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Abstract
Purpose To determine whether an innovative, motorized, wellness device that effortlessly produces physical activity (JD) 
can mitigate the hypertensive effects of prolonged sitting or lying down.
Methods Twenty-two normotensive and hypertensive adults of both genders gave informed consent to participate in a rand-
omized controlled crossover study of a passive simulated jogging device (JD) in both supine and seated postures. Each study 
participant was monitored with a continuous non-invasive arterial pressure monitoring device (CNAP) over 60 min. The 
initial 10 min served as baseline for each posture. The subjects were randomized to begin with either JD or SHAM control 
for 30 min, and monitoring was continued for an additional 10 min in one posture; three days later posture and order of JD 
or SHAM were changed.
Results In both seated and supine postures, SHAM was associated with a significant rise in blood pressure (BP) which 
was observed within 5–10 min; it continued to rise or remain elevated for over a 40-min observation period. In contrast, 
JD produced a significant decrease in both systolic and diastolic blood pressure in both postures. During recovery in seated 
posture JD decreased systolic and diastolic BP by − 8.1 and − 7.6 mmHg, respectively. In supine posture, a similar decrease 
in BP occurred.
Conclusions There is rapid onset of increase in systolic and diastolic BP with physical inactivity in both supine and seated 
postures. Administration of JD significantly decreased BP in both postures. Further studies are needed to assess long-term 
effectiveness.
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Abbreviations
JD  Passive simulated jogging device
BMI  Body mass index

db  Decibel
CNAP  Continuous noninvasive arterial pressure
EDRF  Endothelium derived relaxing factor
L-NAME  N(ω)-nitro-l-arginine methyl ester
Bl  Baseline
BP  Blood pressure

Introduction

Prior to 2017, hypertension was diagnosed if systolic blood 
pressure exceeded 140 mmHg. Using such criteria, it was 
estimated that hypertension affected more than 1.2 billion 
individuals worldwide and became the leading risk for 
cardiovascular morbidity and mortality. It comprised 40% 
of the worldwide population over the age of 40 years and 
accounted for approximately 50% of deaths from stroke, 
myocardial infarction, peripheral arterial disease, and renal 
disease among others (Ferdinand and Nasser 2017; Rossier 
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et al. 2017). Elevated blood pressure is asymptomatic and 
16% of American adults are unaware of it thereby exposing 
them to unforeseen future health risks and premature mortal-
ity (Paulose-Ram et al. 2017).

In 2017, the American College of Cardiology and Amer-
ican Heart Association released new high blood pressure 
guidelines that lowered the diagnostic threshold of hyper-
tension based upon the SPRINT trial (Systolic Blood Pres-
sure Intervention Trial) encompassing 55,000 persons and 
204,000 patient-years. In this study, maintaining systolic 
blood pressure below 120 mm Hg produced a significant 
decrease in the occurrence of stroke and myocardial infarc-
tion. Serious adverse effects with pharmacotherapy accom-
panied systolic pressure less than 120 mm Hg. Therefore, 
the diagnostic threshold for treatment of hypertension was 
set as greater than systolic blood pressure of 130 mm Hg to 
achieve optimal efficacy and safety of management (Ban-
galore et al. 2017; Bress et al. 2016; Cushman et al. 2016).

This 2017 guideline puts the prevalence of hypertension 
among American adults at 45.6% or 103.3 million individu-
als accompanied by the recommendation that 81.9 million 
take antihypertensive medications, Further, non-pharmaco-
logical interventions were recommended for 9.4% of Ameri-
can adults (Muntner et al. 2018).

As an initial step in prevention and treatment of hyperten-
sion, non-pharmacological interventions are recommended 
which consist of healthy lifestyle behavior that include main-
taining normal body weight with a healthy diet, minimizing 
oral sodium intake, stopping smoking tobacco products, lim-
iting the duration of physical inactivity, and reducing alcohol 
consumption (Ferdinand and Nasser 2017). Unfortunately, 
less than 2% of hypertensive patients and 8% of American 
adults adhere to all five of these lifestyle goals (Fang et al. 
2016; King et al. 2009; Cardiology ACo et al. 2017).

It has long been known that hypertension is associated 
with physical inactivity (Beilin et al. 1999; Borjesson et al. 
2016; Campbell et al. 2009; Kokkinos et al. 2011; Lobelo 
et al. 2018; Morris and Crawford 1958). The latter is more 
relevant as a health risk to hypertension than insufficient 
daily aerobic exercise as recommended by the American 
Heart Association. This is because aerobic exercise occupies 
only a small fraction of daytime activities, whereas physical 
inactivity constitutes a much greater portion of waking life, 
e.g., sitting while watching television, viewing a computer 
screen, riding in a transportation vehicle, and dining. Despite 
increasing awareness of the link between hypertension and 
a sedentary lifestyle, the timing of onset of the rise of blood 
pressure during prolonged sitting or lying in a fixed posture 
has not been fully investigated. Blood pressures determined 
by automated oscillometric or auscultatory means in con-
junction with arm cuff inflations indicate that blood pressure 
appears to rise within 1 h after onset of physical inactivity, 
but it is not clear as to when it begins. With uninterrupted 

physical inactivity, blood pressure continues to rise over an 
ensuing 6-h period (Larsen et al. 2014; Shvartz et al. 1983; 
Sziegoleit et al. 2010). Breaking up prolonged sitting with 
2-min periods of walking every 20 min prevents this rise of 
blood pressure (Larsen et al. 2014).

This paper addresses one of the components of an 
unhealthy lifestyle, e.g., increase duration of physical inac-
tivity. This was accomplished by assessing effects of a new, 
innovative wellness device that effortlessly produces physi-
cal activity, Jogging Device (JD) (General Wellness: Policy 
for Low Risk Devices: Guidance for Industry and Food and 
Drug Administration Staff 2016). The JD produces passive 
movement of the lower legs tapping against a semi-rigid 
bumper to simulate locomotion while subjects are sitting 
still or lying down.

The purposes of this investigation were to ascertain 
whether JD could mitigate the hypertensive effects of physi-
cal inactivity in the sitting or lying postures using non-inva-
sively recorded beat to beat blood pressure measurements.

Methods

IRB approval

This study and its informed consent forms were approved 
by the Western Institutional Review Board (WIRB), Study 
Number: 11172318 and WIRB: 20170208374 (WIRB, Puy-
allup, WA 98374-2115). The study is registered at Clini-
calTrials.gov (NCT03426774). This investigation is a sub-
study of the larger protocol in which multiple study postures 
and two different devices are being studied. Our study was 
designed as a randomized crossover trial. In this protocol, 
subjects were randomized to begin in either supine or seated 
postures and 3 days later crossing over with the starting pos-
ture reversed (Fig. 1). Subjects were recruited by word of 
mouth from personal contacts. The study protocol was ver-
bally communicated to the subject and provided with the 
approved written informed consent. All subjects were given 
the opportunity to ask questions. Interested participants 
executed the written informed consent.

Participants

Twenty-two ambulatory individuals were recruited for this 
investigation by word of mouth and gave their informed 
consent to participate. They were asked not to drink 
coffee on the day of their participation and asked again 
about coffee drinking on subsequent days of the study. 
Attempts were made to enroll a “young group” of subjects 
less than 59 years of age and an “elderly group” greater 
than 59 years of age. All subjects received financial remu-
neration for their participation. BMI was computed to 
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characterize participants as follows: BMI normal weight 
18.5–24.9, overweight 25–29.9 and obese 30 or more. The 
demographics are listed in Table 1.

Studies were conducted in the mid-morning and early 
afternoon. Sessions were limited to two daily for each sub-
ject. The duration of each session comprised about 15 min 

Fig. 1  Consort flow diagram of the study. Twenty-two ambula-
tory paid individuals were recruited for this randomized crossover 
sub-study of a larger investigation registered at ClinicalTrials.gov 
(NCT03426774) by word of mouth. Subjects were randomized to one 
of two allocation arms. On day 1, one arm began in the seated pos-
ture, the other arm began in supine posture. Each subject started with 
SHAM, followed by JD in their allocated posture. The SHAM con-
sisted of placing one JD in its operational position with the subject’s 

feet strapped to the pedals but not powered and another JD on the 
floor out of sight from the participant so that only operational noise 
from the powered JD could be heard. On day 3 the subjects returned 
and cross over occurred to the alternate posture from their first study 
posture (i.e., if the subject started in seated posture on day 1, on day 3 
they crossed over to supine posture). A total of 22 subjects were ana-
lyzed, and none were excluded from the analysis
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for instrumentation followed by 60 min thereafter for each 
blood pressure study. Each subject was randomized to 
begin in either in seated or supine posture with SHAM 
and passive simulated jogging device (JD) on day 1 and 
on day 3 crossed over to the opposite posture of day 1 
(Fig. 1). Four sessions were conducted for each subject; 
SHAM consisted of placing one JD in its operational posi-
tion with the subject’s feet strapped to the pedals but not 
powered and another JD on the floor out of sight from the 
participant so that only operational noise from the powered 
JD could be heard. The SHAM group is an experimental 
control with physical inactivity to control for other factors 
such as the presence of the JD and audible sounds, as con-
founding variables. All studies with JD were done at ‘run’ 
speed that produced about 175 steps per minute (a speed 
which accomplishes the recommended healthy activity of 
10,000 steps per day in 1 h).

Passive simulated jogging device (JD)

The portable JD incorporates microprocessor controlled, 
DC motorized movements of foot pedals placed within a 
chassis to repetitively tap against a semi-rigid surface for 
simulation of locomotion activities while the subject is 
seated or lying in a bed. It weighs about 4.5 kg with chas-
sis dimensions of 34 × 35 × 10 cm. It is placed on the floor 
for seated applications and secured to the footplate of a bed 
for supine applications. Its foot pedals rapidly and repeti-
tively alternate between right and left pedal movements to 
actively lift the forefeet upward about 2.5 cm followed by 
active downward tapping against a semi-rigid bumper placed 
within the chassis. In this manner, it simulates feet impact-
ing against the ground during selective speeds of locomotor 
activities Each time the passively moving foot pedals strike 
the bumper, a small pulse is added to the circulation as a 

Table 1  Demographics

Characteristics of subjects (n = 22) enrolled in the study, including: Age (years), calculated body mass index [BMI (kg/m2)], Baseline (BL) 
seated systolic/diastolic blood pressure(BP), heart rate (HR), and Hypertension Staging Status (HTN Status) based on 2017 High Blood Pres-
sure recommendations. Clinical Practice Guidelines in seated position [57], †NL normal, Elev Elevated, St 1, 2, = Stage 1 or 2 hypertension, and 
medications in current use

Subject Gender Age (years) BMI (kg/m2) BL seated BP 
(S/D mmHg)

BL seated 
HR (bpm)

HTN  status† Meds

1 M 55 27.8 113/67 75 NL Metoprolol/Metformin/Losartan
2 F 50 30.3 101/56 67 NL Lisinopril/Metformin/Levothyroxine
3 F 52 31.4 121/66 65 NL
4 F 41 32.3 123/85 90 St 1
5 F 52 29.1 121/80 79 Stl
6 M 31 29.8 121/70 65 NL
7 F 45 20.9 117/86 69 Stl
8 F 31 20.5 102/80 67 NL
9 F 38 23.2 121/86 79 Stl
10 F 44 33.5 152/97 68 St 2
11 F 47 35.4 133/70 73 Stl
Mean 44.2 28.6 120/77 69
SEM 2.5 1.5 4.2/3.6 2.4
12 M 60 29.3 143/88 64 St 2
13 M 68 30.7 121/71 63 NL
14 F 88 31.1 131/74 67 Stl Atenolol/Amlodipine
15 M 61 24 198/84 78 St 2 Metoprolol
16 F 61 29.6 158/68 74 St 2 Lisinopril/lnsulin
17 F 64 27.2 137/69 65 Stl Lisinopril/Metformin
18 F 68 23.2 183/124 77 St 2
19 F 69 28.9 126/66 57 Elev
20 M 68 32.1 123/78 62 Elev Atenolol
21 M 63 25.8 147/77 73 St 2 Atenolol
22 M 60 28.2 125/75 63 Elev
Mean 66.4 28.2 145/80 65
SEM 2.4 0.9 7.7/4.9 2.1
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function of pedal speed (Palatini et al. 1989). Buttons on the 
chassis offer selection of speeds, viz, walk (~ 120 steps/min, 
jog ~ 150 steps/min, run ~ 175 steps/min and race ~ 190 steps/
min) (Fig. 2). All studies with JD in this paper were done at 
‘run’ speed. An iPhone app through a blue tooth connection 
allowed replacement of the chassis controls.

The noise level of JD (n = 15) placed approximately 
120 cm from a sound meter during operation of run speed 
was mean 59 db, SD 2.5 db which is equivalent to conversa-
tions in a busy restaurant. The maximum acceleration forces 
in seated posture from a triaxial accelerometer during run 
speed operation of JD was ± 5.4 m/s2 over tibia, ± 5.1 m/s2 
over femur, and ± 1.0 m/s2 over forehead. The maximum 
acceleration forces in supine posture from a triaxial accel-
erometer during run speed operation of JD was. ± 2.9 m/
s2 over tibia, ± 6.3 m/s2 over femur and ± 3.6 m/s2 over the 
forehead.

Continuous noninvasive arterial pressure (CNAP)

The CNAP technology (CNSystems Medizintechnik AG, 
Graz, Austria) is a commercially available arterial pressure 
monitoring system composed of the CNAP Monitor 500, the 
CNAP double finger cuff, and the CNAP controller, which 
is attached to the patient’s forearm that connects the finger 
cuff, and an upper arm cuff for oscillometric-determined 
arterial pressures measurements at the brachial artery. The 
latter is the reference blood pressure used for calibration of 
the finger cuff-arterial pressures. CNAP technology is based 
on the principle of the vascular unloading technique. Infra-
red light is sent through the finger and the transmitted light 
depends on the absorption by the blood in the finger artery. 
Pressure from the outside finger cuff is applied to keep the 
blood volume in the finger artery constant in accordance to 
the transmitted light. This corresponding pressure needed to 

keep the diameter and volume of the finger artery constant 
throughout the arterial pressure cycle correlates with arterial 
pressure. To achieve constant volume in the finger arteries, 
the controller on the forearm makes multiple adjustments per 
second. The systolic pressure and diastolic pressure values 
are calibrated to the values obtained by oscillometric, upper 
arm cuff determination using a proprietary transfer function 
and mean arterial pressure is adjusted accordingly. Prior to 
beginning the current investigation, the CNAP device was 
sent to the factory for recalibration. For each session, an 
oscillometric arterial pressure measurement was obtained at 
its beginning and at 1 h at the time of the completion of the 
session for quality control. Only the initial value for blood 
pressure was used for calibration of CNAP.

Electrocardiogram

A three-lead electrocardiogram was employed for recording 
of heart rate using a sampling rate of 1000 points per second 
LabChart 7 (upgraded to heart rate variability measures), 
ADInstruments, Colorado Springs, CO 80906.

Procedure

Participants were instrumented with the CNAP system and 
ECG electrodes in the seated or supine postures and feet 
with stockings strapped with Velcro strips onto the pedals 
of the JD with a Velcro strip (JD), CNAP was calibrated 
to oscillometric determined blood pressure. This procedure 
took a total of about 15 min while the participant assumed 
the selected posture. Then 10 min of baseline arterial meas-
urements were recorded on the CNAP device as well as ECG 
waveforms. All waveforms were transferred to LabChart 7 
software (ADIntruments, Colorado Springs, CO 80906) on 
a PC for data processing. The mean values of the final 5-min 
recording were taken as baseline. Following 30 min opera-
tion of JD or SHAM, the JDs were powered off. Record-
ing of CNAP and ECG signals continued for approximately 
10 min into recovery and CNAP was recalibrated as a meas-
ure of quality control. Participants could stand and walk to 
a restroom before beginning a second session. Either one or 
two sessions were done on a given participant on a single 
day. The total duration of the session for CNAP and ECG 
recordings was 60 min.

Data processing

Data from LabChart 7 were inputted into an Excel Spread-
sheet for analysis of beat by beat blood pressure and heart 
rate throughout the study period. Mean values of systolic 
and diastolic blood pressures were computed every 5 min 
along with standard error of the mean. All systolic and dias-
tolic arterial pressure values were normalized to change in 

Fig. 2  Photograph of the Passive Simulated Jogging Device. The 
photograph depicts a close-up of the feet of a seated subject upon the 
pedals of the passive simulated jogging device (JD)
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mm Hg from individual baseline values. Differences for age, 
BMI, posture, and baseline blood pressure, between JD and 
SHAM were assessed with ANOVA. Statistical analysis was 
performed using Statistica software (Statsoft, Palo Alto, CA 
95304). Data are expressed as Mean ± SEM. Differences in 
blood pressure measures obtained with ANOVA were con-
sidered significant at p < 0.001.

Results

Participant characteristics

Table 1 lists the demographics of the participants. Three 
were overweight and 5 obese of the 11 individuals in the 
“young group”, whereas in the “elderly group,” 5 were 
overweight and 3 were obese of 11 individuals. With the 
2017 definitions of hypertension, 5 were normotensive, 5 
had stage 1 and 1 had stage 2 of the 11 in the “young group” 
(Bangalore et al. 2017). For the “elderly group” of 11 par-
ticipants, 1 was normotensive, 2 were stage 1, 5 were stage 
2 and 3 were hypertensive. Two participants in the “young 
group” and 6 in the “elderly group” were taking antihyper-
tensive drugs. There were two diabetic participants in the 
“young group” and two in the “elderly group”.

Effect of passive simulated jogging device (JD) 
and SHAM procedures on blood pressure

Since no statistical differences for blood pressure changes in 
SHAM and JD related to age, BMI and hypertensive status 
at baseline were apparent using ANOVA, all values were 
grouped to ascertain differences between seated and supine 
postures on the one hand and SHAM and passive simulated 
jogging device on the other hand. Because of small num-
ber of subjects in the trial multivariate regression analysis 
to tease out differences in subject characteristics was not 

employed and should be considered as a limitation in the 
aforementioned grouping.

In the seated posture, for SHAM, peak change of systolic 
pressure was 7.5 mm Hg above baseline and for JD, peak 
change of systolic pressure was 8.4 mm Hg below baseline. 
Statistical differences began 5 min after the baseline period 
(p < 0.001). Differences remained statistically significant 
during interventions and throughout recovery where for 
SHAM, peak change of systolic pressure was 7.5 mm Hg 
above baseline and for JD, peak change of systolic pres-
sure was 8.1 mm Hg below baseline. Diastolic pressures 
showed similar findings to a lesser extent (Table 2; Fig. 3). 
The same trends occurred in the supine posture, but sta-
tistical differences began later, e.g., 10 min after baseline 
(p < 0.001). During SHAM, peak change of systolic pressure 
was 10.4 mm Hg above baseline and during JD, peak change 
of systolic pressure was 11.2 mm Hg below baseline. These 
differences remained statistically significant during inter-
ventions and recovery period where peak change of systolic 
pressure for SHAM was 9.9 mm Hg above baseline and peak 
change of systolic pressure was 8.1 mm Hg below baseline. 
Diastolic pressures showed the similar findings to a lesser 
extent (Table 2; Fig. 4, p < 0.001). There were no statisti-
cal differences in values for systolic and diastolic pressures 
between seated and supine for both SHAM and JD (Fig. 5) 
(Supplementary Data File, Table S1).

No statistical differences occurred among SHAM and JD 
comparisons using ANOVA.

Discussion

As confirmed by this investigation, physical inactivity dur-
ing prolonged sitting or lying in bed is rapidly associated 
with increases of systolic and diastolic arterial blood pres-
sures (Table 2). The rise of blood pressure begins 5 min after 

Table 2  Peak Change in Blood Pressure Above/Below Baseline with the Passive Simulated Jogging Device (JD) or During SHAM

Peak change in systolic and diastolic blood pressure (mmHg) above (+) or below (−) baseline value, in seated and supine postures, during proce-
dure [JD(n = 22) or SHAM(n = 22)] or during the recovery period of JD, or SHAM. Data are MEAN (SEM)

Procedure Seated Supine

Systolic blood pressure (peak 
change above/below baseline 
mm Hg)

Diastolic blood pressure (peak 
change above/below baseline 
mm Hg)

Systolic blood pressure: (peak 
change above/below baseline 
mm Hg)

Diastolic blood pressure (peak 
change above/below baseline 
mmHg)

During procedure
 JD − 8.4 (1.6) − 7.6 (0.8) − 11.2 (2.2) − 7.8 (1.3)
 SHAM + 7.5 (1.8) + 5.1 (1.6) + 10.4 (2.4) + 5.9 (1.7)

Recovery
 JD − 8.1 (1.9) − 7.6 (1.1) − 8.1 (2.2) − 5.3 (1.3)
 SHAM + 7.5 (1.6) + 5.2 (1.6) + 9.9 (2.8) + 5.9 (1.7)
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baseline while seated and 10 min after baseline while supine 
and slowly continues over a 40-min observation period.

In the current study, subjects remained seated for approxi-
mately 60 min during data collection. The highest values 
for systolic and diastolic blood pressures above baseline 
were reached during the last 10 min of recovery in SHAM, 
viz., 7.5 ± 1.8 mm Hg, and 5.1 ± 1.6 mm Hg, respectively 
(Table 2). These elevations in seated blood pressure occurred 
much earlier than those recorded by Dempsey et al. who 
studied 24 inactive, overweight/obese type 2 diabetics, mean 
62 years, after 7 h of prolonged sitting with hourly oscil-
lometric blood pressures. In their study, the mean systolic 
pressure progressively rose 10 mm Hg and diastolic pressure 
to 5 mm Hg over baseline up to 7 h (Dempsey et al. 2016). 
The latter difference from our study, may be due to single 
triplicate hourly blood pressures measurements in Demp-
sey’s study which could have missed increases in blood pres-
sure in contrast to our continuous CNAP measurement of 
blood pressure.

Since physical inactivity is a major lifestyle cause of 
hypertension, adapting a lifestyle of breaking up sitting 
time by brief bouts of physical activity such as walking is 

an obvious solution to its health risks (Larsen et al. 2014). 
Unfortunately, this method has not been widely accepted 
owing to the psychological resistance of humans to behav-
ioral change no matter what the consequences. One might 
acknowledge that the “urge to sit” is part of a human’s make-
up and attempts to reduce excessive sitting must incorporate 
sitting as a component of its remedy. Prolonged sitting poses 
a risk to health because it promotes pooling of blood in the 
lower extremities that reduces shear stress to the endothe-
lium leading to endothelial dysfunction (Morishima et al. 
2016; Padilla and Fadel 2017; Restaino et al. 2015, 2016; 
Thosar et al. 2012). This diminishes the bioavailability of 
endothelial-derived nitric oxide and other vasomotor medi-
ators that prevent constriction of resistance blood vessels 
which in turn cause elevation of blood pressure.

Allowing individuals to sit during interventions to reduce 
blood pressure might contribute to the solution as demon-
strated by Morishima and associates (Morishima et  al. 
2016). These investigators reported that a human behavio-
ral activity, fidgeting, prevents decreased nitric oxide avail-
ability related to leg endothelial dysfunction. During 3-h of 

Fig. 3  Blood Pressure in the Seated Posture for Passive Simulated 
Jogging Device (JD) and SHAM. Change in systolic (a) and Diastolic 
(b) blood pressure from baseline for JD (n = 22) and SHAM (n = 22) 
over time. BL Baseline, JD, 5, 10, 15, 20, 25, 30, (5 min epochs), ini-
tial 5 min of recovery (REC 5) and end of study (END). Significant 
differences between JD and SHAM (*p < 0.001)

Fig. 4  Blood Pressure in the Supine Posture for Passive Simulated 
Jogging Device (JD) and SHAM. Change in systolic (a) and Diastolic 
(b) blood pressure from baseline for JD (n = 22) and SHAM (n = 22) 
over time. BL Baseline, JD, 5, 10, 15, 20, 25, 30 (5 min epochs), ini-
tial 5 min of recovery (REC 5) and end of study (END). Significant 
differences between JD and SHAM (*p < 0.001)
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sitting, unilateral intermittent fidgeting, e.g., voluntary rapid 
flexion and extension at the ankle joint at 250 taps per min-
ute, 1 min on and 4 min off, preserved endothelial function 
of the fidgeting leg by increasing its blood flow but did not 
increase blood flow of the control, opposite motionless leg. 
But fidgeting did not reduce the elevated blood pressure of 
prolonged sitting in their study possibly because of its brev-
ity. Mean blood pressure during sitting rose from 88 mm 
Hg at baseline to 94–95 mm Hg during the 3-h period of 
intermittent fidgeting and fell to 90 mm Hg after its ces-
sation. Continuous voluntary fidgeting of one or both legs 
cannot be considered a solution to the health hazard of pro-
longed sitting since it can only be briefly and intermittently 
utilized owing to the rapid onset of skeletal muscle fatigue. 
However, JD as an effortless activity in the current study 
demonstrates that “passive fidgeting-like” activity effectively 
lowers blood pressure associated with prolonged sitting as 
well as bed rest.

Animal studies carried out in our laboratory have shown 
that pulsatile shear stress upregulates cardiac endothelial 
nitric oxide synthase, as well as increases endogenous anti-
oxidants (Glutathioneperoxidase-1, Catalase, and Super-
oxide Dismutase). This increases total cardiac antioxidant 

capacity along with an increase in the antioxidant response 
element transcription factor Nrf2 translocation to the 
nucleus (Morris et al. 2013; Uryash et al. 2009, 2015). These 
processes reduce oxidative stress, a presumed, key factor in 
the pathogenesis of hypertension. The multifold actions of 
JD through adding pulses to the circulation increases nitric 
oxide bioavailability and diminishes oxidative stress without 
producing tolerance or side effects.

The JD has a small footprint that allows it to fit under-
neath a desk, in front of a chair or sofa, or within an airplane 
carry-on bag. Simplicity of operation allows self-admin-
istration. Multitasking is not an issue during usage since 
individuals can readily watch television, view a computer 
display, type, read, think, eat and converse with others while 
JD is operational. Voluntary movement of upper extremities 
allows performance of resistance exercises in conjunction 
with the JD.

The JD utilized in the current study has evolved in our 
laboratory over the past 18 years. Its principles are based 
upon observations first reported by Hutcheson and Griffin 
(1991) in 1991 that perfusion of an isolated blood vessel 
with pulsatile blood flow released endothelium-derived 
relaxing factor (EDRF) as measured by relaxation of a 
donor blood vessel. EDRF was later shown to be endothe-
lial-derived nitric oxide and pulsatile flow pulses released 
up to three times greater EDRF than steady, non-pulsatile 
flow. Incubation of the donor vessel with L-NAME, a mol-
ecule that inhibited nitric oxide synthesis, or removal of its 
endothelium abolished the vasodilator effects of increased 
pulsatile flow. Our laboratory confirmed Hutcheson’s obser-
vations and found that additional pulses through rapid peri-
odic acceleration and deceleration (pGz) of an isolated blood 
vessel perfused with pulsatile flow increased nitric oxide 
release up to fourfold over pulsatile flow alone as meas-
ured with a nitric oxide electrode. Further, pGz significantly 
decreased elevated arterial blood pressure in anesthetized 
swine caused by prior administration of L-NAME indicating 
its potential role in hypertension (Adams et al. 2003).

Our initial attempts to create a device for non-invasive 
administration of pulsatile shear stress to humans involved 
fabrication of a motion platform with a gurney-like appear-
ance which was driven by a two-flywheel motor assembly. 
In normal humans and patients with various diseases, the 
subject lay on a mattress placed onto the motion platform 
for repetitive head-to-foot movements at approximately 
140 cycles per minute. The g forces on the platform were 
± 2.2 m/s2. The device was 222 cm long, 77.5 cm wide, 
and weighed 211 kg. A foot board, 112 cm high, for strap-
ping the subject’s feet enclosed in shoes was utilized to 
couple the body to the motion platform during whole body 
periodic acceleration. The motion platform was capable 
of moving subjects up to 150 kg in body weight at rates 
between 60 cycles and 200 cycles per minute aexpenditure 

Fig. 5  Blood Pressure During Passive Simulated Jogging Device (JD) 
in Seated and Supine Postures. Change in systolic (a) and Diastolic 
(b) blood pressure from baseline for during JD (n = 22) over time. BL 
Baseline, JD, 5, 10, 15, 20, 25, 30, (5 min epochs), initial 5 min of 
recovery (REC 5) and end of study (END). No significant differences 
between seated and supine. (Data not shown for SHAM)
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for hypertension, thereforend up to ± 3.9 m/s2 which intro-
duced a small pulse into the circulation as the body accel-
erated and decelerated. This technology was called Whole 
Body Periodic Acceleration (WBPA) (Sackner et al. 2005).

Demonstration of the release of nitric oxide during 
WBPA was shown by descent of the dicrotic notch of the fin-
ger photoplethysmograph-derived pulse down the diastolic 
limb of the pulse (Sackner et al. 2005). This phenomenon 
reflects the vasodilator action of NO on resistance vessels 
owing to delay in pulse wave reflection (Chowienczyk et al. 
1999; Nier et al. 2008). During WBPA, added pulses and 
motion artifacts obscure visualization of the dicrotic notch 
position and an ECG R-wave-triggered, ensemble-averaging 
computer filtering program was necessary to reveal its loca-
tions. Motion of the upper arms during WBPA also inter-
fered with blood pressure recordings. Both normal subjects 
and diseased patients showed descent of the dicrotic notch 
down the diastolic limb of the finger pulse with WBPA 
administration (Sackner et al. 2005). It was also found that 
a single treatment with WBPA increased brachial flow-medi-
ated vasodilatation (FMD) in healthy volunteers (Takase 
et al. 2013). Despite effectiveness in improving endothelial 
function, WBPA was not widely accepted as a noninvasive 
means to increase bioavailability of nitric oxide because the 
motion platform footprint took up too much floor space, was 
too heavy and non-portable, could only be used in supine 
posture, too costly, and its operation produced motion arti-
facts that obscured physiological signals from the upper 
extremity.

The JD was designed to eliminate limitations of WBPA 
listed above while still producing physical activity and 
increasing pulsatile shear stress to the endothelium. To sub-
stitute for accelerating and decelerating the whole body as a 
means for adding pulses to the circulation by fluid inertia, JD 
adds pulses by passively tapping the feet rapidly and repeti-
tively against a semi-rigid surface analogous to locomotion. 
To test effectiveness in humans, changes of blood pressure 
during application of JD were measured since increased 
pulsatile shear stress releases vasodilator mediators such 
as nitric oxide, prostacyclin, and adrenomedullin into the 
circulation (Adams et al. 2003, 2005, 2009; Martinez et al. 
2008). Therapeutic levels of these mediators were judged by 
reduction of blood pressure. As a model for increased blood 
pressure, we turned to physical inactivity such as prolonged 
sitting or bed rest.

It is estimated that the annual healthcare expenditure for 
hypertension in the USA exceeds $48.6 billion. The treat-
ments for hypertension includes lifestyle modifications (diet, 
and physical activity), and pharmacologic therapy (Cardi-
ology ACo et al. 2017). The estimated mean total annual 
expenditure for patients with hypertension are estimated 
at $3914 for those without comorbidities, and $13,920 
for those with 2 or more comorbidities (Park et al. 2017). 

Medications have been shown to account for 42% of the 
direct medical expenditure for hypertension, therefore, 
annual cost of medications is between $1643 and $5846 
(Wang et al. 2017). Annual membership to gyms could range 
from $250 to $2500 or higher. A one-time expense for JD, is 
projected to be in the range of $500–600, thus making this 
intervention a potentially low-cost strategy.

JD is an effective, technology to effortlessly reduce ele-
vated blood pressure associated with prolonged sitting or 
bed rest. The present study showed its acute effectiveness but 
long-term studies are needed to demonstrate chronic effec-
tiveness. Prolonged bedrest has corollary issues to sitting 
but its risk to elevating blood pressure has not yet been ade-
quately studied (Nosova et al. 2014). Based upon the results 
of the current study of blood posture in the supine posture, 
application of JD might also reduce elevated blood pressure 
induced by inactivity associated with prolonged bed rest.

Conclusion

The passive simulated jogging device (JD) is an effective, 
effortless, technology to acutely lower elevated blood pres-
sure present during physical inactivity such as uninterrupted 
sitting or bed rest. Long-term studies of JD are necessary 
to demonstrate effectiveness in states of chronic physical 
inactivity.
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