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Abstract This work outlines an efficient deep learning approach for analyzing vascular wall fractures using
experimental data with openly accessible source codes (https://doi.org/10.25835/weuhha72) for reproduction.
Vascular disease remains the primary cause of death globally to this day. Tissue damage in these vascular
disorders is closely tied to how the diseases develop, which requires careful study. Therefore, the scientific
community has dedicated significant efforts to capture the properties of vessel wall fractures. The symmetry-
constrained compact tension (symconCT) test combined with digital image correlation (DIC) enabled the
study of tissue fracture in various aorta specimens under different conditions. Main purpose of the experiments
was to investigate the displacement and strain field ahead of the crack tip. These experimental data were to
support the development and verification of computational models. The FEMmodel used the DIC information
for the material parameters identification. Traditionally, the analysis of fracture processes in biological tissues
involves extensive computational and experimental efforts due to the complex nature of tissue behavior under
stress. These high costs have posed significant challenges, demanding efficient solutions to accelerate research
progress and reduce embedded costs. Deep learning techniques have shown promise in overcoming these
challenges by learning to indicate patterns and relationships between the input and label data. In this study,
we integrate deep learning methodologies with the attention residual U-Net architecture to predict fracture
responses in porcine aorta specimens, enhancedwith aMonte Carlo dropout technique. By training the network
on a sufficient amount of data, the model learns to capture the features influencing fracture progression. These
parameterized datasets consist of pictures describing the evolution of tissue fracture path along with the DIC
measurements. The integration of deep learning should not only enhance the predictive accuracy, but also
significantly reduce the computational and experimental burden, thereby enabling a more efficient analysis of
fracture response.

Keywords Soft biological tissue · Experimental data · Vascular tissue · Fracture · Deep learning · Attention
residual U-Net architecture · Open-access source codes and data

1 Introduction

Clinical observations have shown that tissue failure and damage are important aspects influencing the evolution
of vascular diseases [1–4]. The unique characteristics of soft tissue, being both a composite material and
a living organism, make age a crucial factor influencing results. Many experimental setups designed for
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Fig. 1 Biological visualization of vascular tissue [11]

common materials often fall short in fully capturing the fracture properties of vessel walls. Most current
experimental setups are designed to investigate common engineering materials, and as a result, they often
fall short in fully capturing the fracture properties of vessel walls due to the unique characteristics of soft
tissues. Numerous experimental findings have highlighted the important role of biochemomechanical factors
[5–7], which contributes to the initiation and progression of vascular disorders. Despite various experimental
setups having been utilized to collect data describing themechanical properties of vascular tissue Fig. 1, crucial
information required for the calibration and validation of materials models is often inadequately captured. This
limitation arises from failures in accurately representing mechanical behavior, particularly during instances
of failure and uncontrolled tissue fracture evolution [8]. As a result, these experimental data are incapable of
providing a comprehensive understanding of vascular tissue failure.

Fundamentally all experimental setups face significant limitations to capture fully all mechanisms influ-
encing the vascular tissue fracture. To surmount some of these challenges, the application of the symmetry-
constrained compact tension (symconCT) test, coupledwith digital image correlation (DIC), has been employed
[9]. This approach enables the examination of tissue fracture in diverse porcine aorta specimens under varying
conditions, aiming to capture and identify the material parameters influencing the propagation of soft tissue
fracture. While these experiments, combined with digital image correlation (DIC) [10], allow for the obser-
vation of soft tissue fracture progression, the manual nature of this procedure requires significant physical
effort. Consequently, recognizing potential challenges in physical interpretation, the adoption of deep learn-
ing to replace digital image correlation (DIC) data emerges as a promising avenue for the evaluation of the
experimental data.

Over the past decades, there has been significant progress in numerical solutions, leading to increased
accuracy in handling complex simulations, particularly in terms of both temporal and spatial aspects. These
advancements had an impact tomultiple fields, including awide spectrumof applications, such as the simulation
of cardiovascular disease evolution in coupled biochemomechanical material models [12–14], also in the
investigation of material parameters describing the mechanical properties of a vascular tissue. Despite the
continuing algorithmic progress [15], the implementation of parallelization architectures and the optimization
of graphics processing units (GPUs) in the computation process, still in many cases the computational demand
is high [16], especially in cases where the goal of assessing numerous material parameters is an essential part
of the work.

In this study, a purely data-driven deep learning model is introduced as a computationally efficient solution
method that is capable of providing a high level of accuracy. In comparison with the newly introduced approach
of physics-based neural networks [17–21], an advantage of a data-driven model is that it does not require any
preceding knowledge as for the science describing the problem [22]. In the last years, deep learning models
have displayed an impressive ability to return substantial solid results in visual recognition tasks [23–26].
Yet, their success is limited when factors such as the size of the training datasets and network need to be
taken under consideration [27]. These challenges show up in particular in the domain of biomedical image
processing, where inmost cases a huge amount of data translating into thousands of images is necessary to train
a deep learning model [16]. In the presented contribution, the newly proposed architecture known as attention
residual U-Net is implemented. The selection of this architecture is based on literature, which suggests that
with a smaller dataset, this approach is expected to yield more accurate results compared to a traditional
convolutional neural network (CNN) model [28–32]. The increased efficiency of the U-Net in segmentation
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Fig. 2 Illustration of the symconCT fracture test of a porcine aortic specimen along with the DIC (left) and FEM mesh (right).
Displacement u is applied to two clamps that are connected by an elastic beam. The design fosters stable and symmetrized fracture
propagation, and the speckle pattern at the endothelial vessel wall surface supports DIC-based full-field strain measurements.
The test is performed in physiological saline solution at 37 degrees Celsius

has been essential, since our input data come from physical experiments [9], which by their nature are limited
and there is a lot of extra noise making it harder to identify the important features.

The structure of this work is as follows: In Sect. 2, a brief introduction to the symmetry-constrained compact
tension (symconCT) experiment coupled with digital image correlation (DIC) along with the FEM model is
presented. The architecture of our U-Net model will be shown in Sect. 3, while in Sect. 4 the numerical results
are presented and discussed to explain the findings. Lastly, in Sect. 5, possibilities for extending this work
are intended to be discussed. Open-access source codes and data (https://doi.org/10.25835/weuhha72) are
provided, constituting a convenient platform for future developments.

2 Experimental–numerical approach studying fracture mechanisms

The symmetry-constrained compact tension (symconCT) fracture test enhances the classical CT test by insert-
ing an elastic metal beam that connects two 3D printed clamps. Besides pre-straining the approximately
30x35 mm2 tissue specimen, the beam forces the clamps to open symmetrically, see Fig. 2.

Prior to testing, a 10mm pre-notch was excised in the central portion of the test specimen, resulting in a
stress concentration at the tip. This concentration ensures that the fracture propagates from that point. Tensile
loading, in either the axial or circumferential direction, was applied orthogonal to the pre-notch at 3mm/min.
The tensile machine (ADMET eXpert 4000 Universal Testing System, ADMET, Inc.) recorded the applied
force and clamp displacement at 100 Hz, and a digital camera (Nikon D300S equipped with a lens Sigma
105mm F2.8 DG DN MACRO, Sigma Corporation) took images at 1 Hz for digital image correlation (DIC)
analysis (Vic2D, Correlated Solutions, Inc.).

The symconCT test allows for stable and controlled crack propagation and therefore enables full-field
surface displacementmeasurements, in particular ahead of the crack tip.All details concerning the experimental
setup are reported in [9].

2.1 Comparison of the experimental recording and FEM results

With the aim of identifyingmaterial parameters from the experimental recordings, 2D plane stress FEMmodels
is employed in line with [33]. Those models represent the individual dimensions and fracture paths of selective
specimens. A quasi-nonlinear viscoelastic model, employing the isotropic Yeoh strain energy density, is hereby
utilized to describe the behavior of the aortic vessel wall tissue. Although this form of constitutive relation has
been proposed for rubberlike materials [34], it has also been frequently employed to describe the mechanics of
the aortic wall, especially for aneurysmatic tissue [35]. We assumed irreversible fracture-related processes to
accumulate in a fracture process zone that develops ahead of the crack tip, an established approach in fracture
modeling [36,37]. An isotropic cohesive zone was therefore employed. Next, we provide a summary of our
FEM model.

https://doi.org/10.25835/weuhha72
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2.1.1 Governing equations

We chose to employ a viscoelastic tissue description, given the high strain rates observed ahead of the crack
tip in the symconCT test [9]. In this regard, the free energy function defining vascular tissue is formulated as
follows

ψ = ψ∞ −
p∑

k=1

gk
(
1 − e−t/τk

)
ψ∞ with ψ∞ = c1(I1 − 3) + c2(I1 − 3)2 and I1 = tr

[
FT F

]
. (1)

The Prony series parameters gk and τk are given in [33] and have been extracted from the literature [38].
The elastic properties ψ∞ of the media are captured by the isotropic Yeoh strain energy density. Hereby, the
material parameters c1 and c2 are to be identified from the symconCT test recordings and F is the material
deformation gradient tensor. For describing fracture behavior, we employed an isotropic cohesive zone model.
The fracture energy (the energy to form the unit area of fracture surface in the reference configuration) then
reads

G = 1

2

[
K0δ

2
0 + Ks(δmax − δ0)

2
]
, (2)

with the elastic limit separation δ0, the stiffness K0 and the opening at complete fracture δmax. The cohesive
strength T0 and the fracture energy G are parameters to identify from the symconCT test recordings, while K0
was fixed to a value that displayed minimal elastic gap opening in preliminary numerical simulations. For the
inverse parameters identification, the scalar objective function

φ(p) = βφforce(p) + (1 − β)φdefo(p), (3)

is minimized, where p = (c1, c2) and β = 0.5 weights represent the normalized errors in clamp force
φforce and Green–Lagrange strains φdefo, respectively. At this stage, the identification considered experimental
recording prior to any visible signs of crack propagation. Green–Lagrange strains have been compared at
colocated coordinates within a region of 10 x 5mm2 on the specimen surface. The comparison is made at
clamp displacement increments of 1mm, and further details are reported elsewhere [33]. Finally, at fixed c1
and c2 parameters, the minimization of φforce(p), identified p = (T0,G), where T0 and G denote the cohesive
strength and the fracture energy of vessel wall tissue, respectively. Further details are reported in our previous
work [33].

3 Deep learning model implementation

In this work, we implemented an enhanced U-Net architecture known as attention residual U-Net [39,40]. The
main idea behind the structure of a classical U-Net model as in [16] implies the improvement of a traditional
contracting path with embedded successive layers. The denoting advantage of a U-Net architecture is the
concatenation of features obtained during the downsampling in form of skip connections with the upsampling
output. This method allows to store important information and hence create a more refined output in the deeper
layers of the model. In most common U-Net models, the expanding path follows a configuration similar to the
contracting path, resulting in the distinctive U-shaped form.

3.1 Network architecture

Our network architecture is illustrated in Fig. 3. It consists of a contracting path (left side), a bottleneck (central
side) and an expanding path (right side) [16,41]. The arrows navigating from the contracting to the expanding
path refer as skip connections. The purpose of the skip connections is to store extra information from important
features, where the upsampling outputs are concatenated with skip connections to increase the localization
of features, leading to an enhanced final prediction. In this work, a more sophisticated U-Net architecture is
implemented using the attention and residual techniques [39,40]. The attention mechanism allows the network
to emphasize in important features, enabling focused attention on critical regions. The integration of residual
connections aids in reducing information loss during training, ensuring more efficient and stable learning. The
model is further enhanced with the implementation of a Monte Carlo dropout technique [42,43]. This method
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Fig. 3 Attention residual U-Net architecture, enhanced with a Monte Carlo dropout technique

acts like a Bayesian approach, working during both training and prediction. We chose it because our study
involves a lot of nonlinearity, mainly due to the unique properties of soft tissue and the use of real experimental
data as input. These real-world data often contain a high ratio of noise, making the training process more
challenging. The architectural design of this model is structured around two downsample blocks, a bottleneck
and two upsample blocks.

In each downsample block parts of the contracting path, the residual technique is implemented in order to
increase the efficiency and hence reduce the loss of information. This implies that within each downsample
block, its input tensor cuts across two paths. In the primary path, two 2D convolutions with a filter size 3
x 3 are applied, each succeeded by a rectified linear unit (ReLu) activation function. Simultaneously in the
secondary path, this tensor undergoes through a single convolution, leading to the creation of shortcut path.
These steps are followed by the addition of the outputs from both paths and a ReLu activation. The output
tensor experiences a bifurcation; hence, it could be seen as the creation of two instances. The first instance
contains the 2 x 2 max pooling operation with a stride of 2, where the output tensor of this operation will be
the input information for the subsequent downsample block, while in the second instance this tensor will have
a significant influence during the upsampling process.

It should be denoted that within each downsampling step, the number of filters is doubled. As expected, the
tensor from the second instance influences the upsampling processwithin twodifferent steps in the computation.
Firstly it goes through a convolution and later enhances the upsampling process, while in another steps it
contributes to final outcome with its original information, before the appliance of the convolution. This dual
contribution leads to an increased capability of the model to identify and refine the important features of the
investigated problem. This process repeats itself till the bottleneck is reached.

For the expanding path a similar approach takes places, but one significant difference is that additionally
themechanism of attention is implemented. The core advantage of the attention technique is that it allows to lay
more focus into the critical region and capture the essential features. This requires two important components
known as the gate block and attention block [39]. The gate blocks precede the attention block and store
information, which will later be concatenated with the output from the attention block. In the attention block,
processes such as convolution, activation, upsampling and concatenation with skip connections are applied.

On the output tensor of the last upsampling block, a final convolution and activation are applied, resulting
in the desired output tensor of the deep learning model. This final output tensor translates to the predicted
image. The integration of these enhancement techniques in both the contracting and expanding path leads to
an increased accuracy of the model’s predictions, through the reduction of loss information and better feature
identification. Figure 3 displays an illustrative representation of our model to make it easier for the readers to
understand its architecture.
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Fig. 4 Samples in grayscale, showing the vertical and circumferential crack

3.2 Training

The input data for our numerical model refer to grayscale images as shown in Fig. 4 with 3 channels, each
image possessing dimensions of 536 x 356. These images show evolution of vascular tissue fracture at various
time steps. While grayscale images are typically represented as single-channel images, a multi-channel repre-
sentation of grayscale images is still possible for the representation of tissue fractures, a common approach in
biomedical image processing [44].

On the other hand, the label data as shown in Fig. 5 have a physical interpretation representing the displace-
ment distribution. The label data are array matrices, where their two channels denote the u and v displacements
and hence accordingly the displacements in the X and Y directions. Each pixel of the label data holds a numer-
ical displacement value. The label data are reconstructed from numerical information obtained through the
DIC (digital image correlation) software, which is stored in .csv files. These files were used to generate the
displacements distribution images. An important aspect is that the DIC outputs pixel coordinates are saved
in these files with respect to the reference configuration along with their displacements u and v. To align our
label data with the input data—given that our grayscale images describe the vascular tissue fracture in the
current configuration—we implement a transformation of our labels between the configurations, see Eq. (4).
This implies the transformation into the Eulerian configuration, ensuring a compatibility between the input
and label data, leading to an increased effective model training.

x = X + u, (4)

It is worth mentioning that during preprocessing, the dataset is shuffled. Normally, since the fracture
exhibits a time dependency, a sequential approach should have been taken into account. However, the main
goal of this work is not to forecast the evolution of the crack; hence, the time dependency does not have any
influence on the predictions. Currently, the development of a new sequential model is in process, where the
time dependency will be explicitly included.

In the context of deep learning models, the choice of the initial weights could have a significant influence
to the convergence of the solution. A common approach used in many cases refers to the known “he-normal”
approach for weight initialization of the convolution layers.

As known, the performance of a deep learning model depends strongly onto the various hyperparameters;
therefore, a study case is conducted to identify their influence such as the number of filters and the starting
point of the learning rate, with the outer goal to find the best combination of these hyperparameters, which it
should translate to an increased final performance. The final outcomes revealed that initializing the learning
rate at 1e-4 leads to better and faster model convergence. To improve the efficiency of the learning process,
it is important to adjust the learning rate continuously. In this work, the Adam optimizer is utilized, which
combines both momentum and RMSProp techniques. The parameters β1 = 0.9 and β2 = 0.999 control the
exponential decay of the moments used in computing the averages of gradients. The parameter ε (holding the
value of 10−7) is only added in order to prevent division with respect to zero. Conversely it is observed that
an increase in the number of filters did not have any significant positive influence. According to the literature,
normalizing both the input and label data is often recommended to speed up the training process and improve
results simultaneously. However, in this case we noticed the normalization of the output data had a negative
effect. An assumption on our part is that the pixel values in our label data in this particular case have a physical
interpretation, unlike other cases documented in the literature. Therefore, the normalization technique has been
applied only to the input data as part of the preprocessing steps.
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Fig. 5 Example of label data, showing the horizontal and vertical displacement distribution

In the presented contribution, the images are originally quite large and have been preprocessed to reduce
their size. The large size of the images often causes GPU memory issues. To overcome this difficulty, a large
batch size is typically chosen to reduce training time. However, to prevent memory issues, we consider a batch
size of a single image. The training method is enhanced with advanced techniques like the reducing learning
rate, early stopping and checkpoint. In the function for reducing learning rate, the evolution of the validation
loss is monitored. In this work, the patience is chosen to be 100 epochs. If this limit is exceeded, the learning
rate is reduced by a factor = 0.1 while a threshold of 0.0001 in the learning rate is considered to be a significant
change. The early stopping technique monitors the validation loss, and if there is no significant change in its
value after a patience of 200 epochs, the training process automatically stops. To ensure that the model with
the lowest validation loss is captured, the checkpoint function stores the current weights of the most efficient
model.

Such approaches ensure efficient model convergence while minimizing unnecessary computational costs.
These techniques are meant to be activated, only if there is no improvement in the validation loss after a certain
patience period. Particular strategies intent to increase overall the efficiency of the deep learning model.

4 Results and discussions

As mentioned in previous sections, our dataset is derived from experimental tests, particularly from the experi-
mental setup introduced in [9], known as the symmetry-constrained compact tension (symconCT) experiment.
This experimental design considers two loading cases. The first case involves external loading orthogonal to
the fibers of the vascular tissue, resulting in a straight crack path. In the second case, circumferential loading
causes the crack, leading to a zigzag fracture pattern, see Fig. 4. The focus of this work has been on the axial
loading cases. The analysis of zigzag fracture pattern will be explored in future work.

For this study, 20 samples were provided, as shown in Fig. 6. Each sample represents an average of 500
images, illustrating the evolution of the fracture at various time steps. This resulted in a total dataset of approx-
imately 10,000 images representing the displacement distribution of vascular tissue and the corresponding
geometry as grayscale images. In this work, it is chosen to partition our data into three subsets referred as the
training, validation and test datasets. The main goal is to train a model capable of replacing the DIC evaluation
method by providing a faster yet sufficiently accurate solution, closely approximating the ground truth obtained
through the DIC approach. To this end, the data are split into three sets with a percentage distribution of 90%,
5% and 5% for the training, validation and test datasets, respectively. This corresponds to approximately 8100,
450 and 450 images in each dataset. Two samples out of the 20 were kept intentionally out of the training
process. This approach is taken in order to be able to evaluate the performance of the model on an entirely
new and unseen geometries, therefore returning a first feedback, if the model shows the first glimpses for a
possible generalization.

As mentioned, the ultimate goal ideally would be to create a model capable of delivering fast and highly
accurate results for generalized cases. The initial step is to verify that the model can make accurate predic-
tions for vascular tissue geometries, which were included in the training process. Figure7 demonstrates the
predictions of our most recent deep learning model for a seen geometry. The first row displays the input data,
meaning the grayscale vascular tissue image at different time steps during the fracture. The second and third
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Fig. 6 Training, validation and test samples

Fig. 7 Prediction fracture evolution of seen geometry: displacement distribution in X direction
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Table 1 Performance comparison between seen and unseen geometry

Index of model Technique Amount of samples Number of filters Batch size

(i) Classical U-Net 9 256 1
(ii) Attention residual U-Net 9 256 1
(iii) Attention residual U-Net 18 256 1
(iv) Attention residual U-Net 9 256 8
(v) Monte Carlo attention residual U-Net 9 256 8

rows show the displacement distribution for the X direction, depicting the ground truth and the prediction
from the deep learning model, respectively. As evident from the figure, the model efficiently predicts both
the geometry and numerical values of the displacement distribution, ensuring the potential to yield accurate
results closely aligned with the ground truth.

An essential aspect of this contribution involves comparing prediction outcomes between a knowngeometry
and a generalized one. This is illustrated in Fig. 8, where the displacement distribution in the y direction is
visualized. A qualitative error measurement confirms that the model produces accurate predictions for both the
tissue geometry during fracture and the numerical values of displacement in the y direction for the known (seen)
geometry. However, when the model attempts to predict outcomes for a generalized case (unseen geometry),
where no images of the tissue sample were included in the training process, it does not provide the ideal
representation as in the seen case. Remarkably, the deep learning model was able to predict the crack surface
for this generalized unseen case, demonstrating its potential for future development.

Additionally in Table 2, two quantitative error measurements are presented. The model performance is
measured in a quantitative way by the mean absolute percentage error (MAPE) for both channels of the image
and hence the predicted X- and Y -displacement distribution. The MAPE is defined as

MAPE = 1

n

n∑

i=1

∣∣∣∣
yi − ŷi

yi

∣∣∣∣ and R2 = 1 −
∑n

i=1(yi − ŷi )2∑n
i=1(yi − ȳi )2

(5)

where ŷi is the predicted value and yi is the true value obtained by the DIC software. Another method to
evaluate the performance of the model is the R2-score as defined in Eq. (5), also known as the coefficient of
determination, which is a statistical measure that shows how well the deep learning model approximates the
actual data. R2-score usually has a value in range between 0 and 1, defined as in terms of the mean value ȳi ,
where the values closer to 1 represent a model with better performance.

During this work, variations of U-Net architectures were adopted and a study case regarding the influence
of hyperparameters is conducted. These models are presented in Table 1. The MAPE and R2-score values for
each channel of the displacement distribution are given in Table 2. for each deep learning model. As it was
expected, the enhancement of the attention residual U-Net model (case 4) with theMonte Carlo technique (case
5) had an positive influence and all error measurements showed a reduction of the error. The same conclusion
is also made by comparing the classical U-Net architecture (case 1) to the extended attention residual model
(case 2). Furthermore, the increase in the batch size had also an impact in the reduction of the error as it shown
in the difference between cases 2 and 3. For a seen geometry, all deep learning models return considering the
R2-score method less than 1% error. The best model manages to achieve less than 5% using the evaluation
method of MAPE. An interesting observation is by examining the evaluation of an unseen geometry. It is
to observe that all models, even though their accuracy is still not satisfying, manage easier to predict the
displacement distribution in the Y direction than in the X direction.

While the results of the proposed model for generalized cases may not yet be ideal, it is important to
consider the limitations of the data. In this work, actual experimental data are utilized rather than artificial ones
tailored specifically for this study case. Despite this limitation, the model demonstrates promising predictions.
This suggests the potential for achieving satisfactory results with further extensions and improvements. Such
a development could lead to a significant reduction in evaluation effort.

4.1 Comments of the proposed deep learning model

In the initial stages of this work, following literature recommendations for biomedical image processing,
we implemented a classical U-Net architecture. As suggested by [16], this method is considered the most
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Fig. 8 Prediction quality comparison between seen and unseen geometry

Fig. 9 Comparison between classical U-Net and enhanced attention residual U-Net architecture

Fig. 10 Force versus clamp displacement recorded experimentally (black) and predicted by the calibrated FEM models (red). a
FEM results with material parameters as identified from the experimentally recorded force–clamp displacement curve and the
DIC measurements, see [33]. b FEM results with material parameters as identified from the experimentally recorded force–clamp
displacement curve and the deep learning generated surface displacements. (Color figure online)
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Table 2 Performance comparison: R2-score and MSE measurements

Type of error Index of model X-disp Y -disp

R2-score (i) 0.988 0.986
(ii) 0.990 0.989
(iii) 0.973 0.972
(iv) 0.993 0.993
(v) 0.998 0.995

MSE (i) 2.3% 3%
(ii) 3.2% 2.4%
(iii) 5.2% 6.8%
(iv) 1.2% 1.7%
(v) 0.9% 1.3%

suitable for addressing such problems. As observed in the later section, the results for a generalized case
were not ideal. Further exploration of the literature revealed that more sophisticated U-Net architectures
could potentially enhance the model and yield the desired results. Consequently, attention [39] and residual
[40] mechanisms were implemented to extend the classical U-Net architecture and increase the efficiency of
the model. The residual technique leads to a reduction of the loss of important information during training,
while the attention mechanism helps the deep learning model to lay more focus on critical regions. Figure9
visualizes the influence of attention and residual mechanisms on the final predictions for both a known (seen)
geometry and a generalized case. As expected, given that the classical U-Net model was already producing
good results for known geometries, the incorporation of attention and residual techniques in this case did not
yield noticeable differences. However, in generalized cases, the positive influence of attention and residual
mechanisms becomes clear. Hereby, the model not only predicts the geometry of the vascular tissue more
accurately but, more importantly, exhibits an increase in efficiency in predicting numerical values representing
the displacement distribution.

4.2 Model validation

Another crucial aspect in validating the quality of this model involves utilizing the predicted data to assess the
feasibility of substituting the DIC data with the model’s current form.

Given purely experimentally recorded data, the parameter identification method described in Sect. 2.1
resulted in bulk material properties of c1 = 20.39 kPa, c2 = 62.91 kPa, and fracture properties of T0 =
260.60 kPa, G = 0.578 kJ m−2, in line with [33]. The FEM model reasonably recovered the experimentally
recorded force–displacement curve, as illustrated by Fig. 10a.

In contrast, when utilizing the attention residual U-Net predicted displacement field alongside the exper-
imentally recorded force–clamp displacement curve, the identification process resulted in c1 = 17.99 kPa,
c2 = 69.71 kPa, as well as T0 = 366.75 kPa, G = 0.531 kJ m−2, respectively. The hybrid FEM-DL pre-
dicted force–clamp displacement curve again reasonably matched the experimental recordings, see Fig. 10b.
The results obtained with this approach are notably more promising and superior when compared to those of
a pure finite element method-based model in Fig. 10a. Hence, the proposed deep learning model generated
displacements resulted in the identification of similar mechanical tissue properties, as in Fig. 10.

5 Conclusion

This work represented the initial step in constructing a deep learningmodel with the primary goal of leveraging
and, consequently, reducing human and computational effort in the evaluation of experimental data.

In this paper, an attempt has been made to encompass a broader range of potential cases, aiming to gain
a better understanding of the actual quality of results produced by the model. As demonstrated in Fig. 7, the
attention residual model [16,39,40] successfully captures and recreates the intricate details of tissue geometry
post-fracture for a known specimen included in the training dataset. Additionally, it accurately computes
numerical values representing the displacement distributions. On the other hand, there is room for improvement
when the model attempts to evaluate a generalized case, as illustrated in Fig. 9. Recognizing this limitation
during the initial phase of development, variousmethods were explored to enhance its efficiency. One approach
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involved implementing amore sophisticatedU-Net architecture, incorporating themechanisms of attention and
residual. The results clearly demonstrate the expected positive influence of thesemechanisms in the final results.
The enhanced model exhibits a better approximation of the numerical values in the distribution and captures
the tissue geometry more effectively. However, it remains evident that there is still room for improvement, as
the quality of the generalized test cases should at least match the quality of the seen geometries. An important
aspect that further motivates us to continue working in this direction stems from the practical implementation
of the U-Net data in the inverse parameter identification. The initial partially positive outcomes obtained from
the simulations, as illustrated in Fig. 10, emphasize the substantial impact that a refined model could have
on the overall workflow process. This is especially noteworthy given that these kinds of approaches can be
continuously extended.

In the short term, some key features to be included involve creating a generalized U-Net model capable of
predicting both axial and circumferential cases. Additionally, there is consideration for implementing physics-
based machine learning models [17–20,45–49], as this could enhance the efficiency of the model and yield
more robust results, leveraging the knowledge of physics in the fracture process. Another approach involves
extending the U-Net architecture to Up-Net. In theory, this extension could significantly improve the output, as
the model would take into consideration a variety of physical quantities, as demonstrated in [50]. As expected
there is still a long path for improvement in front of us, but since these first results show a first promise for
lifting the effort away from repetitive tasks and in shifting our efforts in the correct direction, meaning the
continual evolution in the research of the cardiovascular tissue disorders.
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