ERRATUM

Niels Uth · Henrik Sørensen · Kristian Overgaard Preben K. Pedersen

Estimation of $\dot{V}O_{2max}$ from the ratio between HR_{max} and HR_{rest} – the Heart Rate Ratio Method

Published online: 17 November 2004

© Springer-Verlag 2004

Eur J Appl Physiol (2003) 91:111-115

The Appendix contained errors that were overlooked in the proof. The correct version is printed below.

Appendix

Derivation of an equation for a relationship between $\dot{V}O_{2max}$ and the ratio between HR_{max} and HR_{rest}

According to the Fick principle, $\dot{V}O_2$ may be expressed as the product of cardiac output (\dot{Q}) and the arterio-venous O_2 difference $(CaO_2 - C\bar{v}O_2)$.

$$\dot{V}O_2 = \dot{Q} \cdot (C_a O_2 - C\bar{v}O_2) \tag{1}$$

Thus, since \dot{Q} is the product of HR and stroke volume (SV), \dot{V} O₂ can be expressed as:

$$\dot{V}O_2 = HR \cdot SV \cdot (C_aO_2 - C\bar{v}O_2) \tag{2}$$

When applied to rest $\dot{V}O_2$ can be expressed as:

$$\dot{V}O_{2rest} = HR_{rest} \cdot SV_{rest} \cdot (CaO_2 - C\bar{v}O_2)_{rest}$$
(3)

implying that:

The online version of the original article can be found at http://dx.doi.org/10.1007/s00421-003-0988-y

N. Uth (⊠) · H. Sørensen · K. Overgaard Department of Sport Science, University of Aarhus, Katrinebjergvej 89C, 8200 N Aarhus, Denmark E-mail: nielsuth@idraet.au.dk

Fax: +45-8942-4894

P. K. Pedersen Institute of Sports Science and Clinical Biomechanics, University of Southern Denmark, Campusvej 55,

5230 M Odense, Denmark

$$\frac{\dot{V}O_{2rest}}{HR_{rest} \cdot SV_{rest} \cdot (CaO_2 - C\bar{v}O_2)_{rest}} = 1$$
 (4)

During maximal exercise the Fick equation reads:

$$\dot{V}O_{2\text{max}} = HR_{\text{max}} \cdot SV_{\text{max}} \cdot (CaO_2 - C\bar{v}O_2)_{\text{max}}$$
 (5)

By multiplying the right side of Eq. 5 with 1 in the form of Eq. 4 it follows that:

$$\dot{V}O_{2max} = \frac{HR_{max} \cdot SV_{max} \cdot (CaO_2 - C\bar{v}O_2)_{max}}{HR_{rest} \cdot SV_{rest} \cdot (CaO_2 - C\bar{v}O_2)_{rest}} \cdot \dot{V}O_{2rest}$$
(6)

01

$$\dot{V}O_{2\text{max}} = \left(\frac{HR_{\text{max}}}{HR_{\text{rest}}}\right) \cdot \left(\frac{SV_{\text{max}}}{SV_{\text{rest}}}\right) \cdot \left(\frac{(CaO_2 - C\bar{\nu}O_2)_{\text{max}}}{(CaO_2 - C\bar{\nu}O_2)_{\text{rest}}}\right)$$

$$\cdot \dot{V}O_{2\text{rest}}$$
(7)

This implies that $\dot{V}O_{2max}$ may be calculated as the product of $\dot{V}O_{2rest}$ and the ratios of maximal versus resting values of, respectively, HR, SV, and $(CaO_2-C\bar{V}O_2)$.

 $\dot{V}{\rm O}_{\rm 2rest}$ is dependent on and increases with the individual's body mass. Åstrand and Rodahl (1986) suggest that, relative to body mass (BM), resting $\dot{V}{\rm O}_2$ equals about 3.5 ml·min⁻¹·kg⁻¹ (one MET), but slightly lower values were reported by McCann and Adams (2002) (3.3 for men and 3.1 for women, respectively). As a compromise we chose 3.4 ml·min⁻¹·kg⁻¹ to represent the mass-specific resting $\dot{V}{\rm O}_2$. Accordingly, $\dot{V}{\rm O}_{\rm 2rest}$ (ml·min⁻¹) may be expressed as 3.4 ml·min⁻¹·kg⁻¹ times BM in kg.

$$\dot{V}O_{2max} = \left(\frac{HR_{max}}{HR_{rest}}\right) \cdot \left(\frac{SV_{max}}{SV_{rest}}\right) \cdot \left(\frac{(CaO_2 - C\bar{v}O_2)_{max}}{(CaO_2 - C\bar{v}O_2)_{rest}}\right)$$
$$\cdot BM \cdot 3.4 \text{ ml} \cdot \text{min}^{-1} \cdot \text{kg}^{-1}$$
(8)

From a test perspective only the HR_{max}-to-HR_{rest} ratio is readily obtainable. The other two ratios in the equation involve complicated measurements, in fact

more complicated than the measurement of $\dot{V}O_2$ itself. Equation 8 suggests, however, that if the max-to-rest ratios of SV and $(CaO_2-C\bar{\nu}O_2)$ were approximately constant across individuals, $\dot{V}O_{2max}$ per kg BM may be estimated by experimentally determining the HR_{max}-to-HR_{rest} ratio, and multiplying this ratio with these constants and 3.4 ml·min^{-1·k}g⁻¹. Nottin et al. (2002) and Chapman et al. (1960) reported the average SV_{max}·SV_{rest}⁻¹ to be 1.28 and 1.29, respectively, in men, when measured in the supine position. Thus, according to the studies mentioned it appears that SV_{max}·SV_{rest}⁻¹ may be replaced by a dimensionless value of approximately 1.3.

The arterio-venous oxygen difference increases from rest to maximal exercise. Chapman et al. (1960) found

the average ratio between maximal and resting $(CaO_2 - C\overline{\nu}O_2)$ to be 3.4 in men. We therefore replaced $(CaO_2 - C\overline{\nu}O_2)_{max}$: $(CaO_2 - C\overline{\nu}O_2)_{rest}^{-1}$ in Eq. 8 with 3.4. Altogether, data from the literature suggest that Eq. 8 may be simplified to the approximation:

$$\begin{split} \dot{V}O_{2max} &= \left(1.3 \cdot 3.4 \cdot 3.4 \, \text{ml} \cdot \text{min}^{-1} \cdot \text{kg}^{-1}\right) \cdot \text{BM(kg)} \cdot \frac{\text{HR}_{max}}{\text{HR}_{rest}} \\ &= 15.0 \, \text{ml} \cdot \text{min}^{-1} \cdot \text{kg}^{-1} \cdot \text{BM (kg)} \cdot \frac{\text{HR}_{max}}{\text{HR}_{rest}}, \, \text{or} \end{split}$$

$$(9)$$

Mass - specific

$$\dot{V}O_{2\,\text{max}} = \left(15.0\,\text{ml}\cdot\text{min}^{-1}\cdot\text{kg}^{-1}\right)\frac{\text{HR}_{\text{max}}}{\text{HR}_{\text{rest}}}$$
 (10)