferchichi S, Kallel C, Houda M, Souissi N, Hammouda O (2020) Melatonin ingestion after exhaustive late-evening exercise attenuate muscle damage, oxidative stress, and inflammation during intense short term effort in the following day in teenage athletes. Chronobiol Int 37:236–247

    CAS  PubMed  Google Scholar 

  • Chen TC, Chen HL, Pearce AJ, Nosaka K (2012) Attenuation of eccentric exercise-induced muscle damage by preconditioning exercises. Med Sci Sports Exerc 44:2090–2098

    PubMed  Google Scholar 

  • Chen HY, Chen YC, Tung K, Chao HH, Wang HS (2019) Effects of caffeine and sex on muscle performance and delayed-onset muscle soreness after exercise-induced muscle damage: a double-blind randomized trial. J Appl Physiol 27:798–805

    Google Scholar 

  • Childs A, Jacobs C, Kaminski T, Halliwell B, Leeuwenburgh C (2001) Supplementation with vitamin C and N-acetyl-cysteine increases oxidative stress in humans after an acute muscle injury induced by eccentric exercise. Free Radic Biol Med 31:745–753

    CAS  PubMed  Google Scholar 

  • Clifford T, Howatson G, West DJ, Stevenson EJ (2015) The potential benefits of red beetroot supplementation in health and disease. Nutrients 7:2801–2822

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clifford T, Bell O, West DJ, Howatson G, Stevenson EJ (2016a) The effects of beetroot juice supplementation on indices of muscle damage following eccentric exercise. Eur J Appl Physiol 116:353–362

    CAS  PubMed  Google Scholar 

  • Clifford T, Berntzen B, Davison GW, West DJ, Howatson G, Stevenson EJ (2016b) Effects of beetroot juice on recovery of muscle function and performance between bouts of repeated sprint exercise. Nutrients 8(8):506

    PubMed Central  Google Scholar 

  • Clifford T, Allerton DM, Brown MA, Harper L, Horsburgh S, Keane KM, Stevenson EJ, Howatson G (2017a) Minimal muscle damage after a marathon and no influence of beetroot juice on inflammation and recovery. Appl Physiol Nutr Metab 42:263–270

    CAS  PubMed  Google Scholar 

  • Clifford T, Bell O, West DJ, Howatson G, Stevenson EJ (2017b) Antioxidant-rich beetroot juice does not adversely affect acute neuromuscular adaptation following eccentric exercise. J Sports Sci 35:812–819

    PubMed  Google Scholar 

  • Clifford T, Constantinou CM, Keane KM, West DJ, Howatson G, Stevenson EJ (2017c) The plasma bioavailability of nitrate and betain from beta vulgaris rubra in humans. Eur J Nutr 56:1245–1254

    CAS  PubMed  Google Scholar 

  • Clifford T, Ventress M, Allerton DM, Stansfield S, Tang JCY, Fraser WD, Vahnoecke B, Prawitt J, Stevenson E (2019) The effects of collagen peptides on muscle damage, inflammation and bone turnover following exercise: a randomized, controlled trial. Amino Acids 51:691–704

    CAS  PubMed  Google Scholar 

  • Close LC, Kasper AM, Morton JP (2019) From paper to podium: quantifying the translational potential of performance nutrition research. Sports Med 49:25–37

    PubMed  PubMed Central  Google Scholar 

  • Cobley JN, Close GL, Bailey DM, Davison GW (2017) Exercise redox biochemistry: conceptual, methodological and technical recommendations. Redox Biol 12:540–548

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cockburn E, Hayes PR, French DN, Stevenson E, Gibson ASC (2008) Acute milk-based protein–CHO supplementation attenuates exercise-induced muscle damage. Appl Physiol Nutr Metab 33:775–783

    CAS  PubMed  Google Scholar 

  • Cockburn E, Stevenson E, Hayes PR, Robson-Ansley P, Howatson G (2010) Effect of milk-based carbohydrate-protein supplement timing on the attenuation of exercise-induced muscle damage. Appl Physiol Nutr Metab 35:270–277

    CAS  PubMed  Google Scholar 

  • Cockburn E, Robson-Ansley P, Hayes PR, Stevenson E (2012) Effect of volume of milk consumed on the attenuation of exercise-induced muscle damage. Eur J Appl Physiol 112:3187–3194

    CAS  PubMed  Google Scholar 

  • Cockburn E, Bell PG, Stevenson E (2013) Effect of milk on team sport performance after exercise-induced muscle damage. Med Sci Sports Exerc 45:1585–1592

    CAS  PubMed  Google Scholar 

  • Coelho RL, Oliveira AC, Prestes J, Sérgio Denadai B (2015) Consumption of cherries as a strategy to attenuate exercise-induced muscle damage and inflammation in humans. Nutr Hosp 32:1885–1893

    Google Scholar 

  • Coelho M, Buxton S, Butcher R, Foran D, Manders R, Hunt J (2017) The effect of New Zeland blackcurrant extract on recovery following eccentric exercise induced muscle damage. Proc Nutr Soc 76(OCE2):E34

    Google Scholar 

  • Connolly DA, Lauzon C, Agnew J, Dunn M, Reed B (2006a) The effects of vitamin C supplementation on symptoms od delayed muscle soreness. J Sports Med Phys Fitness 46:462–467

    CAS  PubMed  Google Scholar 

  • Connolly DA, McHugh MP, Padilla-Zakour OI, Carlson L, Sayers SP (2006b) Efficacy of a tart cherry juice blend in preventing the symptoms of muscle damage. Br J Sports Med 40:679–683

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cooke MB, Rybalka E, Williams AD, Cribb PJ, Hayes A (2009) Creatine supplementation enhance muscle force recovery after eccentrically-induced muscle damage in healthy individuals. J Int Soc Sports Nutr 6:13

    PubMed  PubMed Central  Google Scholar 

  • Corder KE, Newsham KR, McDaniel JL, Ezekiel UR, Weiss EP (2016) Effects of short-term docosahexaenoic acid supplementation on markers of inflammation after eccentric strength exercise in women. J Sports Sci Med 15:176–183

    PubMed  PubMed Central  Google Scholar 

  • da Silva LA, Tromm CB, Bom KF, Mariano I, Pozzi B, da Rosa GL, Tuon T, da Luz G, Vuolo F, Petronilho F, Cassiano W, De Souza CT, Pinho RA (2014) Effects of taurine supplementation following eccentric exercise in young adults. Appl Physiol Nutr Metab 39:101–104

    PubMed  Google Scholar 

  • da Silva DK, Jacinto JL, de Andrade WB, Roveratti MC, Estoche JM, Balvedi MCW, de Oliveira DB, da Silva RA, Aguiar AF (2017) Citrulline malate does not improve muscle recovery after resistance exercise in untrained young adult men. Nutrients 9(10):1132

    PubMed Central  Google Scholar 

  • da Silva W, Machado AS, Souza MA, Mello-Carpes PB, Carpes FP (2018) Effect of green tea extract supplementation on exercise-induced delayed onset muscle soreness and muscular damage. Physiol Behav 194:77–82

    PubMed  Google Scholar 

  • Daab W, Bouzid MA, Lajri M, Bouchiba M, Saafi MA, Rebai H (2020) Chronic beetroot juice supplementation accelerates recovery kinetics following simulated match play in soccer players. J Am Coll Nutr 3:1–9

    Google Scholar 

  • Dalla Corte CL, de Carvalho NR, Amaral GP, Puntel GO, Silva LF, Retamoso LT, Royes LF, Bresciani GB, da Cruz IB, Rocha JB, Barrio Lera JP, Soares FA (2013) Antioxidant effect of organic purple grape juice on exhaustive exercise. Appl Physiol Nutr Metab 38:558–565

    CAS  PubMed  Google Scholar 

  • Damas F, Nosaka K, Libardi CA, Chen TC, Ugrinowitsch C (2016) Susceptibility to exercise-induced muscle damage: a cluster analysis with a large sample. Int J Sports Med 37:633–640

    CAS  PubMed  Google Scholar 

  • Danesi F, Ferguson LR (2017) Could pomegranate juice help in the control of inflammatory diseases? Nutrients 9(9):958

    PubMed Central  Google Scholar 

  • Dannecker EA, Liu Y, Rector RS, Thomas TR, Sayers SP, Leeuwenburgh C, Ray BK (2013) The effect of fasting on indicators of muscle damage. Exp Gerontol 48:1101–1106

    CAS  PubMed  Google Scholar 

  • De Carvalho FG, Galan BSM, Santos PC, Pritchett K, Pfrimer K, Ferrioli E, Papoti M, Marchini JS, de Freitas EC (2017) Taurine: a potential ergogenic aid for preventing muscle damage and protein catabolism and decreasing oxidative stress produced by endurance exercise. Front Physiol 8:710

    PubMed  PubMed Central  Google Scholar 

  • De Luca A, Pierno S, Camerino DC (2015) Taurine: the appeal of a safe amino acid for skeletal muscle disorders. J Transl Med 13:243

    PubMed  PubMed Central  Google Scholar 

  • Delecroix B, Abaïdia AE, Leduc C, Dawson B, Dupont G (2017) Curcumin and piperine supplementation and recovery following exercise induced muscle damage: a randomized controlled trial. J Sports Sci Med 16:147–153

    PubMed  PubMed Central  Google Scholar 

  • Deminice R, Jordao AA (2012) Creatine supplementation reduces oxidative stress biomarkers after acute exercise in rats. Amino Acids 43:709–715

    CAS  PubMed  Google Scholar 

  • Deminice R, Rosa FT, Franco GS, Jordao AA, de Freitas EC (2013) Effects of creatine supplementation on oxidative stress and inflammatory markers after repeated-sprint exercise in humans. Nutrition 29:1127–1132

    CAS  PubMed  Google Scholar 

  • Deyhle MR, Gier AM, Evans KC, Eggett DL, Nelson WB, Parcell AC, Hyldahl RD (2015) Skeletal muscle inflammation following repeated bouts of lengthening contractions in humans. Front Physiol 6:424

    PubMed  Google Scholar 

  • DiLorenzo FM, Drager CJ, Rankin JW (2014) Docosahexaenoic acid affects markers of inflammation and muscle damage after eccentric exercise. J Strength Cond Res 28:2768–2774

    PubMed  Google Scholar 

  • Dimitriou L, Hill A, Jehnali A, Dunbar J, Brouner J, McHugh MP, Howatson G (2015) Influence of a montmorency cherry juice blend on indices of exercise-induced stress and upper respiratory tract symptoms following marathon running—a pilot investigation. J Int Soc Sports Nutr 12:22

    PubMed  PubMed Central  Google Scholar 

  • Djordjevic B, Baralic I, Kotur-Stevuljevic SA, Ivanisevic J, Radivojevic N, Andjelkovic M, Dikic N (2012) Effect of astaxanthin supplementation on muscle damage and oxidative stress markers in elite young soccer players. J Sports Med Phys Fitness 52:382–392

    CAS  PubMed  Google Scholar 

  • Drobnic F, Riera J, Appendino G, Togni S, Franceschi F, Valle X, Pons A, Tur J (2014) Reduction of delayed onset muscle soreness by a novel curcumin delivery system (Meriva®): a randomised, placebo-controlled trial. J Int Soc Sports Nutr 11:31

    PubMed  PubMed Central  Google Scholar 

  • Dunsmore KE, Chen PG, Wong HR (2001) Curcumin, a medicinal herbal compound capable of inducing the heat shock response. Crit Care Med 29:2199–2204

    CAS  PubMed  Google Scholar 

  • Ebbeling CB, Clarkson PM (1989) Exercise-induced muscle damage and adaptation. Sports Med 7:207–234

    CAS  PubMed  Google Scholar 

  • Eddens L, Browne S, Stevenson EJ, Sanderson B, van Someren K, Howatson G (2017) The efficacy of protein supplementation during recovery from muscle-damaging concurrent exercise. Appl Physiol Nutr Metab 42:716–724

    CAS  PubMed  Google Scholar 

  • Fedewa MV, Spencer SO, Williams TD, Becker ZE, Fuqua CA (2019) Effect of branched-chain amino acid supplementation on muscle soreness following exercise: a meta-analysis. Int J Vitam Nutr Res 89:348–356

    CAS  PubMed  Google Scholar 

  • Fernández-Landa J, Calleja-González J, León-Guereño P, Caballero-Garcìa A, Córdova A, Mielgo-Ayuso J (2019) Effect of combination of creatine monohydrate plus HMB supplementation in sports performance, body composition, markers of muscle damage and hormone status: a systematic review. Nutrients 11(10):2528

    PubMed Central  Google Scholar 

  • Fernández-Landa J, Fernández-Lazaro D, Calleja-González J, Caballero-García CA, León-Guereño P, Mielgo-Ayuso J (2020) Long-term effect of combination of creatine monohydrate plus β-hydroxy β-methylbutyrate (HMB) on exercise-induced muscle damage. Biomolecules 10(1):140

    PubMed Central  Google Scholar 

  • Fernández-Landa J, Fernández-Lázaro D, Calleja-González J, Caballero-Garcìa A, Córdova A, León-Guereño P, Mielgo-Ayuso J (2020) Long-term effect of combination of creatine monohydrate plus β-hydroxy β-methylbutyrate (HMB) on exercise-induced muscle damage and anabolic/catabolic hormones in elite male endurance athletes. Biomolecules 10:140

    PubMed Central  Google Scholar 

  • Fernández-Lázaro D, Mielgo-Ayuso J, Seco Calvo J, Córdova Martínez A, Caballero García A, Fernandex-Lazaro CI (2020) Modulation of exercise-induced muscle damage, inflammation, and oxidative markers by curcumin supplementation in a physically active population: a systematic review. Nutrients 12(2):501

    PubMed Central  Google Scholar 

  • Fitschen PJ, Wilson GJ, Wilson JM, Wilund KR (2013) Efficacy of β-hydroxy β-methylbutyrate supplementation in elderly and clinical populations. Nutrition 29:29–36

    CAS  PubMed  Google Scholar 

  • Fouré A, Bendahan D (2017) Is branched-chain amino acids supplementation an efficient nutritional strategy to alleviate skeletal muscle damage? A systematic review. Nutrients 9(10):1047

    PubMed Central  Google Scholar 

  • Francavilla VC, Bongiovanni T, Todaro L, Di Pietro V, Francavilla G (2017) Probiotic supplements and athletic performance: a review of the literature. Med Sport 70:247–259

    Google Scholar 

  • Gabrial SGN, Shakib MR, Gabrial GN (2018) Protective role of vitamin C intake on muscle damage in male adolescents performing strenuous physical activity. Open Access J Med Sci 6:1594–1598

    Google Scholar 

  • Gaffey A, Slater H, Porritt K, Campbell JM (2017) The effects of curcuminoids on musculoskeletal pain: a systematic review. JBI Database System Rev Implement Rep 15:486–516

    PubMed  Google Scholar 

  • Gepner Y, Hoffman JR, Shemesh E, Stout JR, Church DD, Varanoske AN, Zelicha H, Shelef I, Chen Y, Frankel H, Ostfeld I (2017) Combined effect of Bacillus coagulans GBI-30, 6086 and HMB supplementation on muscle integrity and cytokine response during intense military training. J Appl Physiol 123:11–18

    CAS  PubMed  Google Scholar 

  • Giamberardino MA, Dragani L, Valente R, Di Lisa F, Saggini R, Vecchiet L (1996) Effects of prolonged l-carnitine administration on delayed muscle pain and CK release after eccentric effort. Int J Sports Med 17:320–324

    CAS  PubMed  Google Scholar 

  • Gilchrist M, Winyard PG, Aizawa K, Anning C, Shore A, Benjamin N (2013) Effect of dietary nitrate on blood pressure, endothelial function, and insulin sensitivity in type 2 diabetes. Free Radic Bio Med 60:89–97

    CAS  Google Scholar 

  • Gissel H (2005) The role of Ca2+ in muscle cell damage. Ann NY Acad Sci 1066:166–180

    CAS  PubMed  Google Scholar 

  • Gleeson M, Bishop NC, Oliveira M, Tauler P (2011) Daily probiotic’s (Lactobacillus casei Shirota) reduction of infection incidence in athletes. Int J Sport Nutr Exerc Metab 21:55–64

    PubMed  Google Scholar 

  • Golbidi S, Daiber A, Korac B, Li H, Essop MF, Laher I (2017) Health benefits of fasting and caloric restriction. Curr Diab Rep 17:123

    PubMed  Google Scholar 

  • Gonzalez AM, Stout JR, Jajtner AR, Townsend JR, Wells AJ, Beyer KS, Boone CH, Pruna GJ, Mangine GT, Scanlon TM, Bohner JD, Oliveira LP, Fragala MS (2014) Effects of β-hydroxy β-methylbutyrate free acid and cold water immersion on post-exercise markers of muscle damage. Amino Acids 46:1501–1511

    CAS  PubMed  Google Scholar 

  • Göring H (2018) Vitamin D in nature: a product of synthesis and/or degradation of cell membrane components. Biochemistry (Mosc) 83:1350–1357

    Google Scholar 

  • Gray P, Chappell A, Jenkinson AM, Thies F, Gray SR (2014) Fish oil supplementation reduces markers of oxidative stress but not muscle soreness after eccentric exercise. Int J Sport Nutr Exerc Metab 24:206–214

    CAS  PubMed  Google Scholar 

  • Harms-Ringdahl M, Jenssen D, Haghdoost S (2012) Tomato juice intake suppressed serum concentration of 8-oxodG after extensive physical activity. Nutr J 11:29

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harty PS, Cottet ML, Malloy JK, Kerksick CM (2019) Nutritional and supplementation strategies to prevent and attenuate exercise-induced muscle damage: a brief review. Sports Med Open 5:1

    PubMed  PubMed Central  Google Scholar 

  • Hawley JA, Burke LM, Phillips SM, Spriet LL (2011) Nutritional modulation of training-induced skeletal muscle adaptations. J Appl Physiol 110:834–845

    CAS  PubMed  Google Scholar 

  • Heaton LE, Davis JK, Rawson ES, Nuccio RP, Witard OC, Stein KW, Baar K, Carter JM, Baker LB (2017) Selected in-season nutritional strategies to enhance recovery for team sport athletes: a practical overview. Sports Med 47:2201–2218

    PubMed  PubMed Central  Google Scholar 

  • Hennigar SR, McClung JP, Pasiakos SM (2017) Nutritional interventions and the IL-6 response to exercise. FASEB J 31:3719–3728

    CAS  PubMed  Google Scholar 

  • Herrlinger KA, Chirouzes DM, Ceddia MA (2015) Supplementation with a polyphenolic blend improves post-exercise strength recovery and muscle soreness. Food Nutr Res 59:30034

    PubMed  Google Scholar 

  • Hody S, Croisier JL, Bury T, Rogister B, Leprince P (2019) Eccentric muscle contractions: risks and benefits. Front Physiol 10:536

    PubMed  PubMed Central  Google Scholar 

  • Hoffman JR, Cooper J, Wendell M, Im J, Kang J (2004) Effect of β-hydroxy β-methylbutyrate on power performance and indices of muscle damage and stress during high-intensity training. J Strength Cond Res 18:747–752

    PubMed  Google Scholar 

  • Hoffman JR, Gepner Y, Stout JR, Hoffman MW, Ben-Dov D, Funk S, Daimont I, Jajtner AR, Townsend JR, Church DD, Shelef I, Rosen P, Avital G, Chen Y, Frankel H, Ostfeld I (2016) β-Hydroxy β-methylbutyrate attenuates cytokine response during sustained military training. Nutr Res 36:553–563

    CAS  PubMed  Google Scholar 

  • Hoseinzadeh K, Daryanoosh F, Baghdasar PJ, Alizadeh H (2015) Acute effects of ginger extract on biochemical and functional symptoms of delayed onset muscle soreness. Med J Islam Repub Iran 29:261

    PubMed  PubMed Central  Google Scholar 

  • Houghton D, Onambele GL (2012) Can a standard dose of eicosapentaenoic acid (EPA) supplementation reduce the symptoms of delayed onset of muscle soreness? J Int Soc Sports Nutr 9:2

    CAS  PubMed  PubMed Central  Google Scholar 

  • Howatson G, van Someren KA (2007a) Evidence of a contralateral repeated bout effect after maximal eccentric contractions. Eur J Appl Physiol 101:207–214

    CAS  PubMed  Google Scholar 

  • Howatson G, van Someren KA (2007b) Evidence of a controlateral repeated bout effect after maximal eccentric contractions. Eur J Appl Physiol 101:207–214

    CAS  PubMed  Google Scholar 

  • Howatson G, van Someren KA (2008) The prevention and treatment of exercise-induced muscle damage. Sports Med 38:483–503

    PubMed  Google Scholar 

  • Howatson G, McHugh MP, Hill JA, Brouner J, Jewell AP, van Someren KA, Shave RE, Howatson SA (2010) Influence of tart cherry juice on indices of recovery following marathon running. Scand J Med Sci Sports 20:843–852

    CAS  PubMed  Google Scholar 

  • Howatson G, Hoad M, Goodall S, Tallent J, Bell PG, French DN (2012) Exercise-induced muscle damage is reduced in resistance-trained males by branched chain amino acids: a randomized, double-blind, placebo controlled study. J Int Soc Sports Nutr 9:20

    CAS  PubMed  PubMed Central  Google Scholar 

  • Howatson G, van Someren KA, Leeder JDC (2016) BASES Expert Statement on Athletic Recovery Strategies. Sport Exer Sci 48, Summer 2016

  • Hsu CC, Ho MC, Lin LC, Su B, Hsu MC (2005) American ginseng supplementation attenuates creatine kinase level induced by submaximal exercise in human beings. World J Gastroenterol 11:5327–5331

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hurley CF, Hatfield DL, Riebe DA (2013) The effect of caffeine ingestion on delayed muscle soreness. J Strength Cond Res 27:3101–3109

    PubMed  Google Scholar 

  • Hurst RD, Wells RW, Hurst SM, McGhie TK, Cooney JM, Jensen DW (2010) Blueberry fruit polyphenolics suppress oxidative stress induced skeletal muscle cell damage in vitro. Mol Nutr Food Res 54:353–363

    CAS  PubMed  Google Scholar 

  • Hutchison AT, Flieller EB, Dillon KJ, Leverett BD (2016) Black currant nectar reduces muscle damage and inflammation following a bout of high-intensity eccentric contractions. J Diet Suppl 13:1–15

    PubMed  Google Scholar 

  • Hyldahl RD, Hubal MJ (2014) Lengthening our perspective: morphological, cellular, and molecular responses to eccentric exercise. Muscle Nerve 49:155–170

    PubMed  Google Scholar 

  • Hyldahl RD, Nelson B, Xin L, Welling T, Groscost L, Hubal MJ, Chipkin S, Clarkson PM, Parcell AC (2015) Extracellular matrix remodeling and its contribution to protective adaptation following lengthening contractions in human muscle. FASEB J 29:2894–2904

    CAS  PubMed  Google Scholar 

  • Jackson MJ, Jones DA, Edwards RH (1984) Experimental skeletal muscle damage: the nature of the calcium-activated degenerative processes. Eur J Clin Invest 14:369–374

    CAS  PubMed  Google Scholar 

  • Jacob K, Periago MJ, Böhm V, Berruezo GR (2008) Influence of lycopene and vitamin C from tomato juice on biomarkers of oxidative stress and inflammation. Br J Nutr 99:137–146

    CAS  PubMed  Google Scholar 

  • Jäger R, Purpura M, Stone JD, Turner SM, Anzalone AJ, Eimerbrink MJ, Pane M, Amoruso A, Rowlands DS, Oliver JM (2016a) Probiotic Streptococcus thermophilus FP4 and Bifidobacterium breve BR03 supplementation attenuates performance and range-of-motion decrements following muscle damaging exercise. Nutrients 8(10):642

    PubMed Central  Google Scholar 

  • Jäger R, Shields KA, Lowery RP, De Souza EO, Partl JM, Hollmer C, Purpura M, Wilson JM (2016b) Probiotic Bacillus coagulans GBI-30, 6086 reduces exercise-induced muscle damage and increases recovery. Peer J 4:e2276

    PubMed  PubMed Central  Google Scholar 

  • Jäger R, Purpura M, Kerksick CM (2019) Eight weeks of a high dose of curcumin supplementation may attenuate performance decrements following muscle-damaging exercise. Nutrients 11(7):1692

    PubMed Central  Google Scholar 

  • Jakerman JR, Lambrick DM, Wooley B, Babraj JA, Faulkner JA (2017) Effect of an acute dose of omega-3 fish oil following exercise-induced muscle damage. Eur J Appl Physiol 117:575–582

    Google Scholar 

  • Jamurtas AZ (2018) Exercise-induced muscle damage and oxidative stress. Antioxidants (Basel) 7:E50

    Google Scholar 

  • Jamurtas AZ, Theocharis V, Tofas T, Tsiokanos A, Yfanti C, Paschalis V, Koutedakis Y, Nosaka K (2005) Comparison between leg and arm eccentric exercises of the same relative intensity on indices of muscle damage. Eur J Appl Physiol 95:179–185

    PubMed  Google Scholar 

  • Jang HJ, Lee JD, Jeon HS, Kim AR, Kim S, Lee HS, Kim KB (2018) Metabolic profiling of eccentric exercise-induced muscle damage in human urine. Toxicol Res 34:199–210

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jo E, Bartosh R, Auslander AT, Directo D, Osmond A, Wong MW (2019) Post-exercise recovery following 30-day supplementation of trans-resveratrol and polyphenol-enriched extracts. Sports (Basel) 7(10):226

    Google Scholar 

  • Jones DA, Newham DJ, Clarkson PM (1987) Skeletal muscle stiffness and pain following eccentric exercise of the elbow flexors. Pain 30:233–242

    CAS  PubMed  Google Scholar 

  • Jouris KB, McDaniel JL, Weiss EP (2011) The effect of omega-3 fatty acid supplementation on the inflammatory response to eccentric strength exercise. J Sports Sci Med 10:432–438

    PubMed  PubMed Central  Google Scholar 

  • Jude S, Amalraj A, Kunnumakkara AB, Divya C, Löffler M, Gopi S (2018) Development of validated methods and quantification of curcuminoids and curcumin metabolites and their pharmacokinetic study of oral administration of complete natural turmeric formulation (CureitTM) in human plasma via UPLC/ESI-Q-TOF-MS spectrometry. Molecules 23:2415

    PubMed Central  Google Scholar 

  • Jung HL, Kwak HE, Kim SS, Kim YC, Lee CD, Byurn HK, Kang HY (2011) Effects of Panax ginseng supplementation on muscle damage and inflammation after uphill treadmill running in humans. Am J Chin Med 39:441–450

    PubMed  Google Scholar 

  • Kandylis P, Kokkinomagoulos E (2020) Food applications and potential health benefits of pomegranate and its derivatives. Foods 9(2):122

    CAS  PubMed Central  Google Scholar 

  • Karabalaeifar S, Hefzollesan M, Behpoor N, Ghalehgir S (2013) Effect of caffeine on the amount of perceived pain, joint range of motion and edema after delayed muscle soreness. Pedag Psychol Med Biol Prob Phys Train Sports 1:96–100

    Google Scholar 

  • Kastello GM, Bretl MC, Clark ER, Delvaux CL, Hoeppner JD, McNea LP, Mesmer JA, Meyer CG, Mitchener CL, Rivera DA, Ruhl SN, Schuller KM, Steffen JL, Strauss JD (2014) The effect of cherry supplementation on exercise-induced oxidative stress. J Food Nutr Sci 1:1–6

    Google Scholar 

  • Kim J, So WY (2019) Effects of acute grape seed extract supplementation on muscle damage after eccentric exercise: a randomized, controlled clinical trial. J Exerc Sci Fit 17:77–79

    PubMed  PubMed Central  Google Scholar 

  • Kim JM, Araki S, Kim DJ, Park CB, Takasuka N, Baba-Toriyama H, Ota T, Nir Z, Khachik F, Shimidzu N, Tanaka Y, Osawa T, Urajii T, Murakoshi M, Nishino H, Tsuda H (1998) Chemopreventive effects of carotenoids and curcumins on mouse colon carcinogenesis after 1,2-dimethylhydrazine initiation. Carcinogenesis 19:81–85

    CAS  PubMed  Google Scholar 

  • Kim J, Lee J, Kim S, Yoon D, Kim J, Sung DJ (2015) Role of creatine supplementation in exercise-induced muscle damage: a mini review. J Exerc Rehabil 11:244–250

    PubMed  PubMed Central  Google Scholar 

  • Kim J, Lee KP, Beak S, Kang HR, Kim YK, Lim K (2019) Effect of black chokeberry on skeletal muscle damage and neuronal cell death. J Exerc Nutr Biochem 23:26–31

    CAS  Google Scholar 

  • Kirk B, Mitchell J, Jackson M, Amirabdollahian F, Alizadehkhaiyat O, Clifford T (2017) A2 milk enhances dynamic muscle function following repeated sprint exercise, a possibile ergogenic aid for A1-protein intolerant athletes? Nutrients 9(2):94

    PubMed Central  Google Scholar 

  • Klinkenberg LJ, Res PT, Haenen GR, Bast A, van Loon LJ, van Dieijen-Visser MP, Meex SJ (2013) Effect of antioxidant supplementation on exercise-induced cardiac troponin release in cyclists: a randomized trial. PLoS ONE 8:e79280

    PubMed  PubMed Central  Google Scholar 

  • Knitter AE, Panton L, Rathmacher JA, Petersen A, Sharp R (2000) Effect of β-hydroxy β-methylbutyrate on muscle damage after a prolonged run. J Appl Physiol 89:1340–1344

    CAS  PubMed  Google Scholar 

  • Kocaadam B, Şanlier N (2017) Curcumin, an active component of turmeric (Curcuma longa), and its effect on health. Crit Rev Food Sci Nutr 57:2889–2895

    CAS  PubMed  Google Scholar 

  • Konrad M, Nieman DC, Henson DA, Kennerly KM, Jin W-L (2011) The acute effect of ingesting a quercetin-based supplement on exercise-induced inflammation and immune changes in runners. Int J Sport Nutr Exerc Metab 21:338–346

    CAS  PubMed  Google Scholar 

  • Korge P, Byrd SK, Campbell KB (1993) Functional coupling between sarcoplasmic-reticulum-bound creatine kinase and Ca2+-ATPase. Eur J Biochem 213:973–980

    CAS  PubMed  Google Scholar 

  • Kraemer WJ, Volek JS, French DN, Rubin MR, Sharman MJ, Gómez AL, Ratamess NA, Newton RU, Jemiolo B, Craig BW, Häkkinen K (2003) The effects of l-carnitine l-tartrate supplementation on hormonal responses to resistance exercise and recovery. J Strength Cond Res 17:455–462

    PubMed  Google Scholar 

  • Kraemer WJ, Spiering BA, Volek JS, Ratamess NA, Sharman MJ, Rubin MR, French DN, Silvestre R, Hatfield DL, Van Heest JL, Vingren JL, Judelson DA, Deshenes MR, Maresh CM (2006) Androgenic responses to resistance exercise: effects of feeding and l-carnitine. Med Sci Sports Exerc 38:1288–1296

    CAS  PubMed  Google Scholar 

  • Kreider RB, Kalman DS, Antonio J, Ziegenfuss TN, Wildman R, Collins R, Candow DG, Kleiner SM, Almada AL, Lopez HL (2017) International Society of Sports Nutrition position stand: safety and efficacy of creatine supplementation in exercise, sport, and medicine. J Int Soc Sports Nutr 14:18

    PubMed  PubMed Central  Google Scholar 

  • Kuehl KS, Perrier ET, Elliot DL, Chesnutt JC (2010) Efficacy of tart cherry juice in reducing muscle pain during running: a randomized controlled trial. J Int Soc Sports Nutr 7:17

    PubMed  PubMed Central  Google Scholar 

  • Lamb KL, Ranchordas MK, Johnson E, Denning J, Downin F, Lynn A (2019a) No effect of tart cherry juice or pomegranate juice on recovery from exercise-induced muscle damage in non-resistance trained men. Nutrients 11(7):1593

    CAS  PubMed Central  Google Scholar 

  • Lamb KL, Ranchordas MK, Johnson E, Denning J, Downing F, Lynn A (2019b) No effect of tart cherry juice or pomegranate juice on recovery from exercise-induced muscle damage in non-resistance trained men. Nutrients 11(7):1593

    CAS  PubMed Central  Google Scholar 

  • Lamprecht M, Bogner S, Schippinger G, Steinbauer K, Fankhauser F, Hallstroem S, Schuetz B, Greilberg JF (2012) Probiotic supplementation affects markers of intestinal barrier, oxidation, and inflammation in trained men: a randomized, double-blinded, palcebo-controlled trial. J Int Soc Sports Nutr 9:45

    CAS  PubMed  PubMed Central  Google Scholar 

  • Larson-Meyer DE, Douglas CS, Thomas JJ, Johnson EC, Barcal JN, Heller JE, Hollis BW, Halliday TM (2019) Validation of a vitamin D specific questionnaire to determine vitamin D status in athletes. Nutrients 11:E2732

    PubMed  Google Scholar 

  • Lawler JM, Barnes WS, Wu G, Song W, Demaree S (2002) Direct antioxidant properties of creatine. Biochem Biophys Res Commun 290:47–52

    CAS  PubMed  Google Scholar 

  • Lee J, Goldfarb AH, Rescino MH, Hegde S, Patrick S, Apperson K (2002) Eccentric exercise effect on blood oxidative-stress markers and delayed onset of muscle soreness. Med Sci Sports Exerc 34:443–448

    CAS  PubMed  Google Scholar 

  • Leeder JDC, van Someren KA, Gaze D, Jewell A, Deshmukn NI, Shah I, Barker J, Howatson G (2014) Recovery and adaptation from repeated intermittent-sprint exercise. Int J Sports Physiol Perform 9:489–496

    CAS  Google Scholar 

  • Legault Z, Bagnall N, Kimmerly DS (2015) The influence of oral l-glutamine supplementation on muscle strength recovery and soreness following unilateral knee extension eccentric exercise. Int J Sport Nutr Exerc Metab 25:417–426

    PubMed  Google Scholar 

  • Lembke P, Capodice J, Hebert K, Swenson T (2014) Influence of omega-3 (n3) index on performance and wellbeing in young adults after heavy eccentric exercise. J Sports Sci Med 13:151–156

    PubMed  PubMed Central  Google Scholar 

  • Lenn J, Uhl T, Mattacola C, Boissonneault G, Yates J, Ibrahim W, Bruckner G (2002) The effects of fish oil and isoflavones on delayed onset muscle soreness. Med Sci Sports Exerc 34:1605–1613

    CAS  PubMed  Google Scholar 

  • Levers K, Dalton R, Galvan E, Goodenough C, O’Connor A, Simbo S, Barringer N, Mertens-Talcott SU, Rasmussen C, Greenwood M, Riechman S, Crouse S, Kreider RB (2015) Effects of powdered Montmorency tart cherry supplementation on an acute bout of intense lower body strength exercise in resistance trained males. J Int Soc Sports Nutr 12:41

    PubMed  PubMed Central  Google Scholar 

  • Levers K, Dalton R, Galvan E, O’Connor A, Goodenough C, Simbo S, Mertens-Talcott SU, Rasmussen C, Greenwood M, Riechman S, Crouse S, Kreider RB (2016) Effects of powdered Montmorency tart cherry supplementation on acute endurance exercise performance in aerobically trained individuals. J Int Soc Sports Nutr 26:13–22

    Google Scholar 

  • Li P, Wu G (2018) Roles of dietary glycine, proline, and hydroxyproline in collagen synthesis and animal growth. Amino Acids 50:29–38

    CAS  PubMed  Google Scholar 

  • Lopez HL, Habowski SM, Sandrock JE, Kedia AW, Ziegenfuss TN (2014) Effects of BioCell Collagen on connective tissue protection and functional recovery from exercise in healthy adults: a pilot study. J Int Soc Sports Nutr 11(Suppl 1):P48

    PubMed Central  Google Scholar 

  • Lyall KA, Hurst SM, Cooney J, Jensen D, Lo K, Hurst RD, Stevenson LM (2009) Short-term blackcurrant extract consumption modulates exercise-induced oxidative stress and lipopolysaccharide-stimulated inflammatory responses. Am J Physiol Regul Integr Comp Physiol 297:R70–81

    CAS  PubMed  Google Scholar 

  • Ma S, Tominaga T, Kanda K, Sugama K, Omae C, Hashimoto S, Aoyama K, Yoshikai Y, Suzuki K (2020) Effects of an 8-week protein supplementation regimen with hyperimmunized cow milk on exercise-induced organ damage and inflammation in male runners: a randomized, placebo controlled, cross-over study. Biomedicines 8(3):51

    PubMed Central  Google Scholar 

  • Mach N, Fuster-Botella D (2017) Endurance exercise and gut microbiota: a review. J Sport Health Sci 6:179–197

    PubMed  Google Scholar 

  • Machado M, Antunes WD, Tamy ALM, Azevedo PG, Barreto JG, Hackney AC (2009a) Effect of a single dose of caffeine supplementation and intermittent-interval exercise on muscle damage markers in soccer players. J Exerc Sci Fit 2:91–97

    Google Scholar 

  • Machado M, Pereira R, Sampaio-Jorge F, Knifis F, Hackney A (2009b) Creatine supplementation: effects on blood creatine kinase activity responses to resistance exercise and creatine kinase activity measurement. Brazil J Pharm Sci 45:4

    Google Scholar 

  • Machado M, Vigo JFF, Breder AC, Simoes JR, Ximenes MC, Hackney AC (2009c) Effect of short term caffeine supplementation and intermittent exercise on muscle damage markers. Biol Sport 26:3–11

    Google Scholar 

  • Machado M, Koch AJ, Willardson JM, dos Santos FC, Curty VM, Pereira LN (2010) Caffeine does not augment markers of muscle damage or leucocytosis following resistance. Int J Sports Physiol Perform 5:18–26

    PubMed  Google Scholar 

  • Machado AS, da Silva W, Souza MA, Carpes FP (2018) Green tea extract preserves neuromuscular activation and muscle damage markers in athletes under cumulative fatigue. Front Physiol 9:1137

    PubMed  PubMed Central  Google Scholar 

  • Machin DR, Christmas KM, Chou TH, Hill SC, Van Pelt DW, Trombold JR, Coyle EF (2014) Effects of differing dosages of pomegranate juice supplementation after eccentric exercise. Physiol J 2014:271959. https://doi.org/10.1155/2014/271959

    Article  CAS  Google Scholar 

  • Malaguti M, Angeloni C, Hrelia S (2013) Polyphenols in exercise performance and prevention of exercise-induced muscle damage. Oxid Med Cell Longev 2013:825928

    PubMed  PubMed Central  Google Scholar 

  • Maridakis V, O’Connor PJ, Dudley GA, McCully KK (2007) Caffeine attenuates delayed-onset muscle pain and force loss following eccentric exercise. J Pain 8:237–243

    CAS  PubMed  Google Scholar 

  • Martarelli D, Verdenelli MC, Scuri S, Cocchioni M, Silvi S, Cecchini C, Pompei P (2011) Effect of a probiotic intake on oxidant and antioxidant parameters in plasma of athletes during intense exercise training. Curr Microbiol 62:1689–1696

    CAS  PubMed  Google Scholar 

  • Martínez-Sánchez A, Alacid F, Rubio-Arias JA, Fernández-Lobato B, Ramos-Campo DJ, Aguayo E (2017a) Consumption of watermelon juice enriched in l-citrulline and pomegranate ellagitannins enhanced metabolism during physical exercise. J Agric Food Chem 65:4395–4404

    PubMed  Google Scholar 

  • Martínez-Sánchez A, Ramos-Campo DJ, Fernández-Lobato B, Rubio-Arias JA, Alacid F, Aguayo E (2017b) Biochemical, physiological, and performance response of a functional watermelon juice enriched in l-citrulline during a half-marathon race. Food Nutr Res 61:1330098

    PubMed  PubMed Central  Google Scholar 

  • Martin-Rincon M, Gelabert-Rebato M, Galvan-Alvarez V, Gallego-Selles A, Marinez-Canton M, Lopez-Rios L, Wiebe JC, Martin-Rodriguez S, Arteaga-Ortiz R, Dorado C, Perez-Regalado S, Santana A, Morales-Alamo D, Calbet JAL (2020) Supplementation with a mango leaf extract (Zynamite®) in combination with quercetin attenuates muscle damage and pain and accelerates recovery after strenuous damaging exercise. Nutrients 12(3):614

    PubMed Central  Google Scholar 

  • Matsumura MD, Zavorsky GS, Smoliga JM (2015) The effects of pre-exercise ginger supplementation on muscle damage and delayed onset muscle soreness. Phytother Res 29:887–893

    PubMed  Google Scholar 

  • McAnulty SR, McAnulty LS, Nieman DC, Dumke CL, Morrow JD, Utter AC, Henson DA, Proulx WR, Geroge GL (2004) Consumption of blueberry polyphenols reduces exercise-induced oxidative stress compared to vitamin C. Nutr Res 24:209–221

    CAS  Google Scholar 

  • McAnulty SR, McAnulty LS, Nieman DC, Quindry JC, Hosick PA, Hudson MH, Still L, Henson DA, Milne GL, Morrow JD, Dumke CL, Utter AC, Triplett NT, Dibanardi A (2008) Chronic quercetin ingestion and exercise-induced oxidative damage and inflammation. Appl Physiol Nutr Metab 33:254–262

    CAS  PubMed  Google Scholar 

  • McCormick R, Peeling P, Binnie M, Dawson B, Sim M (2016) Effect of tart cherry juice on recovery and next day performance in well-trained water polo players. J Int Soc Sports Nutr 13:41

    PubMed  PubMed Central  Google Scholar 

  • McFarlin BK, Venable AS, Henning AL, Sampson JN, Pennell K, Vingren JL, Hill DW (2016) Reduced inflammatory and muscle damage biomarkers following oral supplementation with bioavailable curcumin. BBA Clin 5:72–78

    PubMed  PubMed Central  Google Scholar 

  • McGinley C, Shafat A, Donnelly AE (2009) Does antioxidant vitamin supplementation protect against muscle damage? Sports Med 39:1011–1032

    PubMed  Google Scholar 

  • McKinnon NB, Graham MT, Tiidus PM (2012) Effect of creatine supplementation on muscle damage and repair following eccentrically-induced damage to the elbow flexors muscles. J Sports Sci Med 11:653–659

    PubMed  PubMed Central  Google Scholar 

  • McLeay Y, Barnes MJ, Mundel T, Hurst SM, Hurst RD, Stannard SR (2012) Effect of New Zeland blueberry consumption on recovery from eccentric exercise-induced muscle damage. J Int Soc Sports Nutr 9:19

    PubMed  PubMed Central  Google Scholar 

  • McLeay Y, Stannard S, Barnes M (2017) The effect of taurine on the recovery from eccentric exercise-induced muscle damage in males. Antioxidants (Basel) 6(4):79

    Google Scholar 

  • Meamarbashi A, Rajabi A (2015) Preventive effects of 10-day supplementation with saffron and indomethacin on the delayed-onset muscle soreness. Clin J Sport Med 25:105–112

    PubMed  Google Scholar 

  • Mero AA, Ojala T, Hulmi JJ, Puurtinen R, Karila TA, Seppälä T (2010) Effects of alfa-hydroxy-isocaproic acid on body composition, DOMS and performance in athletes. J Int Soc Sports Nutr 7:1

    PubMed  PubMed Central  Google Scholar 

  • Milias GA, Nomikos T, Fragopoulou E, Athanasopoulos S, Antonopoulou S (2006) Effect of baseline serum levels of Se on markers of eccentric exercise-induced muscle injury. BioFactors 26:161–170

    CAS  PubMed  Google Scholar 

  • Miller PC, Bailey SP, Barnes ME, Derr SJ, Hall EE (2004) The effects of protease supplementation on skeletal muscle function and DOMS following downhill running. J Sports Sci 22:365–372

    PubMed  Google Scholar 

  • Minajeva A, Ventura-Clapier R, Veksler V (1996) Ca2+ uptake by cardiac sarcoplasmic reticulum ATPase in situ strongly depends on bound creatine kinase. Pflugers Arch 432:904–912

    CAS  PubMed  Google Scholar 

  • Montenegro CF, Kwong DA, Minow ZA, Davis BA, Lozada CF, Casazza GA (2017) Betalain-rich concentrate supplementation improves exercise performance and recovery in competitive triathletes. Appl Physiol Nutr Metab 42:166–172

    CAS  PubMed  Google Scholar 

  • Morgan PT, Wollman PM, Jackman SR, Bowtell JL (2018) Flavanol-rich cacao mucilage juice enhances recovery of power but not strength from intensive exercise in healthy, young men. Sports (Basel) 6(4):159

    Google Scholar 

  • Myburgh KH (2014) Polyphenol supplementation: Benefits for exercise performance or oxidative stress? Sports Med 44(Suppl 1):S57–70

    PubMed  Google Scholar 

  • Nakhostin-Roohi B, Moradlou AN, Hamidabad SM, Ghanivand B (2016) The effect of curcumin supplementation on selected markers of delayed onset muscle soreness (DOMS). Ann Appl Sport Sci 2:25–31

    Google Scholar 

  • Nemati A, Alipanah-Moghadam R, Molazadeh L, Naghizadeh Baghi A (2019) The effect of glutamine supplementation on oxidative stress and matrix metalloproteinase 2 and 9 after exhaustive exercise. Drug Des Devel Ther 13:4215–4223

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nicol LM, Rowlands DS, Fazakerly R, Kellett J (2015) Curcumin supplementation likely attenuates delayed onset muscle soreness (DOMS). Eur J Appl Physiol 115:1769–1777

    CAS  PubMed  Google Scholar 

  • Nieman DC, Henson DA, Davis JM, Angela Murphy E, Jenkins DP, Gross SJ, Carmichael MD, Quindry JC, Dumke CL, Utter AC, McAnulty SR, McAnulty LS (2007a) Quercetin’s influence on exercise-induced changes in plasma cytokines and muscle and leukocyte cytokine mRNA. J Appl Physiol 103:1728–1735

    CAS  PubMed  Google Scholar 

  • Nieman DC, Henson DA, Davis JM, Dumke CL, Gross SJ, Jenkins DP, Murphy EA, Carmichael MD, Quindry JC, McAnulty SR, McAnulty LS, Utter AC, Mayer EP (2007b) Quercetin ingestion does not alter cytokine changes in athletes competing in the western states endurance run. J Interferon Cytokine Res 27:1003–1011

    CAS  PubMed  Google Scholar 

  • Nieman DC, Henson DA, McAnulty SR, Jin F, Maxwell KR (2009) n-3 polyunsaturated fatty acids do not alter immune and inflammation measures in endurance athletes. Int J Sport Nutr Exerc Metab 19:536–546

    CAS  PubMed  Google Scholar 

  • Nieman DC, Gillitt ND, Shanely RA, Dew D, Meaney MP, Luo B (2013) Vitamin D2 supplementation amplifies eccentric exercise-induced muscle damage in NASCAR pit crew athletes. Nutrients 6:63–75

    PubMed  PubMed Central  Google Scholar 

  • Nishizawa M, Hara T, Miura T, Fujita S, Yoshigai E, Ue H, Hayashi Y, Kwon AH, Okumura T, Isaka T (2011) Supplementation with a flavanol-rich lychee fruit extract influences the inflammatory status of young athletes. Phytother Res 25:1486–1493

    CAS  PubMed  Google Scholar 

  • Nosaka K, Sacco P, Mawatari K (2006) Effects of amino acid supplementation on muscle soreness and damage. Int J Sport Nutr Exerc Metab 16:620–635

    CAS  PubMed  Google Scholar 

  • Nunan D, Howatson G, van Someren KA (2010) Exercise-induced muscle damage is not attenuated by β-hydroxy β-methylbutyrate and alpha-ketoisocaproic acid supplementation. J Strength Cond Res 24:531–537

    PubMed  Google Scholar 

  • O’Fallon KS, Kaushik D, Michniak-Kohn B, Dunne CP, Zambraski EJ, Clarkson PM (2012) Effects of quercetin supplementation on markers of muscle damage and inflammation after eccentric exercise. Int J Sport Nutr Exrrc Metab 22:430–437

    Google Scholar 

  • Ochi E, Tsuchiya Y (2018) Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in muscle damage and function. Nutrients 10(5):552

    PubMed Central  Google Scholar 

  • Olsen S, Aagaard P, Kadi F, Tufekovic G, Verney J, Olesen JL, Suetta C, Kjaer M (2006) Creatine supplementation augments the increase in satellite cell and myonuclei number in human skeletal muscle induced by strength training. J Physiol 573:525–534

    CAS  PubMed  PubMed Central  Google Scholar 

  • Osmond AD, Directo DJ, Elam ML, Juache G, Kreipke VC, Saralegui DE, Wildman R, Wong M, Jo E (2019) The effects of leucine-enriched branched-chain amino acid supplementation on recovery after high-intensity resistance exercise. Int J Sports Physiol Perform 14(8):1081–1088

    PubMed  Google Scholar 

  • Owens DJ, Fraser WD, Close GL (2015a) Vitamin D and the athlete: emerging insights. Eur J Sport Sci 15:73–84

    PubMed  Google Scholar 

  • Owens DJ, Sharples AP, Polydorou I, Alwan N, Donovan T, Tang J, Fraser WD, Cooper RG, Morton JP, Stewart C, Close GL (2015b) A systems-based investigation into vitamin D and skeletal muscle repair, regeneration, and hypertrophy. Am J Physiol Endocrinol Metab. 309:E1019–E1031

    CAS  PubMed  Google Scholar 

  • Owens DJ, Twist C, Cobbley JN, Howatson G, Close GL (2019) Exercise-induced muscle damage: what is it, what causes it and what are the nutritional solutions? Eur J Sport Sci 19:71–85

    PubMed  Google Scholar 

  • Paddon-Jones D, Keech A, Jenkins D (2001) Short-term β-hydroxy β-methylbutyrate supplementation does not reduce symptoms of eccentric muscle damage. Int J Sport Nutr Exerc Metab 11:442–450

    CAS  PubMed  Google Scholar 

  • Panza VP, Diefenthaeler F, Tamborindeguy AC, de Camargo CQ, de Moura BM, Brunetta HS, Sakugawa RL, de Oliveira MV, Puel Ede O, Nunes EA, da Silva EL (2016) Effects of mate tea consumption on muscle strength and oxidative stress markers after eccentric exercise. Br J Nutr 115:1370–1378

    CAS  PubMed  Google Scholar 

  • Parandak K, Arazi H, Khoshkhahesh F, Nakhostin-Roohi B (2014) The effect of two-week l-carnitine supplementation on exercise-induced oxidative stress and muscle damage. Asian J Sports Med 5:123–128

    PubMed  PubMed Central  Google Scholar 

  • Pari L, Murugan P (2006) Tetrahydrocurcumin: effect on chloroquine-mediated oxidative damage in rat kidney. Basic Clin Pharmacol Toxicol 99:329–334

    CAS  PubMed  Google Scholar 

  • Parthimos T, Schulpis KH, Angelogianni P, Tsopanakis C, Parthimos N, Tsakiris S (2008) The in vivo and in vitro effects of l-carnitine supplementation on the erytrocyte membrane acetylcholinesterase, Na+, K+-ATPase activities in basketball players. Clin Chem Lab 46:137–142

    CAS  Google Scholar 

  • Pasiakos SM, Lieberman HR, McLellan TM (2014) Effects of protein supplements on muscle damage, soreness and recovery of muscle function and physical performance: a systematic review. Sports Med 44:655–670

    PubMed  Google Scholar 

  • Patrizio F, Ditroilo M, Felici F, Duranti G, De Vito G, Sabatini S, Sacchetti M, Bazzucchi I (2018) The acute effect of quercetin on muscle performance following a single resistance training session. Eur J Appl Physiol 118:1021–1031

    CAS  PubMed  Google Scholar 

  • Peake JM, Neubauer O, Della Gatta PA, Nosaka K (2017) Muscle damage and inflammation during recovery from exercise. J Appl Physiol 22:559–570

    Google Scholar 

  • Pérez-Guisado J, Jakerman PM (2010) Citrulline malate enhances athletic anaerobic performance and relieves muscle soreness. J Strength Cond Res 24:1215–1222

    PubMed  Google Scholar 

  • Peschek K, Pritchett R, Bergman E, Pritchett K (2013) The effects of acute post exercise consumption of two cocoa-based beverages with varying flavanol content on indices of muscle recovery following downhill treadmill running. Nutrients 6:50–62

    PubMed  PubMed Central  Google Scholar 

  • Peternelj TT, Coombes JS (2011) Antioxidant supplementation during exercise training: beneficial or detrimental? Sports Med 41:1043–1069

    PubMed  Google Scholar 

  • Pfeiffer E, Hoehle SI, Walch SG, Riess A, Sólyom AM, Metzler M (2007) Curcuminoids form reactive glucuronides in vitro. J Agric Food Chem 55:538–544

    CAS  PubMed  Google Scholar 

  • Phillips SM, Van Loon LJ (2011) Dietary protein for athletes: from requirements to optimum adaptation. J Sports Sci 1:S29–38

    Google Scholar 

  • Phillips T, Childs AC, Dreon DM, Phinney S, Leeuwenburgh C (2003) A dietary supplement attenuates IL-6 and CRP after eccentric exercise in untrained males. Med Sci Sports Exerc 35:2032–2037

    CAS  PubMed  Google Scholar 

  • Philpott JD, Donnelly C, Walshe IH, MacKinley EE, Dick J, Galloway SDR, Tipton KD, Witard OC (2018) Adding fish oil to whey protein, leucine, and carbohydrate over a six-week supplementation period attenuates muscle soreness following eccentric exercise in competitive soccer players. Int J Sport Nutr Exerc Metab 28:26–36

    CAS  PubMed  Google Scholar 

  • Plowman SA, Smith DL (2013) Exercise physiology: for health, fitness and performance. Lippincott & Wilkins, Philadelphia

    Google Scholar 

  • Pons V, Riera J, Capó X, Martorell M, Sureda A, Tur JA, Drobnic F, Pons A (2018) Calorie restriction regime enhances physical performance of trained athletes. J Int Soc Sports Nutr 15:12

    PubMed  PubMed Central  Google Scholar 

  • Portal S, Zadik Z, Rabinowitz J, Pilz-Burstein R, Adler-Portal D, Meckel Y, Cooper DM, Eliakim A, Nemet D (2011) The effect of HMB supplementation on body composition, fitness, hormonal and inflammatory mediators in elite adolescent volleyball players: a prospective randomized, double-blind, placebo-controlled study. Eur J Appl Physiol 111:2261–2269

    CAS  PubMed  Google Scholar 

  • Poulios A, Georgakouli K, Draganidis D, Deli CK, Tsimeas PD, Chatzinikolaou A, Papanikolaou K, Batrakoulis A, Mohr M, Jamurtas AZ, Fatouros IG (2019) Protein-based supplementation to enhance recovery in team sports: what is the evidence? J Sports Sci Med 18:523–536

    PubMed  PubMed Central  Google Scholar 

  • Pumpa KL, Fallon KE, Bensoussan A, Papalia S (2013) The effects of panax notoginseng on delayed onset muscle soreness and muscle damage in well-trained males: a double blind randomised controlled trial. Comple Ther Med 21:131–140

    Google Scholar 

  • Qamar MM, Javed MS, Dogar MZUH, Basharat A (2019) Beat the exercise-induced damage. J Pak Med Assoc 69:1682–1686

    PubMed  Google Scholar 

  • Quinlan R, Hill JA (2019) The efficacy of tart cherry juice in aiding recovery after intermittent exercise. Int J Sports Physiol Perform 15:1–7

    Google Scholar 

  • Ra SG, Miyazaki T, Ishikura K, Nagayama H, Komine S, Nakata Y, Maeda S, Matsuzaki Y, Ohmori H (2013) Combined effect of branched-chain amino acids and taurine supplementation on delayed onset muscle soreness and muscle damage in high-intensity eccentric exercise. J Int Soc Sports Nutr 10:51

    PubMed  PubMed Central  Google Scholar 

  • Ra SG, Akazawa N, Choi Y, Matsubara T, Oikawa S, Kumagai H, Tanahashi K, Ohmori H, Maeda S (2015) Taurine supplementation reduces eccentric exercise-induced delayed onset muscle soreness in young men. Adv Exp Med Biol 803:765–772

    CAS  PubMed  Google Scholar 

  • Rahimi R (2011) Creatine supplementation decreases oxidative DNA damage and lipid peroxidation induced by a single bout of resistance exercise. J Strength Cond res 25:3448–3455

    PubMed  Google Scholar 

  • Rahimi MH, Shab-Bidar S, Mollahosseini M, Djafarian K (2017) Branched-chain amino acid supplementation and exercise-induced muscle damage in exercise recovery: a meta-analysis of randomized clinical trials. Nutrients 42:30–36

    CAS  Google Scholar 

  • Rahmani NF, Farzaneh E, Damirchi A, Shamsi Majlan A (2013) Effect of l-glutamine supplementation on electromyographic activity of the quadriceps muscle injured by eccentric exercise. Iran J Basic Med Sci 16:808–812

    Google Scholar 

  • Ramos-Campo DJ, Ávila-Gandía V, López-Román FJ, Minãrro J, Contreras C, Soto-Méndez F, Domingo Pedrol JC, Luque-Rubia AJ (2020) Supplementation of re-esterified docosahexaenoic and eicosapentaenoic acids reduce inflammatory and muscle damage markers after exercise in endurance athletes: a randomized, controlled crossover trial. Nutrients 12(2):719

    PubMed Central  Google Scholar 

  • Ranchordas MK, Rogerson D, Soltani H, Costello JT (2017) Antioxidants for preventing and reducing muscle soreness after exercise. Cochrane Database Syst Rev 12:CD009789

    PubMed  Google Scholar 

  • Rankin P, Stevenson E, Cockburn E (2015) The effect of milk on the attenuation of exercise-induced muscle damage in males and females. Eur J Appl Physiol 115:1245–1261

    CAS  PubMed  Google Scholar 

  • Rawson ES, Gunn B, Clarkson PM (2001) The effects of creatine supplementation on exercise-induced muscle damage. J Strength Cond Res 15:178–184

    CAS  PubMed  Google Scholar 

  • Rawson ES, Conti MP, Miles MP (2007) Creatine supplementation does not reduce muscle damage or enhance recovery from resistance exercise. J Strength Cond Res 21:1208–1213

    PubMed  Google Scholar 

  • Righi NC, Schuch FB, De Nardi AT, Pippi CM, de Almeida Righi G, Puntel GO, da Silva AMV, Signori LU (2020) Effects of vitamin C on oxidative stress, inflammation, muscle soreness, and strength following acute exercise: meta-analyses of randomized clinical trials. Eur J Nutr (Epub ahead of print)

  • Ring SM, Dannecker EA, Peterson CA (2010) Vitamin D status is not associated with outcomes of experimentally-induced muscle weakness and pain in young, healthy volunteers. J Nutr Metab 2010:674240

    PubMed  PubMed Central  Google Scholar 

  • Rosene J, Matthews T, Ryan C, Belmore K, Bergsten A, Blaisdell J, Gaylord J, Love R, Marrone M, Ward M, Wilson E (2009) Short and longer-term effects of creatine supplementation on exercise induced muscle damage. J Sports Sci Med 8:89–96

    PubMed  PubMed Central  Google Scholar 

  • Sacheck JM, Milbury PE, Cannon JG, Roubenoff R, Blumberg JB (2003) Effect of vitamin E and eccentric exercise on selected biomarkers of oxidative stress in young and elderly men. Free Radic Biol Med 34:1575–1588

    CAS  PubMed  Google Scholar 

  • Sadowska-Krępa E, Kłapcińska B, Podgórski T, Szade B, Tyl K, Hadzik A (2015) effects of supplementation with acai (Euterpe oleracea Mart.) berry-based juice blend on the blood antioxidant defence capacity and lipid profile in junior hurdlers. A pilot study. Biol Sport 32:161–168

    PubMed  PubMed Central  Google Scholar 

  • Samaras A, Tsarouhas K, Paschalidis E, Giamouzis G, Triposkiadis F, Tsitsimpikou C, Becker AT, Goutzourelas N, Kouretas D (2014) Effect of a special carbohydrate-protein bar and tomato juice supplementation on oxidative stress markers and vascular endothelial dynamics in ultra-marathon runners. Food Chem Toxicol 69:231–236

    CAS  PubMed  Google Scholar 

  • Sandur SK, Pandey MK, Sung B, Ahn KS, Murakami A, Sethi G, Limtrakul P, Badmaev V, Aggarwal BB (2007) Curcumin, demethoxycurcumin, bisdemethoxycurcumin, tetrahydrocurcumin and turmerones differentially regulate anti-inflammatory and anti-proliferative responses through a ROS-independent mechanism. Carcinogenesis 28:1765–1773

    CAS  PubMed  Google Scholar 

  • Santos RV, Bassit RA, Caperuto EC, Costa Rosa LF (2004) The effect of creatine supplementation upon inflammatory and muscle soreness markers after a 30 Km race. Life Sci 75:1917–1924

    CAS  PubMed  Google Scholar 

  • Schaffer S, Kim HW (2018) Effects and mechanisms of taurine as a therapeutic agent. Biomol Ther (Seoul) 26:225–241

    CAS  Google Scholar 

  • Sciberras JN, Galloway SD, Fenech A, Grech G, Farrugia C, Duca D, Mifsud J (2015) The effect of turmeric (Curcumin) supplementation on cytokine and inflammatory marker responses following 2 hours of endurance cycling. J Int Soc Sports Nutr 12:5

    PubMed  PubMed Central  Google Scholar 

  • Seeram NP, Momin RA, Nair MG, Bourquin LD (2001) Cyclooxygenase inhibitory and antioxidant cyaniding glycosides in cherries and berries. Phytomedicine 8:362–369

    CAS  PubMed  Google Scholar 

  • Sellami M, Slimeni O, Porkrywka A, Kuvačić G, Hayes DL, Milic M, Padulo J (2018) Herbal medicine for sports: a review. J Int Soc Sports Nutr 15:14

    PubMed  PubMed Central  Google Scholar 

  • Shafat A, Butler P, Jensen RL, Donnelly AE (2004) Effects of dietary supplementation with vitamin C and E on muscle function during and after eccentric contractions in humans. Eur J Appl Physiol 93(1–2):196–202

    CAS  PubMed  Google Scholar 

  • Shanely RA, Nieman DC, Knab AM, Gillitt ND, Meaney MP, Jin F, Sha W, Cialdella-Kam L (2014) Influence of vitamin D mushroom powder supplementation on exercise-induced muscle damage in vitamin D insufficient high school athletes. J Sports Sci 32:670–679

    PubMed  Google Scholar 

  • Shanely RA, Nieman DC, Perkins-Veazie P, Henson DA, Meaney MP, Knab AM, Cialdell-Kam L (2016) Comparison of watermelon and carbohydrate beverage on exercise-induced alterations in systemic inflammation, immune dysfunction, and plasma antioxidant capacity. Nutrients 8(8):518

    PubMed Central  Google Scholar 

  • Shaw G, Lee-Barthel A, Ross ML, Wang B, Baar K (2017) Vitamin C-enriched gelatin supplementation before intermittent activity augments collagen synthesis. Am J Clin Nutr 105:136–143

    CAS  PubMed  Google Scholar 

  • Shenoy S, Dhawan M, Sandhu JS (2016) Four weeks of supplementation with isolated soy protein attenuates exercise-induced muscle damage and enhances muscle recovery in well trained athletes: a randomized trial. Asian J Sports Med 7:e33528

    PubMed  PubMed Central  Google Scholar 

  • Shing CM, Peake JM, Lim CL, Briskey D, Walsh NP, Fortes MB, Ahuja KD, Vitetta L (2014) Effects of probiotics supplementation on gastrointestinal permeability, inflammation and exercise performance in the heat. Eur J Appl Physiol 114:93–103

    PubMed  Google Scholar 

  • Shing CM, Chong S, Driller MW, Fell JW (2016) Acute protease supplementation effects on muscle damage and recovery across consecutive days of cycle racing. Eur J Sport Sci 16:206–212

    PubMed  Google Scholar 

  • Shoba G, Joy D, Joseph T, Majeed M, Rajendran R, Srinivas PS (1998) Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med 64:353–356

    CAS  PubMed  Google Scholar 

  • Shuler FD, Wingate MK, Moore GH, Giangarra C (2012) Sports health benefits of vitamin D. Sports Health 4:496–501

    PubMed  PubMed Central  Google Scholar 

  • Siervo M, Scialò F, Shannon OM, Stephan BCM, Ashor AW (2018) Does dietary nitrate say NO to cardiovascular ageing? Current evidence and implications for research. Proc Nutr Soc 77:112–123

    CAS  PubMed  Google Scholar 

  • Sousa M, Teixeira VH, Soares J (2014) Dietary strategies to recover from exercise-induced muscle damage. Int J Food Sci Nutr 65:151–163

    CAS  PubMed  Google Scholar 

  • Spiering BA, Kraemer WJ, Vingren JL, Hatfield DL, Fragala MS, Ho JY, Maresh CM, Anderson JM, Volek JS (2007) Responses of criterion variables to different supplemental doses of l-carnitine l-tartrate. J Strength Cond Res 21:259–264

    PubMed  Google Scholar 

  • Spiering BA, Kraemer WJ, Hatfield DL, Vingren JL, Fragala MS, Ho JY, Thomas GA, Häkkinen K, Volek JS (2008) Effects of l-carnitine l-tartrate supplementation on muscle oxygenation responses to resistance exercise. J Strength Cond Res 22:1130–1135

    PubMed  Google Scholar 

  • Street B, Byrne C, Eston R (2011) Glutamine supplementation in recovery from eccentric exercise attenuates strength loss and muscle soreness. J Exerc Sci Fit 2:116–122

    Google Scholar 

  • Su QS, Tian Y, Zhang JG, Zhang H (2008) Effects of allicin supplementation on plasma markers of exercise-induced muscle damage, IL-6 and antioxidant capacity. Eur J Appl Physiol 103:275–283

    CAS  PubMed  Google Scholar 

  • Sugita M, Kapoor MP, Nishimura A, Okubo T (2016) Influence of green tea catechins on oxidative stress metabolites at rest and during exercise in healthy humans. Nutrition 32:321–331

    CAS  PubMed  Google Scholar 

  • Tanabe Y, Maeda S, Akazawa N, Zempo-Miyaki A, Choi Y, Ra SG, Imaizumi A, Otsuka Y, Nosaka K (2015) Attenuation of indirect markers of eccentric exercise-induced muscle damage by curcumin. Eur J Appl Physiol 115:1949–1957

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tanabe Y, Chino K, Ohnishi T, Ozawa H, Sagayama H, Maeda S, Takahashi H (2019a) Effects of oral curcumin ingested before or after eccentric exercise on markers of muscle damage. Scand J Med Sci Sports 29:524–534

    PubMed  Google Scholar 

  • Tanabe Y, Chino K, Sagayama H, Lee HJ, Ozawa H, Maeda S, Takahashi H (2019b) Effective timing of curcumin ingestion to attenuate eccentric exercise-induced muscle soreness in men. J Nutr Sci Vitaminol 65:82–89

    CAS  PubMed  Google Scholar 

  • Tarazona-Dìaz MP, Alacid F, Carrasco M, Martìnez I, Aguayo E (2013) Watermelon juice: potential functional drink for sore muscle relief in athletes. J Agric Food Chem 61:7522–7528

    PubMed  Google Scholar 

  • Tartibian B, Maleki BH, Abbasi A (2009) The effects of ingestion of omega-3 fatty acids on perceived pain and external symptoms of delayed onset muscle soreness in untrained men. Clin J Sport Med 19:115–119

    PubMed  Google Scholar 

  • Tartibian B, Maleki BH, Abbasi A (2011) Omega-3 fatty acids supplementation attenuates inflammatory markers after eccentric exercise in untrained men. Clin J Sport Med 21:131–137

    PubMed  Google Scholar 

  • Teixeira FJ, Matias CN, Monteiro CP, Valamatos MJ, Reis JF, Morton RW, Alves F, Sardinha LB, Phillips SM (2019) Leucine metabolites do not attenuate training-induced inflammation in young resistance trained men. J Sports Sci 37:2037–2044

    PubMed  Google Scholar 

  • Thompson D, Williams C, Kingsley M, Nicholas CW, Lakomy HK, McArdle F, Jackson MJ (2001) Muscle soreness and damage parameters after prolonged intermittent shuttle-running following acute vitamin C supplementation. Int J Sports Med 22:68–75

    CAS  PubMed  Google Scholar 

  • Thompson D, Bailey DM, Hill J, Hurst T, Powell JR, Williams C (2004) Prolonged vitamin C supplementation and recovery from eccentric exercise. Eur J Appl Physiol 92:133–138

    CAS  PubMed  Google Scholar 

  • Tinsley GM, Gann JJ, Huber SR, Andre TL, La Bounty PM, Bowden RG, Gordon PM, Grandjean PW (2017) Effects of fish oil supplementation on postresistance exercise muscle soreness. J Diet Suppl 14:89–100

    CAS  PubMed  Google Scholar 

  • Tipton KD (2015) Nutritional support for exercise-induced injuries. Sports Med 1:S93–104

    Google Scholar 

  • Tipton KD, Borsheim E, Wolf SE, Sanford AP, Wolfe RR (2003) Acute response of net muscle protein balance reflects 24-h balance after exercise and amino acid ingestion. Am J Physiol Endocrinol Metab 284:E76–89

    CAS  PubMed  Google Scholar 

  • Torregrosa-García A, Ávila-Gandía V, Luque-Rubia AJ, Abellán-Ruiz MS, Querol-Calderón M, López-Román J (2019) Pomegranate extract improves maximal performance of trained cyclists after an exhausting endurance trial:a randomised controlled trial. Nutrients 11:721

    PubMed Central  Google Scholar 

  • Trombold JR, Barnes JN, Critchley L, Coyle EF (2010) Ellagitannin consumption improves strength recovery 2–3 d after eccentric exercise. Med Sci Sports Exerc 42:493–498

    CAS  PubMed  Google Scholar 

  • Trombold JR, Reinfeld AS, Casler JR, Coyle EF (2011) The effect of pomegranate juice supplementation on strength and soreness after eccentric exercise. J Strength Cond Res 25:1782–1788

    PubMed  Google Scholar 

  • Tsitsimpikou C, Kioukia-Fougia N, Tsarouhas K, Stamatopoulos P, Rentoukas E, Koudounakos A, Papalexis P, Liesivuori J, Jamurtas A (2013) Administration of tomato juice ameliorates lactate dehydrogenase and creatinine kinase responses to anaerobic training. Food Chem Toxicol 61:9–13

    CAS  PubMed  Google Scholar 

  • Tsuchiya Y, Yanagimoto K, Nakazato K, Hayamizu K, Ochi E (2016) Eicosapentaenoic and docosahexaenoic acids-rich fish oil supplementation attenuates strength loss and limited joint range of motion after eccentric contractions: a randomized, double-blind, placebo-controlled, parallel-group trial. Eur J Appl Physiol 116:1179–1188

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuchiya Y, Yanagimoto K, Ueda H, Ochi E (2019) Supplementation of eicosapentaenoic acid-rich fish oil attenuates muscle stiffness after eccentric contractions of human elbow flexors. J Int Soc Sports Nutr 16:19

    PubMed  PubMed Central  Google Scholar 

  • Udani JK, Singh BB, Singh VJ, Sandoval E (2009) BounceBack capsules for reduction of DOMS after eccentric exercise: a randomized, double-blind, placebo-controlled, crossover pilot study. J int Soc Sports Nutr 6:14

    PubMed  PubMed Central  Google Scholar 

  • van der Merwe M, Bloomer RJ (2016) The influence of methylsulfonylmethane on inflammation-associated cytokine release before and following strenous exercise. J Sports Med (Hindawi Publ Corp.) 2016:7498359

    Google Scholar 

  • van Someren KA, Edwards AJ, Howatson G (2005) Supplementation with β-hydroxy β-methylbutyrate (HMB) and alpha-ketoisocaproic acid (KIC) reduces signs and symptoms of exercise-induced muscle damage in man. Int J Sport Nutr Exerc Metab 15:413–424

    PubMed  Google Scholar 

  • Veggi KFT, Machado M, Koch AJ, Santana SC, Oliveira SS, Stec MJ (2013) Oral creatine supplementation augments the repeated bout effect. Int J Sport Nutr Exerc Metab 23:378–387

    CAS  Google Scholar 

  • Verburg E, Murphy RM, Stephenson DG, Lamb GD (2005) Disruption of excitation-contraction coupling and titin by endogenous Ca2+-activated proteases in toad muscle fibres. J Physiol 564:775–790

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vierck JL, Icenoggle DL, Bucci L, Dodson MV (2003) The effects of ergogenic compounds on myogenic satellite cells. Med Sci Sports Exerc 35:769–776

    CAS  PubMed  Google Scholar 

  • Vimercatti NS, Zovico PVC, Carvalho AS, Barreto JG, Machado M (2008) Two doses of caffeine do not increase the risk of exercise-induced muscle damage or leucocytosis. Phys Edu Sport 52:96–99

    Google Scholar 

  • Vitale KC, Hueglin S, Broad E (2017) Tart cherry juice in athletes: a literature review and commentary. Curr Sports Med Rep 16:230–239

    PubMed  Google Scholar 

  • Volek JS, Kraemer WJ, Rubin MR, Gómez AL, Ratamess NA, Gaynor P (2002) l-Carnitine l-tartrate supplementation favorably affects markers of recovery from exercise stress. Am J Physiol Endocrinol Metab 282:E474–E482

    CAS  PubMed  Google Scholar 

  • Waldron M, Whelan K, Jeffries O, Burt D, Howe L, Patterson SD (2017) The effects of acute branched-chain amino acid supplementation on recovery from a single bout of hypertrophy exercise in resistance-trained athletes. Appl physiol Nutr Metab 42:630–636

    CAS  PubMed  Google Scholar 

  • Wang H, Nair MG, Strasburg GM, Chang YC, Booren AM, Gray JI, DeWitt DI (1999) Antioxidant and anti-inflammatory activities of anthocyanins and their aglycon, cyanidin, from tart cherries. J Nat Prod 62:294–296

    CAS  PubMed  Google Scholar 

  • Warren GL, Lowe DA, Armstrong RB (1999) Measurement tools used in the study of eccentric contraction-induced injury. Sports Med 27:43–59

    CAS  PubMed  Google Scholar 

  • Willis KS, Peterson NJ, Larson-Meyer DE (2008) Should we be concerned about the vitamin D status of athletes? Int J Sport Nutr Exerc Metab 18:204–224

    CAS  PubMed  Google Scholar 

  • Willoughby DS, Rosene JM (2003) Effects of oral creatine and resistance training on myogenic regulatory factor expression. Med Sci Sports Exerc 35:923–929

    CAS  PubMed  Google Scholar 

  • Wilson PB (2015) Ginger (Zingiber officinale) as an analgesic and ergogenic aid in sport: a systemic review. J Strength Cond Res 29:2980–2995

    PubMed  Google Scholar 

  • Wilson JM, Kim JS, Lee SR, Rathmacher JA, Dalmau B, Kingsley JD, Koch H, Manninen AH, Saadat R, Panton LB (2009) Acute and timing effects of β-hydroxy β-methylbutyrate (HMB) on indirect markers of skeletal muscle damage. Nutr Metab (Lond) 6:6

    Google Scholar 

  • Wilson JM, Lowery RP, Joy JM, Walters JA, Baier SM, Fuller JC Jr, Stout JR, Norton LE, Sikorski EM, Wilson SM, Duncan NM, Zanchi NE, Rathmacher J (2013) β-Hydroxy β-methylbutyrate free acid reduces markers of exercise-induced muscle damage and improves recovery in resistance-trained men. Br J Nutr 110:538–544

    CAS  PubMed  Google Scholar 

  • Wilson JM, Lowery RP, Joy JM, Andersen JC, Wilson SM, Stout JR, Duncan N, Fuller JC, Baier SM, Naimo MA, Rathmacher J (2014) The effects of 12 weeks of β-hydroxy β-methylbutyrate free acid supplementation on muscle mass, strength, and power in resistance-trained individuals: a randomized, double-blind, placebo-controlled study. Eur J Appl Physiol 114:1217–1227

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson PB, Fitzgerald JS, Rhodes S, Lundstrom CJ, Stacy J (2015) Effectiveness of ginger root (Zingiber officinale) on running-induced muscle soreness and function: a pilot study. Int J Athl Ther Train 20:44–50

    Google Scholar 

  • Wilson LR, Tripkovic L, Hart KH, Lanham-New SA (2017) Vitamin D deficiency as a public health issue: using vitamin D2 or vitamin D3 in future fortification strategies. Proc Nutr Soc 76:392–399

    PubMed  Google Scholar 

  • Wojcik JR, Walber-Rankin J, Smith LL, Gwazdauskas FC (2001) Comparison of carbohydrate and milk-based beverages on muscle damage and glycogen following exercise. Int J Sport Nutr Exerc Metab 11:406–419

    CAS  PubMed  Google Scholar 

  • Wu X, Beecher GR, Holden JM, Haytowitz DB, Gebhardt SE, Prior RL (2004) Lipophilic and hydrophilic antioxidant capacities of common foods in the United States. J Agric Food Chem 52:4026–4037

    CAS  PubMed  Google Scholar 

  • Yang HH, Li XL, Zhang WG, Figueroa A, Chen LH, Qin LQ (2019) Effect of oral l-citrulline on brachial and aortic blood pressure defined by resting status: evidence from randomized controlled trials. Nutr Metab (Lond) 16:89

    CAS  Google Scholar 

  • Yarizadh H, Shab-Bidar S, Zamani B, Vanani AN, Baharlooi H, Djafarian K (2020) The effect of l-carnitine supplementation on exercise-induced muscle damage: a systematic review and meta-analysis of randomized clinical trials. J Am Coll Nutr 10:1–12

    Google Scholar 

  • Yu JG, Liu JX, Carlsson L, Thornell LE, Stål PS (2013) Re-evaluation of sarcolemma injury and muscle swelling in human skeletal muscles after eccentric exercise. PLoS ONE 8:e62056

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

TB: had the original idea of the paper. FG, TB, MN and CC: substantial contribution to conception and design and interpretation of data; drafting the work and revising it critically. GA and GH substantial contribution to revising it critically. All authors gave final approval of the version to be published and agree to be accountable for all aspects of the work.

Corresponding author

Correspondence to Tindaro Bongiovanni.

Ethics declarations

Conflict of interest

The authors declare that there is not conflict of interests regarding the publication of this paper.

Additional information

Communicated by Michael Lindinger.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bongiovanni, T., Genovesi, F., Nemmer, M. et al. Nutritional interventions for reducing the signs and symptoms of exercise-induced muscle damage and accelerate recovery in athletes: current knowledge, practical application and future perspectives. Eur J Appl Physiol 120, 1965–1996 (2020). https://doi.org/10.1007/s00421-020-04432-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-020-04432-3

Keywords

Navigation