ERRATUM

Iwajlo M. Kandjov

Thermal stability of the human body under hyperbaric environmental conditions: a theoretical study

Published online: 18 December 2001 © Springer-Verlag 2001

Eur J Appl Physiol (2001) 85:572-577

As a result of technical problems, some of the abbreviations in Table 1 were wrong. A correct version of the table appears below.

Table 1 Definitions of abbreviations used in the text

Abbreviation	Definition	Units
ATA	Atmospheres absolute	atm
с	Constant in heat transfer equations	None
C	Convective heat loss from body surface	$W \cdot m^{-2}$
d	Diameter of man equivalent cylinder	m
D	Diffusion coefficient of water vapour in gas mixture	$m^2 \cdot s^{-1}$
Do	Diffusion coefficient of water vapour in air	$m^2 \cdot s^{-1}$
ea	Water vapour pressure in ambient air	mmHg
es	Water vapour pressure on body surface	mmHg
g	Gravitational constant	$m \cdot s^{-2}$
Ğr	Grashof number $[(\beta \cdot g \cdot d^3 \cdot \Delta T) \cdot (v)^{-2}]$	None
h _c	Convective heat transfer coefficient in gas mixture	$W \cdot m^{-2} \cdot C^{-1}$
h _{co}	Convective heat transfer coefficient in air	$W \cdot m^{-2} \cdot C^{-1}$
h _D	Mass transfer coefficient	$m \cdot s^{-1}$
h _e	Evaporative heat transfer coefficient in gas mixture	W·m ⁻² ·mmHg ⁻¹
h _{eo}	Evaporative heat transfer coefficient in air	W·m ⁻² ·mmHg ⁻¹
Ι	Heat flow of solar radiation on human body surface	W·m ^{−2}
k	Thermal conductivity of gas mixture	$W \cdot m^{-1} \cdot C^{-1}$
ko	Thermal conductivity of atmospheric air	$W \cdot m^{-1} \cdot C^{-1}$
LR	Lewis relationship $(h_e \cdot h_c^{-1})$	°C∙mmHg ^{−1}
M	Metabolic heat production	$W \cdot m^{-2}$
Nu	Nusselt number $[(h_c \cdot d) \cdot k^{-1}]$	None
Р	Ambient pressure in gas mixture environment	ATA
Po	Atmospheric pressure at sea level	1 ATA
Pr	Prandtl number $(v_n \cdot a^{-1})$	none
R	Radiative heat loss	$W \cdot m^{-2}$
Re	Reynolds number $[(v \cdot d) \cdot v_n^{-1}]$	none
RHL	Respiratory heat loss	$W \cdot m^{-2}$
Sh	Sherwood number $[(h_{\mathbf{D}} \cdot d) \cdot \mathbf{D}^{-1}]$	None
ΔT	Temperature difference at the body-gas interface	°C
U	Sum of heat flows	W·m ^{−2}
β	Coefficient of volume expansion of air	$^{\circ}C_{2}^{-1}$
ν	Kinematic viscosity of mixture	$m_{2}^{2} \cdot s_{1}^{-1}$
vo	Kinematic viscosity of atmospheric air	$m^2 \cdot s^{-1}$

The online version of the original article can be found at http://dx. doi.org/10.1007/s004210100412

I.M. Kandjov Medical Climatology Department, National Centre of Physical Therapy and Rehabilitation, 2-v Ovcha Kupel Blvd, 1618 Sofia, Bulgaria E-mail: ncflr@datacom.bg Tel.: + 359-2-9557640; Fax: + 359-2-553023