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Abstract
Purpose  Critical torque (CT) is an important fatigue threshold in exercise physiology and can be used to analyze, predict, 
or optimize performance. The objective of this work is to reduce the experimental effort when estimating CTs for sustained 
and intermittent isometric contractions using a model-based approach.
Materials and methods  We employ a phenomenological model of the time course of maximum voluntary isometric contrac-
tion (MVIC) torque and compute the highest sustainable torque output by solving an optimization problem. We then show 
that our results are consistent with the steady states obtained when simulating periodic maximum loading schemes. These 
simulations correspond to all-out tests, which are used to estimate CTs in practice. Based on these observations, the estima-
tion of CTs can be formulated mathematically as a parameter estimation problem. To minimize the statistical uncertainty 
of the parameter estimates and consequently of the estimated CTs, we compute optimized testing sessions. This reduces the 
experimental effort even further.
Results  We estimate CTs of the elbow flexors for sustained isometric contractions to be 28% of baseline MVIC torque and 
for intermittent isometric contractions consisting of a 3 s contraction followed by 2 s rest to be 41% of baseline MVIC torque. 
We show that a single optimized testing session is sufficient when using our approach.
Conclusions  Our approach reduces the experimental effort considerably when estimating CTs for sustained and intermittent 
isometric contractions.

Keywords  Critical torque · Elbow flexors · Isometric contractions · Optimum experimental design · Ordinary differential 
equation model

Abbreviations
CP	� Critical power
CT	� Critical torque
MVIC	� Maximum voluntary isometric contraction
OED	� Optimum experimental design
SD	� Standard deviation
TUT​	� Time under tension

Introduction

Critical power and critical torque

The power–endurance relationship of a constant power task 
can be described (Monod and Scherrer 1965) by

or equivalently by

where Tlim describes the endurance time of a task conducted 
at constant power P, W ′ describes the curvature constant, 
and Pc , the pole/asymptote of the function, is called criti-
cal power (CP). This relation is illustrated schematically in 
Fig. 1. CP can be interpreted as the maximum power output 

(1)Tlim =
W �

P − Pc

(2)P =
W �

Tlim
+ Pc,
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at which a metabolic steady state can be obtained (Jones 
et al. 2019). It constitutes an important fatigue threshold 
in exercise physiology and can be used to analyze, predict, 
or optimize performance (Craig et al. 2019). Therefore, a 
reliable and economical estimation is of benefit for athletes, 
coaches, and exercise physiologists. Its equivalent for iso-
metric or dynamic muscle contractions is the so-called criti-
cal torque (CT), which we examine in this work.

Critical torque and the curvature constant W ′ are usu-
ally estimated from multiple submaximal constant torque 
tests to task failure spread over several days. Burnley et al. 
(2012), for example, used five trials to determine critical 
torque of the knee extensors. For intermittent contractions, 
CT furthermore depends on the work–rest ratio of the peri-
odic loading scheme (Broxterman et al. 2014; Jones and 
Vanhatalo 2017), which is commonly quantified by the so-
called duty cycle. Thus, several CTs need to be estimated 
for an exercise to obtain a detailed description of the sub-
ject. This increases the experimental effort even further.

To reduce the experimental effort, all-out tests have 
been suggested. Burnley (2009) examined 5 min of maxi-
mum intermittent isometric contractions to determine 
critical torque of the knee extensors and showed that 
end-torque of these tests closely approximates CT. All-
out tests have also been used for other exercises, e.g., for 
plantar flexion (Abdalla et al. 2018) or for handgrip exer-
cise (Kellawan and Tschakovsky 2014). However, some 
authors have reported a possible overestimation of CP by 
the equivalent 3-min all-out test (Muniz-Pumares et al. 
2018), which suggests that all-out tests might not be suit-
able for all subjects or might need to be adapted individu-
ally. Kellawan and Tschakovsky (2014), for example, used 
intermittent isometric contractions lasting 1 s with 2 s rest 
for 10 min, as they anticipated a longer time to plateau for 
their experimental setup.

Purpose

In this work, we propose a model-based approach to reduce 
the experimental effort when estimating CTs for sustained or 
intermittent isometric contractions. We employ a phenom-
enological model of the time course of maximum voluntary 
isometric contraction (MVIC) torque (Herold et al. 2018) 
and compute the highest sustainable torque output by solving 
an optimization problem. We then show that our results are 
consistent with the steady states obtained when simulating 
periodic maximum loading schemes. These simulations cor-
respond to all-out tests, which are used to estimate CTs in 
practice (Burnley 2009).

The estimation of CTs can then be formulated mathe-
matically as a parameter estimation problem, for which the 
necessary measurements can be obtained in a single testing 
session compared to several testing sessions when using the 
traditional approach or an individual adjustment when using 
all-out tests. As these measurements are subject to random 
measurement errors, the resulting parameter estimates are 
random variables (Bock et al. 2013, overview in English; 
Bock 1987, original work in German). Their statistical prop-
erties depend on the experimental setup and may propagate 
through the model. To reduce the statistical uncertainty of 
the parameter estimates and consequently of the estimated 
critical torques, we compute optimized testing sessions. This 
reduces the experimental effort even further.

Materials and methods

In this section, we describe the model, the optimization 
problems, the simulation scenarios (see Table 1), and the 
optimum experimental design (OED) problems. For readers 
with a focus away from mathematical modeling, simulation, 
and optimization, we first provide a textual summary and 
then invite them to directly proceed to the results section 
if desired.

Textual summary

Previous work (Herold et al. 2018) allows us to predict how 
MVIC torque of a muscle group decreases and recovers under 
isometric loading (Eq. (3)). This enables us to find the maxi-
mum contraction intensity for which MVIC torque can reach 
a steady state during intermittent contractions of any desired 
duty cycle (Eq. (4)), which corresponds to critical torque. 
However, the mathematical model first needs to be calibrated 
to the subject’s muscle group (Eq. (7)). For this purpose, meas-
urements of MVIC torque during and after fatiguing contrac-
tions have to be taken. These measurements contain varying 
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Fig. 1   Schematic illustration of the power–endurance relationship of 
constant power tasks (2). The curvature of this relationship is deter-
mined by W ′ and its asymptote by Pc . The power that can be sustained 
for time Tlim can be obtained through P = W �∕Tlim + Pc
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amount of information depending on the loading scheme and 
the measurement times (see also Fig. 2). This can be evalu-
ated mathematically before the experiments are conducted 
(Eq. (8)), which allows us to optimize the experiments with 
respect to a reliable model calibration (Eq. (15)).

Model

For our numerical experiments, we use a phenomenological 
model of the time course of maximum voluntary isometric 
contraction torque. We state the ordinary differential equation 
system and give a short explanation of the components. For a 
detailed description of the model, we refer to the original paper 
(Herold et al. 2018).

The model describes the current MVIC torque capacity 

(3a)hMVIC ∶ [0, T] → [0, 1]

of a muscle (or muscle group) at joint level under an external 
isometric load

on the time horizon [0, T]. MVIC torque capacity and 
external load are normalized to baseline MVIC torque and 
are thus dimensionless. Moreover, the ranges of functions 
specified in this description are restricted to physiological 
meaningful values. The defining equations of the model are 
given as

where

consists of two dimensionless state variables xfast and xslow . 
The model furthermore contains five dimensionless param-
eters pi ∈ [0,∞) for i ∈ {1,… , 5} describing fatigue and 
recovery properties. Equations (3c) and (3d) are abbrevi-
ated by

w i t h  t h e  r i g h t - h a n d  s i d e 
f ∶ [0, T] × [0, 1]2 × [0,∞)5 × [0, 1] → ℝ

2 in the following. 
The initial conditions for the states are given by

(3b)uabs ∶ [0, T] → [0, 1]

(3c)
d

dt
xslow(t) = p1(1 − xslow(t)) − p2uabs(t)

(3d)
d

dt
xfast(t) = p3(1 − uabs(t))

p4 (1 − xfast(t))

− p5uabs(t)

(3e)hMVIC(t) = xslow(t)xfast(t),

(3f)x ∶ [0, T] → [0, 1]2

(3g)
d

dt
x(t) = f (t, x, p, uabs)

Table 1   Overview of simulation scenarios used in this work

Scenario Explanation

IC Intermittent contractions lasting 3 s with 2 s rest
ICmax Intermittent MVIC efforts lasting 3 s with 2 s rest
IC80 Intermittent contractions at 80% of critical torque lasting 3 s with 2 s rest
IC120 Intermittent contractions at 120% of critical torque lasting 3 s with 2 s rest
ITS Intuitive testing session consisting of a 3 min MVIC effort followed by 2 s MVIC efforts at 10 s, 30 s, 1 min, 

2 min, 5 min, 10 min, 15 min, 20 min, 25 min, and 30 min after cessation of the sustained MVIC effort to check 
the time course of recovery

OTS200 Optimized testing session lasting 1982 s in total with 200 s time under tension and a maximum of 11 contractions
OTS400 Optimized testing session lasting 1982 s in total with 400 s time under tension and a maximum of 11 contractions
RTS Resistance training session consisting of 5 sets of 5 MVIC efforts lasting 5 s with 5 s inter-repetition rest and 

120 s inter-set rest
SC Sustained contraction
SCmax Sustained MVIC effort

η2

η1 p2

p1

η̃
η p

p̃

Fig. 2   Different experimental conditions result in different param-
eter estimates and confidence regions thereof. The measurement data 
obtained by two different experiments are denoted by � and 𝜂̃ . The 
corresponding parameter estimates are denoted by p and p̃ . Confi-
dence regions are illustrated by ellipses. Smaller confidence regions 
increase the probability of the estimates being close to the ’true’ but 
unknown value. Redrawn in modified form from Walter (2012)



1266	 European Journal of Applied Physiology (2020) 120:1263–1276

1 3

For an unfatigued muscle, one chooses x0 = (1, 1)⊤ . To sim-
ulate MVIC efforts, it is favorable to substitute

and use

 the load relative to the current torque capacity, as input.
The model was validated with a comprehensive set of 

data from the elbow flexors (Herold et al. 2018). We use the 
corresponding parameter estimates in this work.

Model‑based estimation of critical torques

We compute the highest sustainable torque output of the 
elbow flexors by solving the nonlinear program 

 Constraints (4b) and (4c) ensure that MVIC torque does not 
change further and Constraints (4d) and (4e) ensure that the 
input and the states are feasible.

Exemplarily, we solve the nonlinear program (4) for a 
sustained contraction (Scenario SC) and for intermittent 
contractions lasting 3 s with 2 s rest (Scenario IC) as con-
ducted by Burnley (2009) for the knee extensors. For Sce-
nario IC, we use 

 instead of Constraints (4b) and (4c). This choice approxi-
mates that during one contraction–rest cycle MVIC torque 
does not change further. The nonlinear program is solved 
numerically with the sequential least squares programming 
algorithm by Kraft (1988) provided in SciPy 1.2.1 (Virtanen 
et al. 2020). To deal with the local maxima provided by the 
algorithm, we sample the unit cube [0, 1]3 uniformly with 
100 grid points in each dimension, use these values as initial 

(3h)x(0) = x0 ∈ [0, 1]2.

(3i)uabs(t) = urel(t)hMVIC(t)

(3j)urel ∶ [0, T] → [0, 1],

(4a)
max

uabs, xslow, xfast

uabs

(4b)s.t. 0 = p1(1 − xslow) − p2uabs

(4c)0 = p3(1 − uabs)
p4 (1 − xfast) − p5uabs

(4d)uabs ≤ xslowxfast = hMVIC

(4e)0 ≤ uabs, xslow, xfast ≤ 1.

(5a)0 = 3(p1(1 − xslow) − p2uabs) + 2(p1(1 − xslow))

(5b)
0 = 3(p3(1 − uabs)

p4(1 − xfast) − p5uabs)

+ 2(p3(1 − xfast))

guesses to solve the nonlinear program, and choose the solu-
tion with the highest objective value.

We verify our results by simulating the model for a sus-
tained MVIC effort (Scenario SCmax) and intermittent 
MVIC efforts lasting 3 s with 2 s rest (Scenario ICmax) until 
a plateau of MVIC torque is reached. These simulations cor-
respond to all-out tests proposed by Burnley (2009). Thus, 
the end-test torques provide estimates of CTs. To terminate 
our simulations during Scenario SCmax because a plateau is 
reached, we demand | d

dt
xslow| ≤ 10−6 and | d

dt
xfast| ≤ 10−6 . To 

terminate our simulations during Scenario ICmax because a 
plateau is reached, we demand that the torque at the begin-
ning of two adjacent contractions does not differ more than 
10−6 . These thresholds are low enough to ensure that a 
steady state has been obtained, but do not require excessive 
computation times. Afterwards, we compare the computed 
steady states to the end-test torques of simulated 5-min all-
out tests for both scenarios.

To illustrate that the thus determined steady states sepa-
rate domains of contraction intensity, we recreate the experi-
mental setting of Burnley et al. (2012) for the elbow flexors. 
We simulate intermittent contractions lasting 3 s with 2 s rest 
at 80% (Scenario IC80) and at 120% (Scenario IC120) of 
the previously determined critical torque on a time horizon 
of 60 min or until MVIC torque drops below target torque.

Finally, to demonstrate the full potential of our approach, 
we compute the highest sustainable torque output of the 
elbow flexors for intermittent contractions depending on the 
duty cycle. The duty cycle is defined as the ratio tc∕(tc + tr), 
where tc denotes the duration of a contraction and tr denotes 
the inter-repetition rest. Therefore, we solve the nonlinear 
program (4) for 100 duty cycles distributed uniformly in [0, 
1] and plot the results.

Optimized testing sessions

Mathematical background

In this work, we use the parameters obtained for the elbow 
flexors during the model development for illustrative pur-
poses. To use our approach in real life, the model needs to 
be calibrated to the subject and model parameters p have to 
be provided. Therefore, one conducts experiments and fits 
the model to measurement data � ∈ ℝ

nm.
We assume the model to be correct and the measurement 

errors �i to be additive, independent, and normally distrib-
uted with expected value �i = 0 and standard deviation 
�i ∈ (0,∞) . Consequently, the nm measurements �i can be 
modeled as

(6)�i = h(ti, x
∗(ti), p

∗) + �i, i = 1,… , nm,
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where h ∶ [0, T] × [0, 1]2 × [0,∞)5 → [0, 1] denotes the 
measurement function, ti is the time of the measurement, p∗ 
are the ’true’ but unknown parameter values, and x∗ are the 
corresponding states. Following these assumptions, the max-
imum likelihood estimator of p∗ can be obtained by solving 
the nonlinear weighted least squares problem 

 The loading scheme is described by the control function 
uabs . This is known during the parameter estimation, as the 
experiment was already conducted.

Since the measurement data � are subject to random 
measurement errors, the solution p̂ of problem (7) is a ran-
dom variable (Bock et al. 2013, overview in English; Bock 
1987, original work in German). Under certain regularity 
assumptions, one can approximate its variance–covariance 
matrix by

with the Jacobian J =

evaluated at p = p̂ . The approximation C describes a confi-
dence ellipsoid around the parameter estimates p̂ . It there-
fore allows us to analyze the statistical quality of these esti-
mates. For example, the diagonal entries of C approximate 
the variances of the parameter estimates (Pukelsheim 1993).

The variance–covariance matrix C depends on the load-
ing scheme described by uabs and on the current guess p̂ . 
However, it does not depend on the measurement data � . 
This enables us to design experiments which reduce the sta-
tistical uncertainty of the estimates. This idea is illustrated 
in Fig. 2 and realized in the following.

Experimental setting

Allen et al. (1995) report a mean empirical coefficient 
of variation of 3.78% for individual 2–3 s MVIC torque 
measurements of the elbow flexors in the unfatigued state. 
The experimental setup was similar to that used for the 
model development (Herold et al. 2018). To account for 
the increased torque variability observed during fatigue 

(7a)min
p,x(⋅)

1

2

nm∑
i=1

(
h(ti, x(ti), p) − �i

�i

)2

(7b)s.t.
d

dt
x(t) = f (t, x, p, uabs)

(7c)x(0) = x0 ∈ [0, 1]2.

(8)C = (J⊤J)−1 ∈ ℝ
5×5

⎛⎜⎜⎜⎝

1

�1

dh

dp1
(t1, x(t1), p) …

1

�1

dh

dp5
(t1, x(t1), p)

⋮ ⋱ ⋮
1

�nm

dh

dp1
(tnm , x(tnm ), p) …

1

�nm

dh

dp5
(tnm , x(tnm ), p)

⎞⎟⎟⎟⎠

(Contessa et al. 2009), we use this value as absolute stand-
ard deviation of the measurement errors. The measurement 
error � of a 2 s MVIC relative torque measurement is thus 
assumed to be additive, independent, and identically nor-
mally distributed with mean zero and standard deviation 
�2s = 0.0378 . The subscript denotes the duration of the 
contraction.

State-of-the-art force transducers can provide high-
frequency measurement data. Hence, we may assume that 
measurements of MVIC torque can be obtained continu-
ously if the subject can accurately estimate the applied 
torque uabs in relation to its current torque capacity hMVIC , 
i.e., if the subject can accurately estimate

This yields the measurement function

However, estimating urel for submaximal contractions is 
a challenging task (Banister 1979), which is additionally 
influenced by fatigue (Jones and Hunter 1983). Therefore, 
we increase the standard deviation of measurements taken 
at submaximal contractions according to

For maximum contractions ( urel = 1 ), we again obtain the 
uncertainty observed by Allen et al. (1995).

To allow a numerical treatment of the continuous meas-
urements (Janka 2015), we choose a sufficiently fine meas-
urement grid (tj)j∈{1,…,nm}

 and approximate the correspond-
ing discretized standard deviations by

Here, �tj denotes the duration of the measurement following 
the grid point tj . The weighting 

√
2

�tj
 is necessary to take 

into account the coarseness of the measurement grid. For 
example, doubling �tj would then correspond to weighting 
the measurement taken at tj twice. This furthermore allows 
us to treat measurements of any duration.

Moreover, we introduce a measure of the total time 
under tension (TUT)

to allow a fair comparison between different loading 
schemes. If we verify urel ∈ {0, 1} for our solutions, we can 
use

(9)urel(t) =
uabs(t)

hMVIC(t)
.

(10)h(t) = urel(t)hMVIC(t).

(11)�(t) = �2s(2 − urel(t)).

(12)�j = �2s(2 − urel(tj))

√
2

�tj
, j ∈ {1,… , nm}.

(13)ITUT(t) = ∫
t

0

{
0 if urel(�) = 0

1 else
d�
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as an equivalent measure.

Mathematical problem formulation

We use a multi-stage formulation on ns ≥ 2 stages—denoted 
by superscripts i ∈ {1,… , ns}—to model the loading 
schemes (Herold et al. 2018). We define 

with

where the sensitivities of the model states w.r.t. the param-
eters are denoted by xi

p
(t) =

dxi

dp
(t) and the measurement times 

on stage i are denoted by ti
j
 . To track TUT, we introduce an 

additional state ITUT defined as in Eq. 13. The multi-stage 
OED problem can then be formulated as

(14)ITUT(t) = ∫
t

0

urel(�)d�

(15a)J = (J1,… , Jns )⊤,

(15b)Ji
j
=

1

𝜎i
j

(
𝜕hi

𝜕xi
xi
p
(ti
j
) +

𝜕hi

𝜕p
(ti
j
)

)|||||p=p̂
,

(15c)
min

xi(⋅), xi
p
(⋅), Ii

TUT
(⋅)

ui
abs
(⋅), Ti

1

5
tr((J⊤J)−1)

(15d)s.t. 0.01 s ≤ Ti for i ∈ {1,… , ns}

(15e)
ns∑
i=1

Ti ≤ CT

(15f)I
ns
TUT

(Tns) ≤ CTUT

(15g)x0(0) = (1, 1)⊤

(15h)x0
p
(0) = (0, 0)⊤

(15i)I0
TUT

(0) = 0

(15j)
and for i ∈ {2,… , ns} ∶

xi(0) = xi−1(Ti−1)

(15k)xi
p
(0) = xi−1

p
(Ti−1)

(15l)Ii
TUT

(0) = Ii−1
TUT

(Ti−1)

 with CT being the upper bound on the sum of all stage dura-
tions Ti and CTUT being the upper bound on the sum of all 
stage-wise TUTs. The lower bounds on the stage durations 
Ti (15d) are necessary to avoid a division by zero in Eq. (12), 
as the stage durations are being optimized. Minimizing the 
trace of (J⊤J)−1 corresponds to minimizing the average 
variance of the parameter estimates (Pukelsheim 1993). 
To weight the parameters equally, we scale all parameters 
to 1 beforehand. Furthermore, the input function uabs is 
replaced by urel according to Eq. (3i) to allow a straightfor-
ward implementation of the experimental setting presented 
above. Table 2 gives an overview of the symbols used in the 
problem formulation.

To solve the problem, we employ a first-discretize-
then-optimize strategy. We use a direct single shooting 
approach to reduce the problem to a finite-dimensional 
form and employ DAESOL (Bauer et al. 1997, overview 
in English; Bauer 1999, detailed description in German) 
for integration of the ordinary differential equation system 
and sensitivity generation via internal numerical differen-
tiation (Bock 1981). The resulting nonlinear program is 
then solved with the sequential quadratic programming 
method SNOPT (Gill et al. 2005). We use the software 
package VPLAN (Bock et al. 2013, overview in English; 
Körkel 2002, detailed description in German) to carry out 
all steps.

(15m)
and i ∈ {1, 3,… , ns − 2, ns} and t ∈ [0, Ti] ∶

d

dt
xi(t) = f (t, xi(t), p, ui

abs
(t))

(15n)
d

dt
xi
p
(t) =

�f

�xi
xi
p
(t) +

�f

�p

(15o)
d

dt
Ii
TUT

(t) =
ui
abs
(t)

hi
MVIC

(t)

(15p)0 ≤ ui
abs
(t) ≤ hi

MVIC
(t)

(15q)
and for i ∈ {2, 4,… , ns − 3, ns − 1} and t ∈ [0, Ti] ∶

d

dt
xi(t) = f (t, xi(t), p, 0)

(15r)
d

dt
xi
p
(t) =

�f

�xi
xi
p
(t) +

�f

�p

(15s)
d

dt
Ii
TUT

(t) = 0,
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Numerical experiments

To illustrate the benefits of OED, we compare the uncer-
tainties of the parameters resulting from an intuitive test-
ing session (Scenario ITS) with those resulting from algo-
rithmically designed optimized testing sessions (Scenarios 
OTS200 and OTS400). Scenario ITS consists of a 3 min 
MVIC effort followed by 2 s MVIC efforts at 10 s, 30 s, 
1 min, 2 min, 5 min, 10 min, 15 min, 20 min, 25 min, and 
30 min after cessation of the sustained MVIC effort to 
check the time course of recovery. Thus, it lasts 1982 s 
in total, of which 200 s are TUT. This loading scheme is 
motivated by comparable sessions conducted to examine 
fatigue and recovery of skeletal muscle (Gandevia et al. 
1996; Søgaard et al. 2006).

The optimized sessions are computed as described 
above with Scenario ITS as initial guess. For Scenario 
OTS200, to allow a fair comparison, we limit the maxi-
mum number of contractions to 11 (which implies ns = 21 ), 
the total time to CT = 1982 s, and the time under tension 
to CTUT = 200 s as in the intuitive testing session. On each 
odd numbered model stage, we use constant controls and 
employ ni

m
= 100 discrete measurements to approximate 

the continuous measurements of the force transducer. Even 
numbered stages are considered rest periods. For Scenario 
OTS400, we use the same setup but increase the limit of 
the time under tension to CTUT = 400 s.

Additionally, we demonstrate how the uncertainties of the 
parameters propagate through the model. As no measure-
ment data are available, we assume that the intuitive and the 
optimized testing sessions resulted in the same parameter 
estimates p but with different standard deviations �p . We 
then draw 10,000 random samples from N(p, �2

p
) and simu-

late two different scenarios with these perturbed parameters. 
We redraw realizations with negative parameters, since the 
model is not evaluable for those. The probability for which is 
0.5% when using the standard deviations resulting from the 
intuitive testing session and 0% when using those resulting 
from the optimized testing sessions. First, we simulate Sce-
nario ICmax for 60 min, as we have done to estimate critical 
torque. Second, we simulate a possible resistance training 
session consisting of 5 sets of 5 maximum contractions last-
ing 5 s with 5 s inter-repetition rest and 120 s inter-set rest 
(Scenario RTS). For both scenarios, we then analyze the 
differences of end-MVIC torque of the perturbed settings to 
the nominal setting p. The kernel density estimates used for 
this analysis were obtained using the gaussian_kde function 
of SciPy 1.2.1 (Virtanen et al. 2020) with Scott’s rule of 
thumb for bandwidth selection.

Results

In the following, we provide the results of our computations. 
For readers who skipped the methods section, we redescribe 
our approach without the mathematical details. We refer to 
Table 1 for a concise overview of the simulation scenarios.

Model‑based estimation of critical torques

We compute the highest sustainable torque output of the 
elbow flexors by solving the optimization problem (4) for 
a sustained contraction (Scenario SC) and for intermittent 
contractions lasting 3 s with 2 s rest (Scenario IC) as con-
ducted by Burnley (2009) for the knee extensors. For Sce-
nario SC, the solution is 27.99% of baseline MVIC torque. 
For Scenario IC, the solution is 41.01% of baseline MVIC 
torque.

We verify our results by simulating the model for a sus-
tained MVIC effort (Scenario SCmax) and intermittent 
MVIC efforts lasting 3 s with 2 s rest (Scenario ICmax) 
until a plateau of MVIC torque is reached. These simula-
tions correspond to all-out tests proposed by Burnley (2009). 
Thus, the end-test torques provide estimates of CTs. Figure 3 
shows the model response obtained by simulating Scenarios 
SCmax and ICmax for 5 min. For both scenarios, a steady 
state according to our definition in “Model-based estima-
tion of critical torques” is not obtained after 5 min. End-
test torques are 32.59% of baseline MVIC torque for the 
sustained contraction and 54.72% of baseline MVIC torque 

Table 2   Overview of symbols used in OED problem (15)

Symbol Interpretation

CT Upper bound on total time
CTUT Upper bound on total TUT​
f Right-hand side of ODE system
hi Measurement function
hi
MVIC

MVIC torque
i Stage index
Ii
TUT

Time under tension
Ji Jacobian
ns Number of stages
p Parameters
p̂ Current parameter guess
�i
j

Standard deviation of measurement error
t Time
Ti Stage duration
ti
j

Measurement time
tr Trace of matrix
ui
abs

External torque
xi State variables
xi
p

Sensitivities of states
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for the intermittent contractions. Simulating the scenarios 
on a time horizon of 60 min results in steady states. The 
sustained contraction levels off at 28.01% of baseline MVIC 
torque. The intermittent contractions level off at 40.89% of 
baseline MVIC torque. Both solutions are similar to the 
results obtained by solving the optimization problem (4). 
To illustrate the discrepancy to the end-test torques obtained 
by the 5-min all-out test, these steady states are depicted as 
dash-dotted lines in Fig. 3.

To illustrate that the thus determined steady states sepa-
rate domains of contraction intensity, we recreate the experi-
mental setting of Burnley et al. (2012) for the elbow flexors. 
We simulate intermittent contractions lasting 3 s with 2 s 
rest at 80% (Scenario IC80) and at 120% (Scenario IC120) 
of the previously determined steady states on a time horizon 
of 60 min or until MVIC torque drops below target torque. 
These torques correspond to 32.71% and 49.07% of baseline 
MVIC torque. Figure 4 shows the model response obtained 
by simulating both scenarios. During Scenario IC80, MVIC 

torque approaches a steady state above the target torque at 
52.60% of baseline MVIC torque. During Scenario IC120, 
MVIC torque falls below target torque at t = 773 s.

Finally, to demonstrate the full potential of our approach, 
we compute the highest sustainable torque output of the 
elbow flexors for intermittent contractions depending on the 
duty cycle. The duty cycle is defined as the ratio tc∕(tc + tr), 
where tc denotes the duration of a contraction and tr denotes 
the inter-repetition rest. Figure 5 depicts this dependency.

Optimized testing sessions

In this work, we use the parameters obtained for the elbow 
flexors during the model development for illustrative pur-
poses. To use our approach in real life, the model needs 
to be calibrated to the subject and model parameters have 
to be provided. Therefore, one conducts experiments and 
fits the model to measurement data. The statistical proper-
ties of the parameter estimates depend on the experimental 
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Fig. 3   Model response obtained by simulating scenarios SCmax (a) 
and ICmax (b) for 5  min. The bottom row illustrates the absolute 
torque input as predicted by the model. The dash-dotted lines repre-

sent the steady states obtained by simulating the scenarios until a pla-
teau of MVIC torque is reached
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Fig. 4   Model response obtained by simulating Scenario IC80 for 
60 min (a) and Scenario IC120 until MVIC torque drops below tar-
get torque (b). The dash-dotted lines represent the target torques of 

the intermittent contractions. The torque inputs have been omitted for 
these plots as due to the high number of intermittent contractions the 
plots would become illegible
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setup but not on the measurement data. Thus, we can design 
experiments which reduce the statistical uncertainty of the 
estimates.

To illustrate the benefits of optimum experimental design 
(OED), we compare the uncertainties of the parameters 
resulting from an intuitive testing session (Scenario ITS) 
with those resulting from algorithmically designed opti-
mized testing sessions (Scenarios OTS200 and OTS400). 
The intuitive session consists of a 3 min MVIC effort fol-
lowed by 2 s MVIC efforts at 10 s, 30 s, 1 min, 2 min, 
5 min, 10 min, 15 min, 20 min, 25 min, and 30 min after 
cessation of the sustained MVIC effort to check the time 
course of recovery. Thus, it lasts 1982 s in total, of which 
200 s are time under tension (TUT). This scenario is moti-
vated by comparable sessions conducted to examine fatigue 

and recovery of skeletal muscle (Gandevia et  al. 1996; 
Søgaard et al. 2006). The optimized sessions are computed 
as described in “Optimized testing sessions”. For Scenario 
OTS200, to allow a fair comparison, we limit the maximum 
number of contractions to 11, the total time to 1982 s, and 
TUT to 200 s. For Scenario OTS400, we increase the limit 
of TUT to 400 s.

Figures 6 and 7 illustrate the loading schemes and the 
model response of the intuitive and the optimized testing 
sessions. Figure 8 illustrates the estimated standard devi-
ations of the model parameters and the trace of the vari-
ance–covariance matrix resulting from these sessions.  

Additionally, we demonstrate how the uncertainties of the 
parameters propagate through the model. As no measure-
ment data is available, we assume that the intuitive and the 

Fig. 5   Highest sustainable 
torque output of the elbow flex-
ors for intermittent contractions 
depending on the duty cycle. 
The duty cycle denotes the ratio 
tc∕(tc + tr), where tc denotes the 
duration of a contraction and tr 
denotes the inter-repetition rest
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Fig. 6   Model response obtained by simulating the intuitive testing session ITS (a) and the optimized testing session OTS200 (b). The bottom 
row illustrates the absolute torque input as predicted by the model. All contractions are maximal



1272	 European Journal of Applied Physiology (2020) 120:1263–1276

1 3

optimized testing sessions resulted in the same parameter 
estimates p but with different standard deviations �p . We 
then draw 10,000 random samples from the correspond-
ing  normal distribution and simulate two different scenarios 
with these perturbed parameters.

First, we simulate Scenario ICmax for 60 min, as we have 
done to estimate critical torque. Second, we simulate a pos-
sible resistance training session consisting of 5 sets of 5 
maximum contractions lasting 5 s with 5 s inter-repetition 
rest and 120 s inter-set rest (Scenario RTS). This loading 
scheme is illustrated in Fig. 9. Figure 10 shows the kernel 
density estimates of the differences of end-MVIC torque of 

the perturbed settings to the nominal setting p for both sce-
narios. Figure 8 illustrates the standard deviations of those 
differences.

Discussion

Model‑based estimation of critical torques

Our results show that our approach yields similar estimates 
for CTs as the all-out tests proposed by Burnley (2009), 
if those are conducted for a sufficiently long duration. On 

Fig. 7   Model response obtained 
by simulating the optimized 
testing session OTS400. The 
bottom row illustrates the abso-
lute torque input as predicted by 
the model. All contractions are 
maximal
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and trace tr(C) of the variance–covariance matrix resulting from the 
intuitive (Scenario ITS) and the optimized testing sessions (Scenar-
ios OTS200 and OTS400). All parameters were scaled to 1 for the 
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the standard deviations of the differences of end-MVIC torque of the 
10,000 perturbed settings from the nominal setting p using the param-
eter uncertainties resulting from the intuitive testing session (ITS) and 
from the optimized testing sessions (OTS200 and OTS400)
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the one hand, this verifies our model-based approach from 
a practical point of view. On the other hand, this augments 
the theoretical justification of the all-out tests, as the opti-
mization problem (4) arises purely from the definition of 
CT as the highest sustainable torque output.

Using the experimental setup of Burnley et al. (2012), 
we can illustrate that the determined steady states indeed 
separate domains of contraction intensity. This is remark-
able, as the concept of critical torque was not specifically 
implemented into the model (Herold et al. 2018) but rather 
emerges naturally. These results underline the importance 

of critical torque as an important fatigue threshold in exer-
cise physiology.

Our results also show that the durations needed to actually 
attain a steady state for the elbow flexors are longer than the 
5 min proposed by Burnley (2009) for the knee extensors. 
Yet, durations of 60 min can not be used in real experiments. 
Therefore, to a certain degree, an overestimation of critical 
torque is probable when using all-out tests. This is in line 
with other authors who found that the equivalent 3-min all-
out tests might overestimate critical power (Muniz-Pumares 
et al. 2018). In our simulations, this overestimation is more 

Fig. 9   Model response obtained 
by simulating Scenario RTS. 
The bottom row illustrates 
the absolute torque input as 
predicted by the model. This 
is one of two scenarios used 
to examine how the parameter 
uncertainties propagate through 
the model
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Fig. 10   Kernel density estimates obtained by analyzing the differ-
ences of end-MVIC torque of the 10,000 perturbed settings from the 
nominal setting p using the parameter uncertainties resulting from the 
intuitive testing session (ITS) and from the optimized testing sessions 

(OTS200 and OTS400). The left plot (a) shows the results for Sce-
nario ICmax. The right plot (b) shows the results for Scenario RTS. 
The parameter uncertainties of the optimized testing sessions result in 
sharper peaks around the mean value 0
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pronounced for the intermittent contractions than for the 
sustained contraction. Thus, we propose that the durations 
of all-out tests are adjusted to the subject and the exercise if 
conventional methods for the estimation of critical torque are 
used. However, we emphasize that these adjustments are not 
necessary when using our model-based approach.

Previous studies have shown the knee extensors to be 
more fatigable than the elbow flexors. For examples, we refer 
to Vernillo et al. (2017) for a comparison of MVIC efforts 
and to Frey-Law and Avin (2010) for an analysis of endur-
ance times. Our results are consistent with these findings, as 
the estimated critical torques of the elbow flexors are higher 
than the corresponding ones for the knee extensors. Burn-
ley et al. (2012), for example, report a mean critical torque 
of the knee extensors of 34% of baseline MVIC torque for 
intermittent isometric contractions lasting 3 s with 2 s rest. 
For the same contraction scheme, our computations yield a 
critical torque of 41% of baseline MVIC torque for the elbow 
flexors. Moreover, Hendrix et al. (2009a) give a mean criti-
cal torque of 17.6% of baseline MVIC torque for sustained 
contractions of the knee extensors. For the same contraction 
scheme, our computations yield a critical torque of 28% of 
baseline MVIC torque for the elbow flexors.

Different experimental conditions (e.g., joint angles) 
complicate a straightforward comparison of our results to 
other studies examining critical torques of the elbow flexors. 
Furthermore, deducing a clear trend from the considered 
studies proves to be challenging. Hendrix et al. (2009b), for 
instance, report a mean critical torque of 17.6% of baseline 
MVIC torque for sustained contractions of the elbow flex-
ors, compared to a mean value of 26.3% by Hendrix et al. 
(2010). In contrast, for a continuous isometric contraction 
of the elbow flexors that can be sustained for 60 min, Hag-
berg (1981) gives a mean contraction intensity of only 8.2% 
of baseline MVIC torque and Sato et al. (1984) give only 
10.3% of baseline MVIC torque. For intermittent isometric 
contractions lasting 2 s with 2 s rest that can be sustained for 
60 min, Hagberg (1981) reports a mean value of 25.1% of 
baseline MVIC torque. The high variability of reported val-
ues points out the need for further research, as it is unclear 
whether those result from inter-individual or from methodo-
logical differences.

Optimized testing sessions

Figure  8 illustrates that the optimized testing session 
OTS200 decreases the uncertainties of all parameters sub-
stantially compared to the intuitive session ITS. Scenario 
OTS200 consists of a prolonged MVIC effort in the begin-
ning and 8 MVIC efforts afterwards. Those are of slightly 
longer duration and distributed differently than in the intui-
tive testing session. However, the constraints imposed on 

the total time and on the time under tension seem to be too 
restrictive to allow an actual identification of the parameters.

Therefore, we increase the limit on TUT for the OED 
problem OTS400. Here, all parameters can be identified with 
reasonable accuracy (SD ≤ 10%). We acknowledge that a 
testing session lasting more than 30 min with almost 7 min 
of maximum contractions is taxing on the subjects. Never-
theless, we are certain that the benefit of determining several 
CTs in a single session outweighs this aspect. In case a test-
ing session has to be stopped, the measurement data does not 
have to be discarded but can be used in a multi-experiment 
setting (Schlöder and Bock 1983) for subsequent parameter 
estimations. This is a further advantage of our approach.

These scenarios serve as representative real-world exam-
ples and the improvements in Fig. 8 demonstrate what an 
algorithmic design of experiments is capable of. Depending 
on the preferences of the experimenters and the subjects, 
further experiments could be designed in a straightforward 
manner reducing the experimental effort considerably.

As the parameters of the model do not bear a direct physi-
ological meaning, designing specific experiments to reduce 
their uncertainties might seem unnecessary to practition-
ers. It is important to keep in mind that the uncertainties of 
the parameter estimates propagate through the model and 
influence other quantities of interest. Our simulations of the 
perturbed settings illustrate this influence on the estimate of 
critical torque and end-MVIC torque of a potential resistance 
training session. Scenario RTS was chosen as a further illus-
trative example since the model was designed to optimize 
such scenarios (Herold et al. 2018). The standard deviations 
in Fig. 8 and the kernel density estimates of Fig. 10 demon-
strate clearly how reduced parameter uncertainties improve 
the model prediction.

Limitations and future work

Our approach is not free of limitations and several directions 
of future research are possible.

First, we do not formally prove that the solutions of the 
optimization problem (4) are approached and obtained 
during an all-out test for all periodic loading schemes and 
parameter values, as this is beyond the scope of this work. 
Rather this has to be ensured individually, as we did for the 
two scenarios examined here.

Second, we can not provide an estimate of the curvature 
parameter W ′ . The intuitive connection to impulse above 
end-test torque could not be verified by Burnley (2009). 
Thus, at the moment, if an estimate of W ′ is desired, con-
ventional submaximal constant power tests to failure have 
to be employed.

Third, due to the phenomenological nature of the model 
it does not provide insight into the metabolic or systemic 
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profile of the subject and the tested muscles. Therefore, it 
remains to be examined experimentally which mechanisms 
are responsible for the model calibrated to the elbow flex-
ors reaching its steady state later than the knee extensors 
examined by Burnley (2009).

Fourth, the model is currently limited to isometric 
contractions only (Herold et al. 2018). It would be inter-
esting to see if a similar steady state behavior emerges 
naturally after the model has been extended to isokinetic 
contractions or contractions with dynamic constant exter-
nal resistance. Thus, incorporating a velocity dependency 
into the model could save additional experimental effort 
when dealing with these contractions. Morel et al. (2019), 
for example, showed that the asymptote of MVIC torque 
during an isokinetic all-out test depends on the contraction 
velocity. Intriguingly, during all-out tests, the time course 
of power bears strong resemblance with the time course of 
torque [see, for example, Fig. 1 in Vanhatalo et al. (2007)]. 
This might indicate a possible application of the model in 
power-measured exercises. Eriksson et al. (2016) already 
demonstrated that a model-based approach is also feasible 
for whole-body exercise. The authors developed a math-
ematical model of fatigue during whole-body exercise and 
qualitatively showed that their model can be used to deter-
mine critical power.

Last, we only consider unfatigued muscles. Yet, it is 
also possible to use our approach for prefatigued muscles 
by treating the initial values x0 as additional parameters 
during the parameter estimation. Then, studies investigat-
ing the influence of fatigue on CT similar to those of Van-
hatalo and Jones (2009) or Clark et al. (2018) are possible. 
This might provide further understanding and quantifica-
tion of the interaction of fatigue and fatigability.

Conclusion

We are able to estimate CTs for sustained and intermit-
tent isometric contractions with a model-based approach 
in a single optimized testing session. This reduces the 
experimental effort considerably compared to conventional 
testing.
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