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Abstract The present study deals with shear wave propagation in a fully coupled Magneto-Electro-Elastic
(MEE) multi-laminated periodic structure having non-uniform and imperfect interfaces. As a solution method-
ology, we applied a more general low-frequency dynamic asymptotic homogenization technique where the
solution will be single-frequency dependent and the obtained results generalize those published in Chaki
and Bravo-Castillero (Compos Struct 322:117410, 2023b) where the perfect contact case was studied. Effec-
tive homogenized dispersive equations of motion in second- and fourth-order approximations, also known
as “Good” Boussinesq equations in elastic case, are derived. Local problems, closed-form expression of dis-
persion equations in second and fourth-order approximations and closed-form solutions of first and second
local problems in second-order approximation for tri-laminated MEE periodic structure have been obtained
and also validated for elastic laminates with imperfect contact case and MEE laminates with perfect contact
case. The effect of non-uniform and imperfect contact, angle of incidence, unit cell size, volume fraction and
ME-coupling on the wave propagation is illustrated through dispersion graphs. The effect of non-uniform and
imperfect contact on dispersion curve serves as the highlight of the present work.

Keywords Dynamic asymptotic homogenization · Magneto-electro-elasticity · Laminated composite ·
Shear wave · Non-uniform imperfect contact

Mathematics Subject Classification 74Q10 · 35B27 · 74J20 · 74H10 · 41A60

1 Introduction

Due to the coupling effect and the ability to transform energy from one form, viz. mechanical, electric and
magnetic energy to another form, the magneto-electro-elastic (MEE) composites have gained huge attention.
These composites are made of piezoelectric (PE) and piezomagnetic (PM) materials exhibiting a magnetoelec-
tric effect which is absent in individual PE and PM constituents. MEE composites hold numerous applications
in smart sensors and actuators, ultrasonic devices, non-destructive testing (NDT), energy harvesters, detectors.
The constitutive equations of MEE composites are derived from classical continuum mechanics combined
with Maxwell’s electromagnetic theory [1,22,27,42] in quasi-static approximation. A detailed derivation and
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description of magneto-electro-elastic materials can be found in the books of [6] and [29] and also in the review
of [46].

MEE composites which hold numerous applications in magnetic field sensors, tunable devices, actuators,
transformers/gyrators, information storage devices, and energy harvesters are comprised of a layered structure.
Hence, understanding the static and dynamic behavior of MEE laminates has become an important research
topic in recent years. As for some early works on MEE composites, [28] and [7] studied magnetoelectric
effect in composites with piezoelectric and piezomagnetic phases. Later on, the exact solutions for MEE
laminates in cylindrical bending was derived by [33]. [32] also studied the free vibrations of simply supported
and multilayered magneto-electro-elastic plates. [25] studied lattice vibration of metamaterial structure by
constructing piezoelectric–piezomagnetic multilayer which simultaneously produce negative permeability and
permittivity. Later on, [53] studied coupled phonon polaritons in anMEEsuperlattice composed of piezoelectric
(PSL) and piezomagnetic (PMSL) superlattice. Afinite element formulation for large deflection ofmultilayered
magneto-electro-elastic plates was given by [3]. [50] analyzed natural characteristics of MEE multilayered
plate using analytical and finite element method. Later, [52] performed semi-analytical analysis of static and
dynamic responses for laminatedMEE plates. [19] studied multiple crossing points of Lamb wave propagating
in a magneto-electro-elastic composite plate. [31] has given a review on orthogonal polynomial methods for
modeling elastodynamic wave propagation in elastic, piezoelectric and magneto-electro-elastic composites.
Recently, [15] studied the effect of non-perfect and locally perturbed interface on anti-plane surface wave in a
magneto-electro-elastic layered structure. The aforementioned works show evidence of the importance of the
theoretical development in layered/laminated composite models which motivates the present work.

In recent times, homogenization techniques have become an efficient tool to study heterogeneous com-
posites which exhibit non-classical properties and hold enormous applications from aerospace engineering to
medical devices. In the literature, many homogenization techniques can be found which provide an equivalent
homogenized system of the heterogeneous composite and explicit formulas to obtain the effective properties
of the homogenized system. In order to analyze and design materials and devices with ME coupling, it is
important to determine the distribution of the physical fields within these hetero-structures and homogeniza-
tion schemes play a crucial role for evaluating the effective properties. One of themost popular explicit formula
to compute the effective properties was given by [24] for MEE composites where Mori-Tanaka method was
used. [48] also derived the effective properties for fibrous composites having piezoelectric and piezomagnetic
phases. [23] applied two-scale homogenization to study porous magneto-electric two-phase composites. In
several monographs and articles [5,30,34,35,37,38,40,45], the asymptotic homogenization method (AHM)
is acknowledged as an efficient tool to calculate the effective properties for small-scale heterogeneous com-
posites. Several works from the literature can be cited in the vicinity of MEE composites for static case. The
multiphase magneto-electro-thermo-elastic materials with periodic inclusions of finite dimensions were stud-
ied by [2] using asymptotic homogenization method. [8] gave explicit formula to derive effective stiffness,
electric and magnetic coefficients of MEE multi-laminated composite using asymptotic homogenization. [41]
on using asymptotic homogenization analyzed thermo-magneto-electro-elastic periodic laminates. [11] applied
asymptotic homogenization to study thermo-magneto-electro-elastic multilaminated composites with imper-
fect contact. [12] calculated the effective thermo-piezoelectric properties of porous ceramics using asymptotic
homogenization and FEM for energy-harvesting applications. [49] studied the size effects of mechanical
metamaterials using second-order asymptotic homogenization method.

Imperfect bonding between two layers of composites arises due to microdefects, aging of glue at the joint
of two solids and other form of damages. Although imperfect contacts are random in reality, such imperfect
contact of non-deterministic nature certainly cannot be studied neither through mathematical analysis nor
through simulations and the same also goes for the case of non-periodic imperfectness pattern in a periodic
structure. To calculate the effective properties of periodic composites, it is necessary to consider an appropriate
interface model. Hence, due to mathematical simplicity, deterministic imperfectness are considered by several
researchers at the interfaces of the finite number of laminates of a unit cell which repeats periodically. Such
periodic imperfect contact is not new and several research papers are available in the literature, viz. [39],
[20], [11], [44]. Non-uniform imperfect bonding where the imperfect bonding is not uniform throughout the
interface has also been studied through deterministic approach. Recently, [13] studied effective properties of
thermo-magneto-electro-elastic laminated composite with non-uniform imperfect contact through asymptotic
homogenization. A similar idea has been adopted in the present manuscript.

The effect of heterogeneities in waveguides becomes more dominant for dynamic cases, especially when
the travelingwavelength is comparable to the size of thematerial’s heterogeneities, successivewave reflections,
refractions and dispersion phenomena occur. A dispersive system for wave propagation in periodic hetero-
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geneous media was derived by [17] considering multiscale AHM. In this work, they have obtained a “bad"
Boussinesq equation by applyingAHMwith temporal and spatial scaling. They had to reformulate the equation
into “good" Boussinesq equation using approximation which was a major setback. The multi-scale AHM was
also applied to coupled thermo-viscoelastic problem by [51]. Both [36] and [4] studied wave propagation in
fiber-reinforced periodic composite using AHM. A non-local dispersive model was first suggested by [47] and
later, [18] proposed a high-frequency asymptotic homogenization method for periodic media. An emphasis is
given to work of [9] who studied shear wave propagation in laminated triclinic periodic laminated structure by
proposing a dynamic asymptotic homogenization and later the study was extended for imperfect bonding case
[10]. The mathematical as well as numerical results obtained in the present work will be validated with [10]
for elastic case. Recently, [16] studied anti-plane wave in a MEE laminated periodic composite structure with
perfect contact using dynamic asymptotic homogenization method. The present paper is a generalization of
the work of [16] by considering non-uniform imperfect contact in MEE laminated composite which is a more
realistic scenario. The effect of non-uniform imperfect contact on shear wave propagation in MEE laminated
composite periodic structure has not yet been studied through dynamic asymptotic homogenization.

In this work, a low-frequency generalized dynamic asymptotic homogenization is proposed to study shear
wave propagation in an MEE laminated composite periodic structure with non-uniform imperfect interface.
The homogenization method is based on [5] and on recently published work of [16] where along with field
variables, asymptotic expansion of the frequency is also considered. Local problems are derived using dynamic
asymptotic homogenizationmethod. Effective dispersive systems in second and fourth-order approximation are
derived directly using dynamic asymptotic homogenizationwhich represent the “good" Boussinesq equation in
elastic case. Closed form expressions of the dispersion relations in second and fourth-order approximation and
solution of first and second local problem in second-order approximation for tri-laminatedMEE composite are
obtained. Numerical results are obtained for tri-laminated MEE composite periodic structure in second-order
approximation where various parameters affecting the dispersion curve have been examined. The obtained
results have been validated with [16] for perfect contact and [9,10] for elastic case. In particular, the effect of
non-uniform imperfect bonding is the highlight of the present study.

2 Formulation of the problem

A magneto-electro-elastic (MEE) laminated periodic configuration is considered with unit volume � =
(0, 1)3 ⊂ R

3 having boundary ∂� = ∂1� ∪ ∂2� where ∂1� and ∂2� are disjoint boundary set. The unit
volume � is considered to be constructed by N identical sets of p laminae that are stacked along x1-direction
depicted in Fig. 1. Here, Y represents local cell which is a set of p laminae that repeats. �ε represents the set
of all interphases in �, whereas � represents the set of all interphases in Y . θq(q = 1, 2, . . . , p) represents
the points in Y where the interphases intersect the y = x1

ε
axis. ε = 1/N � 1 is a small perturbation param-

eter. Here the contact of the laminates are considered to be non-uniform and imperfect whose mass-spring
idealization is also depicted in Fig. 1.

The following MEE coefficients and fields in compact form are considered [41]:

Mε
jl =

⎛
⎝
cε
i jkl eε

j il qε
j il

eε
jkl −κε

jl −αε
jl

qε
jkl −αε

jl −με
jl

⎞
⎠ , 	ε

j =
⎛
⎝

σε
i j
Dε

j
Bε
j

⎞
⎠ , U ε =

⎛
⎝
uε
k

φε

ψε

⎞
⎠ ,

where i, j, k, l = 1, 2, 3, Mε
jl is a matrix containing material coefficients where cε

i jkl is a stiffness tensor,
eε
li j is piezoelectric coefficient, κ

ε
jl is dielectric permittivity, qε

li j is piezomagnetic coefficient, με
jl is magnetic

permeability, αε
jl is magnetoelectric coefficient.	ε

j is a column matrix where σε
i j represents mechanical stress,

Dε
j represents electric displacement, Bε

j represents magnetic induction, U ε is also a column matrix which
includes displacement vector uε

k , electric potential φε and magnetic potential ψε. ρε represents density. The
local MEE coefficients are rapidly oscillating εY -periodic functions of x1, i.e., cε

i jkl(x) = ci jkl
( x1

ε

)
and so on.

It is to be noted that in quasi-static approximation, the MEE material obeys the Maxwell’s equations as
∇ × Eε = 0, ∇ × Hε = 0, ∇ · Bε = 0, ∇ · Dε = 0 along with the Navier’s equation of motion as σε

i j,i = ρεüε
i .

The relation between electric field vector and electric potential is considered as Eε
i = −φε

,i , whereas the relation
between magnetic field vector and magnetic potential is considered as H ε

i = −ψε
,i where both φε and ψε are

scalar electric and magnetic potentials which are considered under the quasi-static approximation. A detailed
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Fig. 1 Magneto-electro-elastic laminate stacked periodically in the x1-direction along with its unit local cell and mass-spring
idealization of non-uniform imperfect bonding

derivation of the constitutive equation forMEEmaterial can be found in the book chapter of “Electromagnetics
in Deformable Solids" by G.A. Maugin given in the book of [29] and also in the book of [6].

Since, the moduli satisfy ellipticity condition, there exists a constant χ > 0 such that for every x ∈ �\�ε,
we have the following inequalities

cε
i jkl ai j akl ≥ χai j ai j and

(
Ei j (x)X j , Xi

) ≥ χ (Xi , Xi ) ,

where Ei j =
(

κε
jl αε

jl
αε
jl με

jl

)
, ai j being a matrix and Xi ∈ R

2.

The constitutive equation for MEE material can be written as

	ε
j (x) = Mε

jl(x)
∂U ε

∂xl
(x) (1)

and in absence of body force, the equation of motion is

∂

∂x j

(
Mε

jl
∂

∂xl
U ε

)
= Pε ∂U ε

∂t2
, (2)

where Pε =
⎛
⎝

ρε 0 0
0 0 0
0 0 0

⎞
⎠.

Now, we consider low-frequency shear wave propagation in a MEE laminated periodic composite. The
shear wave propagation is considered to be of low frequency since the wavelength of propagating waves must
be larger than the characteristic lengthscale of the microstructure. Due to shear wave being an anti-plane wave,
we consider the domain �ε = εY × (0, 1) where Y = {

y ∈ R | y ∈ (0, 1)
}
.

Hence, the boundary value problem becomes

∂

∂x j

(
Mε

jl
∂

∂xl
U ε

)
= Pε ∂2U ε

∂t2
, x ∈ �ε \ �ε (3)

with non-uniform imperfect interface condition

	ε
j n j = K ε[[U ε(x)]], and [[	ε

j ]]n j = 0, x ∈ �ε (4)

and the boundary condition

U ε = 0, x ∈ ∂1�
ε and 	ε

j n j = F, x ∈ ∂2�
ε, (5)
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Fig. 2 a Non-uniform imperfect contact between two layers and mass-spring model interpretation of b uniform imperfect contact
and c non-uniform imperfect contact

where n j is the unit normal, Mε
jl = Mjl(y) and K ε = ε−1K (q) (x2, x3), where K (q) (x2, x3) is a 5× 5 matrix

valued function of �ε ∈ R
3 taking different values for each x1 = ε(θq + i), i = 0, 1, . . . , N − 1, such that

K (q) (x2, x3) =

⎛
⎜⎜⎜⎜⎜⎝

K (q)
1 (x2, x3) 0 0 0 0

0 K (q)
2 (x2, x3) 0 0 0

0 0 K (q)
3 (x2, x3) 0 0

0 0 0 −E (q) (x2, x3) 0
0 0 0 0 −M (q) (x2, x3)

⎞
⎟⎟⎟⎟⎟⎠

,

where K (q)
l (x2, x3) , E (q) (x2, x3) , M (q) (x2, x3) are Y -periodic positive functions corresponding to the stiff-

ness tensor, dielectric permittivity and magnetic permeability being positive definite. A similar imperfect
condition has also been adopted in [13] and [26] where the normal component of the mechanical traction, elec-
tric displacement and magnetic flux are proportional to the jump of mechanical displacements, electric and
magnetic static potentials, respectively, and the proportionality factors are Y -periodic functions and inversely
proportional to its width.

A mass-spring model interpretation of the uniform and non-uniform imperfect contact is depicted in Fig. 2
where in Fig. 2b, the stiffness of the springs are equal representing uniform imperfect contact, whereas in
Fig. 2c, the stiffness of the springs is different representing non-uniform imperfect contact.

On considering time-harmonic solutions, we obtain

uε
3(x1, x2, t) = W ε(x1, x2)T (t), φε(x1, x2, t) = �ε(x1, x2)T (t),

ψε(x1, x2, t) = �ε(x1, x2)T (t), (6)

where T (t) = eiωt and hence, the equation of motion becomes

∂

∂x j

(
Mε

jl
∂

∂xl
U ε

)
= −ω2PεU ε, x ∈ �ε \ �ε (7)

T ′′(t) + ω2T (t) = 0, t > 0 (8)

where ω2 ≡ ω2(ε) and Eq.(8) is an identity.
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3 Asymptotic homogenization

We first consider the regular asymptotic expansion of the frequency and field variables as

ω = ω0 + εω1 + ε2ω2 + ε3ω3 + ε4ω4 + O(ε5),

U (x, y) = Û (0)(x) + εU (1)(x, y) + ε2U (2)(x, y) + ε3U (3)(x, y) + ε4U (4)(x, y) + O(ε5),

ω2 = ω̄0 + εω̄1 + ε2ω̄2 + ε3ω̄3 + ε4ω̄4 + O(ε5),

where ω̄n = ∑n
k=0 ωkωn−k .

Due to the fast variable y, we also have ∂
∂xi

≡ ∂
∂xi

+ε−1 ∂
∂y . Imposing the expansions in Eq. (7) and equating

the terms of the order ε−2, ε−1, ε0, ε1 and ε2 to zero, we obtain the following

εn : LyyU
(n+2) = −LyxU

(n+1) − LxyU
(n+1) − LxxU

(n) − P(y)
n∑

k=0

ω̄kU
(n−k), (9)

for n = −1, 0, 1, 2, alongwith boundary conditions (4) and (5)where Lαβ = ∂
∂αi

(
Mi j

∂
∂β j

)
withα, β ∈ {x, y}.

A necessary and sufficient condition for the existence of Y -periodic solutionsU (x, y) of the system can be
found in the lemma provided in the Appendix of [13] where the periodic solution is unique up to an additive
constant.

Hence, the solutions of the equations of (9) exist for the order of εn, n = −1, 0, 1, 2 and can be represented
in the form as

U (1)(x, y) = Nk(y)
∂Û (0)(x)

∂xk
+ Û (1)(x), (10)

U (2)(x, y) = N jk(y)
∂2Û (0)(x)

∂x j∂xk
+ Nk(y)

∂Û (1)(x)

∂xk
+ Û (2)(x), (11)

U (3)(x, y) = N jkl(y)
∂3Û (0)(x)

∂x j∂xk∂xl
+ N jk(y)

∂2Û (1)(x)

∂x j∂xk
+ Nk(y)

∂Û (2)(x)

∂xk
+ Û (3)(x), (12)

U (4)(x, y) = N jk1k2l(y)
∂4Û (0)(x)

∂x j∂xk1∂xk2∂xl
+ N jkl(y)

∂3Û (1)(x)

∂x j∂xk1∂xl
+ N jk(y)

∂2Û (2)(x)

∂x j∂xk1

+ Nk(y)
∂Û (3)(x)

∂xk1
+ Û (4)(x), (13)

where the local functions Nk(y), N jkl(y), N jkl(y), N jk1k2l(y) are, respectively, 1−periodic solutions of the
following local problems

O(ε−1) : LNk(y) = − d(M1k )
dy , y ∈ Y \ �,

M11
dNk
dy + M1k = K (q)[[Nk]], [[M11

dNk
dy + M1k]] = 0, y = θq .

}
(14)

O(ε0) : LN jk(y) = − d
dy

(
Mlj Nk(y)

) − Mj1
dNk
dy − Mjk + ρ(y)

ρ̂
M̂ jk, y ∈ Y \ �

M11
dN jk
dy + M1 j Nk = K (q)[[N jk]], [[M11

dN jk
dy + M1 j Nk]] = 0, y = θq .

}

(15)

O(ε1) : LN jkl(y) = − d
dy

(
M1l N jk

) − Ml1
dN jk
dy − Mjl Nk + ρ(y)

ρ̂
M̂ jl Nk, y ∈ Y \ �

M11
dN jkl
dy + M1l N jk = K (q)[[N jkl ]], [[M11

dN jkl
dy + M1l N jk]] = 0, y = θq .

}

(16)

O(ε2) : LN jk1k2l(y) = − d
dy

(
M1k2N jk1l

) − Mk21
dN jk1l

dy − Mk2l N jk1

+ρ(y)
ρ̂

M̂k2l N jk1 + ρ(y)
ρ̂

M̂ jk1k2l , y ∈ Y \ �

M11
dN jk1k2l

dy + M1k2N jk1l = K (q)[[N jk1k2l ]],
[[M11

dN jk1k2l

dy + M1k2N jk1l ]] = 0, y = θq .

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(17)
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Here, Equations (14)-(17) represent corresponding “first”, “second”, “third” and “fourth” local problems

and the operator L ≡ d
dy

(
M11

d
dy

)
.

The existence of local function which has a unique Y -periodic solution up to an additive constant, such
that 〈N�〉 = 0, � = k, jk, jkl, jk1k2l, is proven in the Lemma given in [13]. Using the necessary and
sufficient condition for the solvability of the system in the class of Y−periodic functions in y, we now obtain
the following homogenized equations

O(ε0) : M̂ jk1
∂2Û (0)

∂x j∂xk1
+ ω2

0P̂Û (0) = 0,

O(ε1) : M̂ jk1
∂2Û (1)

∂x j∂xk1
+ ω2

0P̂Û (1) = 0, and M̂ jk1l = 0 with ω1 = 0,

O(ε2) : M̂ jk1
∂2Û (2)

∂x j∂xk1
+ ω2

0P̂Û (2) = 0, M̂ jk1k2l
∂4Û (0)

∂x j∂xk1∂xk2∂xl
+ ω̄2P̂Û (0) = 0

with ω2 = −ω3
0

2
M̂ jk1k2l M̂

−1
jk1

P̂ M̂−1
k2l

,

where

M̂ jk =
〈
Mj1

dNk

dy
+ Mjk

〉
, M̂ jkl =

〈
Ml1

∂N jk

∂y
+ Mjl Nk − ρ(y)

ρ̂
M̂ jl Nk

〉
,

M̂ jk1k2l =
〈
Mk21

∂N jk1l

∂y
+ Mk2l N jk1 − ρ(y)

ρ̂
M̂k2l N jk1

〉
.

Here, the null average is defined as 〈(•)〉 = ∫ 1
0 (•)dy.

3.1 Effective dispersive system

3.1.1 Second-order approximation

Under the second-order approximation, we assume the field vector as

U (x, t, ε) = T (t)
(
U (0)(x, y) + εU (1)(x, y) + ε2U (2)(x, y)

)
. (18)

The null average of Eq.(18) is

Û (x, t) = 〈U (x, t, ε)〉 = T (t)
(
Û (0)(x, y) + εÛ (1)(x, y) + ε2Û (2)(x, y)

)
. (19)

Now, using Eq.(8), we obtain the following

P̂ ∂2Û (x, t)

∂t2
= P̂Û (x, y)

∂2T

∂t2
= −P̂ω2Û (x, y)T (t). (20)

On using the expansions ω = ω0 + εω1 + ε2ω2 and ω2 = ω̄0 + εω̄1 + ε2ω̄2 along with ω1 = 0 and ω̄1 = 0,
we obtain

P̂ω2Û (x, y)T (t) = P̂ (
ω0 + ε2ω2

)2
Û (x, y)T (t)

= P̂ω2
0ÛT + ε2P̂(2ω0ω2)ÛT + ε4P̂ω2

2ÛT

= P̂ω2
0ÛT + 2ε2P̂ω2(ω0 + 2ε2ω2)ÛT − 3ε4P̂ω2

2ÛT

= P̂ω2
0ÛT + 2ε2P̂ ω2

ω0
(ω2

0 + 2ε2ω0ω2)ÛT − 3ε4P̂ω2
2ÛT
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= P̂ω2
0ÛT + 2ε2P̂ ω2

ω0
(ω̄0 + εω̄1 + ε2ω̄2)ÛT − 3ε4P̂ω2

2ÛT

= P̂ω2
0ÛT + 2ε2P̂ ω2

ω0
ω2ÛT − 3ε4P̂ω2ÛT . (21)

On neglecting higher order terms, i.e., O(ε4) and putting the expression of ω2, we derive

P̂ω2Û (x, y)T (t) = P̂ω2
0Û (x, y)T (t) − ε2ω2ω2

0η
∗P̂Û (x, y)T (t), (22)

where η∗ = M̂ jk1k2l M̂
−1
jk1

P̂ M̂−1
k2l

.

From the local problems up to O(ε2), we have

M̂ jk1
∂2Û (x, y)

∂x j∂xk1
+ ω2

0P̂Û (x, y) = 0, (23)

where Û (x, y) = Û (0)(x, y) + εÛ (1)(x, y) + ε2Û (2)(x, y).

Now, on using ω2T = − ∂2T
∂t2

from the identity (8) and using Eq.(23) in Eq.(22), we obtain

P̂ ∂2Û (x, t)

∂t2
= M̂ jk1

∂2Û (x, t)

∂x j∂xk1
+ ε2η∗M̂ jk1

∂4Û (x, t)

∂x j∂xk1∂t
2 . (24)

Eq. (24) is an effective homogenized dispersive equation of motion in second-order approximation. A similar
expression has been obtained in [16] for MEE laminated composite with perfect contact, in [9] for triclinic
medium with perfect contact and also in [10] for triclinic medium with imperfect contact.

It is to be noted that Eq.(24) represents “good" Boussinesq equation in elastic case. In [17], a “bad"
Boussinesq equation was derived using AHM and then it was reformulated into “good" Boussinesq equation
by approximation. However, by the generalized dynamic asymptotic homogenization method, the “good"
Boussinesq equation can be directly achieved. This shows that the proposed technique is much more powerful.
Equation similar to (24) arise in fluid dynamics of shallow water theory and crystal-lattice theory.

3.1.2 Fourth-order approximation

For fourth-order approximation, we consider the following

Û (x, t) = 〈U (x, t, ε)〉 = T (t)
(
Û (0) + εÛ (1) + ε2Û (2) + ε3Û (3) + ε4Û (4)

)
. (25)

On proceeding in similar fashion as in Sect. 3.1.1, Eq. (20) will be the same for the fourth-order approxima-
tion. On using the expansions:ω = ω0+εω1+ε2ω2+ε3ω3+ε4ω4 andω2 = ω̄0+εω̄1+ε2ω̄2+ε3ω̄3+ε4ω̄4
along with ω1 = ω3 = 0, ω̄1 = ω̄3 = 0 and ω̄2 = 2ω0ω2, ω̄4 = 2ω0ω4 + ω2

2, we obtain

P̂ω2Û (x, y)T (t) = P̂ (
ω0 + ε2ω2 + ε4ω4

)2
Û (x, y)T (t)

= P̂ω2
0ÛT + ε2P̂ [

2ω0ω2 + ε2(2ω0ω4 + ω2
2) + ε4(2ω2ω4) + ε6ω2

4

]
ÛT

= P̂ω2
0ÛT + 2ε2P̂ ω2

ω0

[
ω2
0 + ε2(2ω0ω2) + ε4(2ω0ω4 + ω2

2)
]
ÛT

+ 2ε4P̂ ω4

ω0

[
ω2
0 + ε2(2ω0ω2) + ε4(2ω0ω4 + ω2

2)
]
ÛT − 3ε4P̂ω2

2ÛT

− 2ε6P̂
(
3ω4ω2 + ω3

2

ω0

)
ÛT − ε8P̂

(
3ω2

4 + 2ω4
ω2
2

ω0

)
ÛT

= P̂ω2
0ÛT + 2ε2P̂ ω2

ω0
ω2ÛT + 2ε4P̂ ω4

ω0
ω2ÛT
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− 3ε4P̂ ω2
2

ω2
0

[
ω2
0 + ε2(2ω0ω2) + ε4(2ω0ω4 + ω2

2)
]
ÛT + O(ε6)

= P̂ω2
0ÛT + 2ε2P̂ ω2

ω0
ω2ÛT + 2ε4P̂ ω4

ω0
ω2ÛT − 3ε4P̂ ω2

2

ω2
0

ω2ÛT + O(ε6)

(26)

In order to find the expression of ω4, we need to derive “fifth" and “sixth" local problems, i.e.,

O(ε3) : LN jk1k2k3l = − d
dy

(
M1k3N jk1k2l

) − Mk31
dN jk1k2l

dy − Mk2k3N jk1l

+ρ(y)
ρ̂

M̂k2k3N jk1l + ρ(y)
ρ̂

M̂ jk2k3l Nk1, y ∈ Y \ �

M11
∂N jk1k2k3l

∂y + M1k3N jk1k2l = K (q)[[N jk1k2k3l ]],
[[M11

∂N jk1k2k3l

∂y + M1k3N jk1k2l ]] = 0, y = θq ,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(27)

O(ε4) : LN jk1k2k3k4l = − ∂
∂y

(
M1k4N jk1k2k3l

) − Mk41
∂N jk1k2k3l

∂y

−Mk3k4N jk1k2l + ρ

ρ̂
M̂k3k4N jk1k2l + ρ

ρ̂
M̂k2k3k4l N jk1

+ρ

ρ̂
M̂ jk1k2k3k4l , y ∈ Y \ �

M11
∂N jk1k2k3k4l

∂y + M1k4N jk1k2k3l = K (q)[[N jk1k2k3k4l ]],
[[M11

∂N jk1k2k3k4l

∂y + M1k4N jk1k2k3l ]] = 0, y = θq ,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(28)

along with homogenized systems

O(ε4) : M̂ jk1
∂2Û (3)

∂x j∂xk1
+ ω2

0PÛ (3) = 0, M̂ jk1k2k3l = 0, ω3 = 0, (29)

O(ε4) : M̂ jk1
∂2Û (4)

∂x j ∂xk1
+ ω2

0P̂Û (4) = 0, and

M̂ jk1k2k3k4l
∂6Û (0)

∂x j ∂xk1∂xk2∂xk3∂xk4∂xl
+ ω̄4P̂Û (0) = 0

and ω4 = − ω2
2

2ω0
+ ω5

0
2 M̂ jk1k2k3k4l M̂

−1
jk1

P̂ M̂−1
k2l

P̂ M̂−1
k3k4

,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(30)

where M̂ jk1k2k3l =
〈
Mk31

∂N jk1k2l

∂y + Mk2k3N jk1l − ρ

ρ̂
M̂k2k3N jk1l − ρ

ρ̂
M̂ jk2k3l Nk1

〉
and

M̂ jk1k2k3k4l =
〈
Mk41

∂N jk1k2k3l

∂y + Mk3k4N jk1k2l − ρ

ρ̂
M̂k3k4N jk1k2l − ρ

ρ̂
M̂k2k3k4l N jk1

〉
.

For further simplification, we consider

ω2 = −ω3
0

2
M̂ jk1k2l M̂

−1
jk1

P̂ M̂−1
k2l

= −ω3
0

2
η∗,

ω4 = − ω2
2

2ω0
+ ω5

0

2
M̂ jk1k2k3k4l M̂

−1
jk1

P̂ M̂−1
k2l

P̂ M̂−1
k3k4

= −ω5
0

2
η∗∗,

where η∗ = M̂ jk1k2l M̂
−1
jk1

P̂ M̂−1
k2l

, η∗∗ = (η∗)2
4 + η0 and η0 = M̂ jk1k2k3k4l M̂

−1
jk1

P̂ M̂−1
k2l

P̂ M̂−1
k3k4

.

Now, on putting the above expressions of ω2 and ω4 in Eq. (26), neglecting O(ε6) and using (23), (30) and
(8), we obtain

P̂ ∂2Û (x, t)

∂t2
= M̂ jk1

∂2Û (x, t)

∂x j∂xk1
+ ε2η∗M̂ jk1

∂4Û (x, t)

∂x j∂xk1∂t
2

− ε4η̃(M̂−1
jk1

P̂ M̂−1
k2l

)−1 ∂6Û (x, t)

∂x j∂xk1∂xk2∂xl∂t
2 , (31)

where η̃ = η∗∗ − 3
4 (η

∗)2.
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4 Dispersion relation

4.1 For zero-order homogenized system

From the homogenized system obtained for O(ε0) and using Eq. (20), we deduce

M̂ jk1
∂2Û (x, t)

∂x j∂xk1
= P̂ ∂2Û (x, t)

∂t2
. (32)

In order to derive the dispersion equation, we consider a harmonic solution of Eq.(32) as

Û (x, t) = Uei(k j x j−ωt), (33)

where U is amplitude, and k1 = k sin θ and k2 = k cos θ are the propagation vector components with k being
the wave number.

On putting the considered harmonic solution in Eq.(32), we obtain

−
(
M̂11k

2 sin2 θ + M̂12k
2 sin 2θ + M̂22k

2 cos2 θ
)
U + P̂ω2U = 0, (34)

where M̂ jk = 〈
Mjk

〉− 〈
Mj1(M11)

−1M1k
〉+ 〈

Mj1(M11)
−1

〉 [∑P
q=1((K

(q))−1 +
〈
M−1

11

〉]−1 〈
(M11)

−1M1k
〉
, i.e.,

M̂11 =
(∑P

q=1((K
(q))−1 +

〈
M−1

11

〉)−1
, M̂12 = 0 and M̂22 = 〈M22〉.

In order to obtain non-trivial solution of (34), we must have
∣∣∣∣∣∣
− (

ĉ55 sin2 θ + ĉ44 cos2 θ
)
k2 + ρ̂ω2 − (

ê15 sin2 θ + ê24 cos2 θ
)
k2 − (

q̂15 sin2 θ + q̂24 cos2 θ
)
k2

− (
ê15 sin2 θ + ê24 cos2 θ

)
k2

(
κ̂11 sin2 θ + κ̂22 cos2 θ

)
k2

(
α̂11 sin2 θ + α̂22 cos2 θ

)
k2

− (
q̂15 sin2 θ + q̂24 cos2 θ

)
k2

(
α̂11 sin2 θ + α̂22 cos2 θ

)
k2

(
μ̂11 sin2 θ + μ̂22 cos2 θ

)
k2

∣∣∣∣∣∣
= 0,

(35)

which provides the effective phase velocity as

c20 =
(
ĉ55 sin

2 θ + ĉ44 cos2 θ
)

ρ̂

+

(
ê15 sin

2 θ + ê24 cos2 θ
)2 (

μ̂11 sin2 θ + μ̂22 cos2 θ
)

− 2
(
ê15 sin

2 θ + ê24 cos2 θ
) (

α̂11 sin2 θ + α̂22 cos2 θ
)

×
(
q̂15 sin

2 θ + q̂24 cos2 θ
)

+
(
κ̂11 sin2 θ + κ̂22 cos2 θ

) (
q̂15 sin

2 θ + q̂24 cos2 θ
)2

ρ̂
[(

κ̂11 sin2 θ + κ̂22 cos2 θ
) (

μ̂11 sin2 θ + μ̂22 cos2 θ
) − (

α̂11 sin2 θ + α̂22 cos2 θ
)2] .

(36)

Here, Eq.(36) is clearly non-dispersive system independent of wave number.

4.2 For second-order effective dispersive system

Now, on applying the harmonic solution to Eq.(24), we obtain
[(
I − ε2η∗ω2) (

M̂11k
2 sin2 θ + M̂12k

2 sin 2θ + M̂22k
2 cos2 θ

)
− P̂ω2

]
U = 0. (37)

Again, in order to obtain non-trivial solution, we must have the following

Det
[(
I − ε2η∗ω2) (

M̂11k
2 sin2 θ + M̂12k

2 sin 2θ + M̂22k
2 cos2 θ

)
− P̂ω2

]
= 0, (38)

which represents the dispersion equation for the homogenized system that depends on wave number. Equa-
tion(38) is a generalization of the dispersion equation that has been obtained in [16] for MEE laminated
composite with perfect contact, in [9] for triclinic mediumwith perfect contact and in [10] for triclinic medium
with imperfect contact.
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Table 1 Material properties of BaTiO3 and CoFe2O4

c3333 c2323 κ11 κ33 e223
Units GPa GPa C2/Nm2 C2/Nm2 C/m2

BaTiO3 162 43 11.2 × 109 12.6 × 109 11.6
CoFe2O4 269.5 45.3 0.08 × 109 0.093 × 109 0

e333 q223 q333 μ11 μ33 ρ

Units C/m2 m/A m/A Ns2/C2 Ns2/C2 kg/m3

BaTiO3 18.6 0 0 5 × 10−6 10 × 10−6 5800
CoFe2O4 0 550 699.7 590 × 10−6 157 × 10−6 5300

4.3 For fourth-order effective dispersive system

On applying the harmonic solution to Eq.(31) and using M̂12 = 0, we obtain
[ (

I − ε2η∗ω2) (
M̂11k

2 sin2 θ + M̂12k
2 sin 2θ + M̂22k

2 cos2 θ
)

− ε4η̃ω2
{
(M̂−1

11 P̂ M̂−1
11 )−1k4 sin4 θ + ((M̂−1

11 P̂ M̂−1
22 )−1 + (M̂−1

22 P̂ M̂−1
11 )−1)k4 sin2 θ cos2 θ

+ (M̂−1
22 P̂ M̂−1

22 )−1k4 cos4 θ
}

− P̂ω2
]
U = 0. (39)

Hence, the fourth-order dispersion equation is obtained as

Det

[ (
I − ε2η∗ω2) (

M̂11k
2 sin2 θ + M̂12k

2 sin 2θ + M̂22k
2 cos2 θ

)

− ε4η̃ω2
{
(M̂−1

11 P̂ M̂−1
11 )−1k4 sin4 θ + ((M̂−1

11 P̂ M̂−1
22 )−1 + (M̂−1

22 P̂ M̂−1
11 )−1)k4 sin2 θ cos2 θ

+ (M̂−1
22 P̂ M̂−1

22 )−1k4 cos4 θ
}

− P̂ω2
]

= 0. (40)

The dispersion equation (40) is certainly a new equation which has not been derived before. This equation
analytically shows more dispersive nature of the dynamic system. It is also to be noted that in case of η̃ = 0,
Eq.(40) reduces to Eq.(38) and for η∗ = 0, Eq.(40) reduces to Eq.(35) which also validates our results.

5 Numerical results and discussion

In order to obtain numerical results, we consider a tri-laminated composite structure, i.e., (0, 1) = (0, θ1) ∪
(θ1, θ2)∪(θ2, 1)where the shearwave is incident at an angle θ to the laminate and obeys dispersion equation (38)
in second-order approximation. For the PE and PM phases, BaTiO3 and CoFe2O4 are considered, respectively,
for which the corresponding data are taken into account [21,43] (Table 1):

For the numerical computation, we consider 3-layered laminated composite BaTiO3/CoFe2O4/BaTiO3
(or B/C/B) MEE periodic structure with harmonic wave propagation perpendicular (θ = 90◦) to the layer.
Moreover, for the numerical computation, we consider ε = 0.06 and K3 = 10 GPa, E = 10 C2N−1m−2,
M = 10 NA−1.

Figure 3 shows the effect of mechanical, electrical and magnetic imperfect contact on the dispersion
curves for BaTiO3/CoFe2O4/BaTiO3 MEE laminated composite. It is to be noted that K3 = ∞ represents
mechanical perfect interface; E = ∞ represents electric perfect interface; and M = ∞ represents magnetic
perfect interface. Figure 3a reveals as themechanical imperfect bonding parameter (K3) increase, the frequency
decreases. Figure 3b shows the electric imperfect bonding (E) has very small but increasing effect on dispersion
curve, whereas Fig. 3c depicts that the magnetic imperfect bonding (M) has very small but decreasing effect
as compared to K3. Hence, the effect of K3 dominates over other two on dispersion curve making the system
more dispersive.
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Fig. 3 Dispersion curves showing variation of frequency against wave-number for BaTiO3/CoFe2O4/BaTiO3 MEE laminated
composite for a distinct values of mechanical imperfect bonding parameter (K3); b distinct values of electric imperfect bonding
parameter (E); and c distinct values of magnetic imperfect bonding parameter (M)

Now, in order to analyze a deterministic non-uniformity of the mechanical imperfect contact, we consider
the following smooth functions:

K3(x2, x3) = [(
103 − 10

)
(− cos(2πx2) + 1) + 10

]
GPa, (41)

K ∗
3 (x2, x3) = [(

103 − 10
)
(− sin(πx2) + 1) + 10

]
GPa, (42)

The physical interpretation of the two functions is depicted in Fig. 4. Figure 4b represents imperfect contact
near the edges and perfect contact in the middle along x2-axis, whereas Fig. 4c represents perfect contact near
the edges and imperfect contact in the middle along x2-axis.

It is to be noted that non-uniform condition has been analyzed only for mechanical imperfect contact, since
it is already reported in Fig. 3 that the mechanical imperfect parameter has dominating effect over electric and
magnetic ones. Further mechanical imperfect parameter K3(x2, x3) is a function of both x2 and x3, however,
due to simplicity, we set x3 to be fixed and analyze two different functions (41) and (42).

The non-uniform functions (41) and (42) have been studied as in Fig. 5. The function K3(x2, x3) is plotted
in Fig. 5a whose physical interpretation is that along x2-direction, the mechanical bonding becomes perfect
at the middle (x2 = 0.5) of the interface, whereas at the edges (x2 = 0, 1), the contact is strongly imperfect,
i.e., both the laminates start moving freely. Keeping the function values of K3 obtained for x2 = (0, 1) in the
3rd axis, a 3D plot is drawn in Fig. 5(b) for the dispersion curve in order to show the effect of non-uniformity
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Fig. 4 a 3-layered composite unit cell with non-uniform imperfect contact and physical interpretation of b non-uniform contact
function K3(x2, x3) and c non-uniform contact function K ∗

3 (x2, x3)

of mechanical imperfect contact. The frequency curve tends to increase with the increasing values of K3 and
attains maximum due to perfect contact condition, whereas as the value of K3 starts to decrease, the frequency
curve also decreases due to presence of imperfect bonding.

On the other hand, the function K ∗
3 (x2, x3) in (42) is plotted in Fig. 5c whose physical interpretation is

that along x2-direction, the mechanical imperfect bonding becomes perfect at the edges (x2 = 0, 1) and at the
middle (x2 = 0.5) of the interface, the contact is strongly imperfect. Figure 5d also shows proportional relation
between frequency and imperfect bonding, i.e., the frequency curve tends to decrease from high frequency
with the decreasing values of K ∗

3 and as the value of K ∗
3 starts to increase, the frequency curve also increases.

Figure 5b, d both shows that the non-uniformity of the mechanical imperfect contact has significant effect on
the dispersion curve.

In order to show the effect of the sizes of unit cells of laminated composite on the dispersion curve, Fig. 6
has been drawn. Figure 6a, b shows the variation of frequency for BaTiO3/CoFe2O4/BaTiO3 MEE laminated
composite in case ofmechanical, electrical andmagnetic imperfect contact and in case ofmechanical, electrical
and magnetic perfect contact, respectively. It is to be noted that ε = 0 represents the case of non-dispersive
curve (c = c0) and as the size of 3-laminae unit cell increases, the system becomes more dispersive. In
particular, the frequency curves are much higher in case of perfect contact as compared imperfect one. The
effect of unit cell size for perfect contact case in MEE laminated composite has already been studied in [16]
which validates the graphs.

Figure 7a, b illustrates the effect of angle of incidence (θ ) of harmonic wave on the dispersion curve
for BaTiO3/CoFe2O4/BaTiO3 MEE laminated composite for imperfect and perfect contact, respectively. It
is concluded from Fig. 7a that the dispersion curve is minimum when harmonic wave travels perpendicular
(θ = 90◦) to composite layer, whereas it is maximum when it travels parallel (θ = 0◦) to the layer. The
effect of angle of incidence of wave in case of imperfect interface is found to be small. However, in case of
BaTiO3/CoFe2O4/BaTiO3 MEE laminated composite with perfect contact, the dispersion curve is maximum
when shear wave travels perpendicular to composite layer, whereas it is minimum when it travels parallel to
the lamina. A similar result has been found in [16] for perfect contact and also in [9] for elastic case.

In order to study the effect of volume fraction in a 3-laminae unit cell of BaTiO3/CoFe2O4/BaTiO3 MEE
laminated composite periodic structure, Fig. 8a, b has been drawn for imperfect and perfect contact cases,
respectively. It is to be noted that θ1 = 0 and θ2 = 1 represent monolithic CoFe2O4 unit cell, whereas
θ1 = θ2 = 0.5 represents monolithic BaTiO3 unit cell. It is observed that for Fig. 8a, the system becomes
non-dispersive in both monolithic cases of BaTiO3 unit cell and CoFe2O4 unit cell and as the volume fraction
of BaTiO3 increases, the frequency curve decreases and the system becomes more dispersive. On the other
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Fig. 5 a 2-D function plot of K3(x2, x3) against x2-axis; b 3-D dispersion plot for distinct function values of K3; c 2-D function
plot of K ∗

3 (x2, x3) against x2-axis; d 3-D dispersion plot for distinct function values of K ∗
3

Fig. 6 Dispersion curves showing variation of frequency against wave-number for BaTiO3/CoFe2O4/BaTiO3 MEE laminated
composite a with mechanical, electrical and magnetic imperfect contact and b with mechanical, electrical and magnetic perfect
contact for distinct sizes of unit cell
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Fig. 7 Dispersion curves showing variation of frequency against wave-number for BaTiO3/CoFe2O4/BaTiO3 MEE laminated
composite a with mechanical, electrical and magnetic imperfect contact and b with mechanical, electrical and magnetic perfect
contact for distinct values of angle of incidence (θ) of harmonic wave

Fig. 8 Dispersion curves showing variation of frequency against wave-number for BaTiO3/CoFe2O4/BaTiO3 MEE laminated
composite a with mechanical, electrical and magnetic imperfect contact and b with mechanical, electrical and magnetic perfect
contact for distinct values of volume fractions

hand, in Fig. 8b for perfect contact, the dispersion curves reveal that the system becomes non-dispersive only
in monolithic case of CoFe2O4 unit cell and as the volume fraction of BaTiO3 increases, the frequency curve
decreases and the system becomes more dispersive. A similar result has also been obtained in [16] for perfect
contact case.

Figure 9 represents a comparison between MEE case with mechanical, electrical and magnetic imperfect
interface and elastic case with mechanical imperfect interface only. In Fig. 9a, the black curve represents the
non-dispersion curve, whereas the red curve represents the dispersion curve for BaTiO3/ CoFe2O4/ BaTiO3
MEE laminated composite periodic structure with mechanical, electrical and magnetic imperfect interface. In
Fig. 9b, the green curve and yellow curve represent dispersion curve and non-dispersion curve for 3-layered
BaTiO3/ CoFe2O4/ BaTiO3 elastic laminated composite periodic structure (in absence of electro-magnetic
properties) with mechanical imperfect interface, whereas the blue curve and the magenta curve represent
dispersion curve and non-dispersion curve for 3-layered epoxy/glass/epoxy (or E/G/E) laminated periodic
structure with mechanical imperfect interface only. For Glass material in E/G/E case, we consider E1 = 76
Gpa and ρ1 = 2500 Kg/m3 and for epoxy resin, E2 = 3 Gpa and ρ2 = 1300 Kg/m3 [14]. A similar dispersion
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Fig. 9 Dispersion curves showing variation of frequency against wave-number for a BaTiO3/CoFe2O4/BaTiO3 MEE laminated
composite case and b BaTiO3/CoFe2O4/BaTiO3 elastic laminated composite and epoxy/glass/epoxy laminated composite case
with mechanical, electrical and magnetic imperfect contact

curve (with phase velocity) for glass/epoxy biphasic elastic model with mechanical imperfect bonding can
also be found in [10]. On comparison, it has been found that the frequency curves are higher in case of elastic
periodic structure with mechanical imperfect interface as compared to MEE case with mechanical, electrical
and magnetic imperfect interface, hence, MEE imperfect interface makes the system more dispersive. In
particular, the frequency curves are lower in case of BaTiO3/CoFe2O4/BaTiO3 elastic laminated structure
with imperfect contact as compared to the case of Epoxy/Glass/Epoxy (or E/G/E) laminated structure with
imperfect contact.

In Fig. 10a, the black curve representsMEEcompositewithmechanical (K3), electric (E) andmagnetic (M)
imperfect contact; green curve represents MEE composite with perfect contact; red curve represents electro-
elastic composite with mechanical (K3) and electric (E) imperfect contact; magenta curve represents electro-
elastic composite with perfect contact; blue curve represents magneto-elastic composite with mechanical (K3)
and magnetic (M) imperfect contact; cyan curve represents magneto-elastic composite with perfect contact;
dark yellow curve represents only elastic laminated composite with mechanical (K3) imperfect contact; and
light yellow curve represents elastic laminated composite with mechanical perfect contact. Figure 10b, c
shows the magnification of the dispersion curves at different ranges. The dispersion curves reveal the relation
betweenMEE-composite and imperfect bonding at distinct frequencies. TheMEE-composite tends to decrease
the dispersion curve making the systemmore dispersive when the system has imperfect interfaces as compared
to the case when it has perfect interfaces at any finite frequency. For the case of imperfect bonding at low
frequency, the difference between the dispersion curve for elastic compositewithmechanical imperfect bonding
(dark-yellow curve) and MEE composite with mechanical, electrical and magnetic imperfect bonding (black
curve) can be observed which signifies that the MEE composite decreases the dispersion curve significantly at
low frequency in the presence of imperfect bonding. On the other hand, the difference between the dispersion
curves of elastic case (light yellow curve) and MEE coupled case (green curve) for perfect bonding can
only be visible at higher frequency which signifies that the MEE composite also decreases the dispersion
curve at higher frequency in the presence of perfect bonding, but not as significantly as compared to the case
of imperfect bonding. Moreover, magneto-elastic composite and electro-elastic composite also show similar
effect on dispersion curves in the presence and absence of imperfect bonding at any finite frequency. The case
of electro-elastic composite makes the system more dispersive as compared to the case of MEE-composite
and the case of magneto-elastic composite makes the system more dispersive as compared to case of electro-
elastic composite. In conclusion, theMEE-composite, electro-elastic composite andmagneto-elastic composite
decrease the dispersion curve, i.e., make the system more dispersive and the effect is substantial in case of
imperfect bonding as compared to the case of perfect bonding.

In Fig. 10d, the black curve represents the dispersion curve for the effective magneto-electro-elastic prop-
erties of the BaTiO3/ CoFe2O4/ BaTiO3 (B/C/B) MEE laminated composite periodic structure with imperfect
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Fig. 10 Dispersion curves showing variation of frequency against wave-number for a MEE composite, electro-elastic composite,
magneto-elastic composite and elastic laminates with imperfect contact (I.C.) and perfect contact (P.C.); b magnification of
dispersion curves at certain range for I.C. case; c magnification of dispersion curves at certain range for P.C. case; and d
dispersion curves for distinct types of MEE laminated composite with mechanical, electrical and magnetic imperfect contact

interface obtained by the dynamic asymptotic homogenization method; the red curve represents the disper-
sion curve for the effective magneto-electro-elastic properties of the COMP10/COMP90/COMP10 composite
(COMP10=10% BaTiO3 and COMP90=90% BaTiO3) with imperfect interface whose data are provided in
Table 1 of [15] where the effective properties have been calculated using closed-form expressions given in [24];
the blue curve represents dispersion curve for the BaTiO3monolithic structurewith imperfect interface; and the
magenta curve represents dispersion curve for the CoFe2O4 monolithic structure with imperfect interface. The
blue and magenta curves tend to become non-dispersive. It has been found that in case of BaTiO3/ CoFe2O4/
BaTiO3 (B/C/B) MEE laminated composite periodic structure with imperfect interface, the dispersion curve
is minimum as compared to other composite cases. This implies that the present dynamic asymptotic homog-
enization method makes the system more dispersive than the other cases which numerically validates the aim
of the present work.

In order to show the effect of imperfect bonding on magneto-electric (ME)-coupling, Figure 11a–c is
plotted showing the variation of effective magnetoelectric coefficient α̂11 against mechanical, electrical and
magnetic imperfect bonding (K3, E, M). It is to be noted that α̂22 = 0. In the horizontal axis of Fig. 11a–c,
the imperfect bonding parameters are varied from very low to high values such that it achieves imperfect
bonding to perfect bonding case. In Fig. 3, it has been already shown that the effect of mechanical imperfect
bonding K3 on dispersion curve dominates as compared to the effects of the electrical (E) and magnetic (M)
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Fig. 11 Variation of effective magnetoelectric coefficient (α̂11) against a mechanical imperfect bonding parameter (K3); b
electrical imperfect bonding parameter (E); and c magnetic imperfect bonding parameter (M)

imperfect bonding. A similar observation is also found in Fig. 11a–c where the effect of K3 dominates on
α̂11 as compared to the other two. As the imperfect bonding parametric value increases, α̂11 decreases which
implies that the mechanical, electrical and magnetic imperfect bonding weaken the ME-coupling. This result
also coincides with the results obtained by [11] and [13] for imperfect bonding in static case.

6 Conclusion

The present study provides a mathematical framework for the analysis of shear wave propagation phenomena
in magneto-electro-elastic laminated periodic composite structure with non-uniform imperfect interfaces by
proposing a dynamic asymptotic homogenized model. The present study is considered under low-frequency
regime, i.e., the wavelength of propagating waves is much larger than the characteristic lengthscale of the
microstructure. Regular asymptotic expansion of the frequency is considered instead of temporal scale. The
local problems satisfying necessary and sufficient condition for the existence of 1-periodic solutions; closed-
form expressions of the dispersion equation in second- and fourth-order approximation; and closed-form
solutions of the first and second local problems in second-order approximation are derived explicitly for multi-
laminated MEE composites with a unit periodic cell having any finite number of layers with mechanical,
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electrical and magnetic imperfect interfaces. Mathematical results are validated with those reported for perfect
contact in [16] and also for the purely elastic case in [9] having perfect contact and in [10] having imperfect
contact for second-order approximation. It is also pointed out that the obtained homogenized dispersive system
is a “good" Boussinesq equation in elastic case. In [17], a “bad" Boussinesq equation was derived using AHM
and then it was reformulated into “good" Boussinesq equation by approximation. However, by the proposed
dynamic asymptotic homogenization method, the “good" Boussinesq equation can be directly achieved. This
shows that the proposed technique is much more powerful. The procedure followed here, which is based on
[5] and on recently published work of [16], allows a better understanding of the approximation model.

The dispersion phenomena for MEE periodic structure with tri-laminated unit cell having non-uniform
imperfect interfaces have been studied for various parameters, such as mechanical, electrical and magnetic
imperfect bonding, size of unit cell, angle of incidence of harmonic wave, volume fractions of the composites.
It is concluded from the numerical results that the presence of imperfect bonding makes the system more
dispersive. The effect of mechanical imperfect bonding dominates over the electric and magnetic one. The
presence of non-uniformity in the imperfect bonding also strongly affect the dispersion curve. The system also
becomes more dispersive when the size of the unit cell increases for MEE periodic structure in both perfect
and imperfect contact cases. The angle of incidence of wave has an decreasing effect on the frequency curve
in case of imperfect interface, whereas it has an increasing effect in case of perfect interface which is an
interesting phenomena, although the effect of angle of incidence of wave in case of imperfect interface is very
small. It is also concluded that in presence of imperfect interfaces, the system becomes more dispersive when
the composite structure is non-monolithic. The magneto-electro-elastic composite along with mechanical,
electrical and magnetic imperfect interface makes the system more dispersive as compared to elastic one with
mechanical imperfect interface. In particular, electro-elastic composite makes the system more dispersive as
compared to MEE-composite, whereas the magneto-elastic composite makes the system more dispersive as
compared to electro-elastic composite. The effect is found to be substantial in case of imperfect bonding as
compared to the case of perfect bonding. A comparison between the dispersion curve for effective dispersion
equation of MEE case obtained by dynamic homogenization method and dispersion curve for MEE case with
effective material constants obtained by approximate method of [24] shows that the present model is more
dispersive and provides better approximation. Further, ME-coupling is also studied and it is found that it gets
weakened as the imperfect bonding increases.

The consequence of the study bestows a theoretical framework that can be employed for surface acoustic
wave or Rayleigh wave or Lamb wave at any angle of incidence in a piezoelectric or piezomagnetic or simply
elastic multi-laminated composite with any finite number of laminates in the unit cell with any deterministic
non-uniform imperfect interfacial function. The theoretical model provides control over the parameters and
material constituents to achieve desired effective property and a framework to design and analyze smart systems.
All these parametric effects provide a reference to consider while designing smart systems (ME-SAW devices)
or studying structural health monitoring (SHM) system and NDTs where surface acoustic waves or Rayleigh
waves or Lamb waves at certain angle of incidence are needed to propagate in a fully coupled MEE multi-
laminated periodic structure where the interfaces may not have perfect contact. Considering the type of wave
propagation, boundary condition and non-uniform imperfect interfacial function, the homogenized effective
dispersive equation can be analytically derived using the proposed model and can be directly used for analysis.
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Appendix A Solution of first and second local problems

A.1 Solution of first local problem

From the first local problem, in case of p-layered MEE composite structure, we obtain

d

dy

(
M11

dNk(y)

dy

)
= −d(M1k)

dy
, in y ∈ (0, 1) \ �, (A.1)

with non-uniform imperfect interface condition

M11
dNk(y)

dy
+ M1k = K (q)[[Nk(y)]], [[M11

dNk(y)

dy
+ M1k]] = 0, y = θq , (A.2)

where (0, 1) = (0, θ1) ∪ (θ1, θ2) ∪ · · · ∪ (θp, 1) represents the p-laminae with repetition.
On integrating Eq.(A.1) for each y ∈ (θs, θs+1) with s = 0, 1, . . . , p, we obtain

M11
dNk(y)

dy
+ M1k = A( j)

k , (A.3)

where A( j)
k is the integration constant for each interval (θ j , θ j+1).

Now, for p-laminated structure, from stress continuity (A.2)2, we have A(0)
k = A(1)

k = · · · = A(p)
k ≡ Ak (on

assumption).
Hence, Eq.(A.3) becomes

M11
dNk(y)

dy
+ M1k = Ak, (A.4)

from which we obtain

dNk(y)

dy
= M−1

11 Ak − M−1
11 M1k . (A.5)

On taking average of the above, we obtain

〈
dNk(y)

dy

〉
=

∫ θ−
1

0

dNk(y)

dy
dy +

∫ θ−
2

θ+
1

dNk(y)

dy
dy + · · · +

∫ 1

θ+
p

dNk(y)

dy
dy

=
〈
M−1

11

〉
Ak −

〈
M−1

11 M1k

〉
.

On simplification, we derive the relation

−
p∑

q=1

[[Nk]]|y=θq =
〈
M−1

11

〉
Ak −

〈
M−1

11 M1k

〉
. (A.6)

Using (A.2)1 and (A.4) in (A.6), we obtain

Ak =
〈
M−1

11

〉−1

K

〈
M−1

11 M1k

〉
, (A.7)

where
〈
M−1

11

〉−1

K
=

(∑p
q=1(K

(q))−1 +
〈
M−1

11

〉)−1
with I =

⎛
⎝
1 0 0
0 1 0
0 0 1

⎞
⎠.
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Now, for each y ∈ (θs, θs+1), integrating (A.5) from 0 to y, we get

Nk(y) − Nk(0) = Bk(y), (A.8)

where Bk(y) = ∑s
q=1(K

(q))−1Ak + ∫ y
0

(
M−1

11 Ak − M−1
11 M1k

)
dξ .

On taking average of Eq.(A.8) and using 〈Nk〉 = 0 for uniqueness, we obtain

Nk(y) = Bk(y) − 〈Bk(y)〉 . (A.9)

For a tri-layered periodic structure (0, 1) = (0, θ1) ∪ (θ1, θ2) ∪ (θ2, 1), we consider

Mjk =

⎧⎪⎨
⎪⎩

M (0)
jk , for y ∈ (0, θ1),

M (1)
jk , for y ∈ (θ1, θ2),

M (0)
jk , for y ∈ (θ2, 1),

(A.10)

for which, on using interface condition and considering K (1) = K (2) = K , we obtain

N1(y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
(M (0)

11 )−1
〈
M−1

11

〉−1 − I

]
y − 〈Bk(y)〉 , for y ∈ (0, θ1),

[
K−1 +

(
(M (0)

11 )−1 − (M (1)
11 )−1

)
θ1 + (M (1)

11 )−1y
] (

K−1 +
〈
M−1

11

〉)−1

−I y − 〈Bk(y)〉 , for y ∈ (θ1, θ2),[
2K−1 +

(
(M (1)

11 )−1 − (M (0)
11 )−1

)
(θ2 − θ1) + (M (0)

11 )−1y
] (

2K−1 +
〈
M−1

11

〉)−1

−I y − 〈Bk(y)〉 , for y ∈ (θ2, 1),

(A.11)

along with N2(y) = 0 and N3(y) = 0, where

〈Bk〉 = 2K−1
[
2K−1 +

〈
M−1

11

〉]−1 +
(

(M (0)
11 )−1

〈
M−1

11

〉−1 − I

)
θ21

2
+

(
(M (0)

11 )−1
〈
M−1

11

〉−1 − I

)

× θ1(θ2 − θ1) +
(

(M (1)
11 )−1

(
K−1 +

〈
M−1

11

〉)−1 − I

) (
θ22

2
− θ21

2
− θ1(θ2 − θ1)

)

+
(

(M (0)
11 )−1

〈
M−1

11

〉−1 − I

)
θ1(1 − θ2) +

(
(M (1)

11 )−1
(
K−1 +

〈
M−1

11

〉)−1 − I

)
(θ2 − θ1)(1 − θ2)

+
(

(M (0)
11 )−1

(
2K−1 +

〈
M−1

11

〉)−1 − I

) (
1

2
− θ22

2
− θ2(1 − θ2)

)
.

A.2 Solution of second local problem

From the second local problem, in case of p-layered MEE composite structure, we obtain

LN jk(y) = − d

dy

(
M1 j Nk(y)

) − Mj1
dNk

dy
− Mjk + ρ(y)

ρ̂
M̂ jk, y ∈ (0, 1) \ � (A.12)

with non-uniform imperfect interface condition

M11
dN jk(y)

dy
+ Mlj Nk = K (q)[[N jk]], [[M11

dN jk(y)

dy
+ Mlj Nk]] = 0, y = θq . (A.13)

On using Eq.(A.4) and (A.7), Eq.(A.12) becomes

d

dy

[
M11

d

dy
N jk + M1 j Nk

]
= −R jk − Mjk + ρ

ρ̂
M̂ jk, (A.14)

where R jk = Mj1M
−1
11

〈
M−1

11

〉−1

K

〈
M−1

11 M1k

〉
− Mj1M

−1
11 M1k .
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On integrating Eq.(A.14) from 0 to y for each y ∈ (θs, θs+1), we obtain

∫ θ−
1

0+
d

dy

[
M11

d

dy
N jk + M1 j Nk

]
dξ +

∫ θ−
2

θ+
1

d

dy

[
M11

d

dy
N jk + M1 j Nk

]
dξ

+ · · · +
∫ y

θs

d

dy

[
M11

d

dy
N jk + M1 j Nk

]
dξ = Q jk, (A.15)

where Q jk = ∫ y
0

(
−R jk − Mjk + ρ

ρ̂
M̂ jk

)
dξ .

Now, using interface condition (A.2)2, we derive

[
M11

d

dy
N jk + M1 j Nk

]

ξ=y
= Q jk + A jk, (A.16)

where A jk =
[
M11

d
dy N jk + M1 j Nk

]
ξ=0+ .

From Eq.(A.16), we obtain

dN jk(y)

dy
= M−1

11 Q jk + M−1
11 A jk − M−1

11 M1 j Nk . (A.17)

Now, on taking average and using the condition (A.13)1, we obtain

−
p∑

q=1

(
K (q)

)−1
[
M11

d

dy
N jk + M1 j Nk

]

ξ=θq

=
〈
M−1

11

〉
A jk +

〈
M−1

11 Q jk − M−1
11 M1 j Nk

〉
. (A.18)

In view of interface condition (A.13)2, we have

[
M11

d

dy
N jk + M1 j Nk

]

y=θ1

=
[
M11

d

dy
N jk + M1 j Nk

]

y=θ2

= · · · =
[
M11

d

dy
N jk + M1 j Nk

]

y=θp

and in view of (A.16), we obtain
[
M11

d
dy N jk + M1 j Nk

]
y=θ1

= Q jk(θ1) + A jk .

Hence, from (A.18), we derive

A jk = −
〈
M−1

11

〉−1

K

⎡
⎣

p∑
q=1

(
K (q)

)−1
Q jk(θ1) +

〈
M−1

11 Q jk(y)
〉
−

〈
M−1

11 M1 j Nk(y)
〉⎤⎦ . (A.19)

Now, integrating Eq.(A.17) from 0 to y for each y ∈ (θs, θs+1) and using interface condition (A.13)1, we
obtain

N jk(y) − N jk(0) = Bjk(y), (A.20)

where

Bjk(y) =
s∑

q=1

(
K (q)

)−1 (
Q jk(θ1) + A jk

) +
∫ y

0

[
M−1

11 Q jk(y) + M−1
11 A jk − M−1

11 M1 j Nk

]
dη.

On taking average of Eq.(A.20) and using the uniqueness condition
〈
N jk

〉 = 0, we obtain

N jk(y) = Bjk(y) − 〈
Bjk(y)

〉
. (A.21)
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For the 3-layered structure given in Eq.(A.10) and considering K (1) = K (2) = K , we calculate the following

B11(y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(M (0)
11 )−1

[
−

(
2K−1 +

〈
M−1

11

〉)−1 + ρ(0)

ρ̂
M̂11

]
y2

2 + (M (0)
11 )−1A11

−
[
(M (0)

11 )−1
〈
M−1

11

〉−1 − I

]
y2

2 + 〈Bk〉 y, for y ∈ (0, θ1),

(M (0)
11 )−1

[
−

(
2K−1 +

〈
M−1

11

〉)−1 + ρ(0)

ρ̂
M̂11

]
θ21
2 + (M (0)

11 )−1A11θ1

−
[
(M (0)

11 )−1
〈
M−1

11

〉−1 − I

]
θ21
2 + 〈Bk〉 θ1

+(M (1)
11 )−1

{(
ρ(0)−ρ(1)

ρ̂

)
M̂11θ1(y − θ1)

+
[
−

(
2K−1 +

〈
M−1

11

〉)−1 + ρ(1)

ρ̂
M̂11

] (
y2

2 − θ21
2

)}

+(M (1)
11 )−1A11(y − θ1) −

{[
K−1(y − θ1) +

(
(M (0)

11 )−1 − (M (1)
11 )−1

)

×θ1(y − θ1) + (M (1)
11 )−1

(
y2

2 − θ21
2

)] (
K−1 +

〈
M−1

11

〉)−1

−I

(
y2

2 − θ21
2

)
− 〈Bk(y)〉 (y − θ1)

}
, for y ∈ (θ1, θ2),

(M (0)
11 )−1

[
−

(
2K−1 +

〈
M−1

11

〉)−1 + ρ(0)

ρ̂
M̂11

]
θ21
2 + (M (0)

11 )−1A11θ1

−
[
(M (0)

11 )−1
〈
M−1

11

〉−1 − I

]
θ21
2 + 〈Bk〉 θ1

+(M (1)
11 )−1

{(
ρ(0)−ρ(1)

ρ̂

)
M̂11θ1(θ2 − θ1)

+
[
−

(
2K−1 +

〈
M−1

11

〉)−1 + ρ(1)

ρ̂
M̂11

] (
θ22
2 − θ21

2

)}

+(M (1)
11 )−1A11(θ2 − θ1) + (M (0)

11 )−1
{(

ρ(1)−ρ(0)

ρ̂

)
M̂11(θ2 − θ1)(y − θ2)

+
[
−

〈
M−1

11

〉−1 + ρ(0)

ρ̂
M̂11

] (
y2

2 − θ22
2

)}
+ (M (0)

11 )−1A11(y − θ2)

−
{[

K−1(θ2 − θ1) +
(
(M (0)

11 )−1 − (M (1)
11 )−1

)
θ1(θ2 − θ1)

+(M (1)
11 )−1

(
θ22
2 − θ21

2

)] (
K−1 +

〈
M−1

11

〉)−1 − I

(
θ22
2 − θ21

2

)

− 〈Bk(y)〉 (θ2 − θ1)} −
{[

2K−1(y − θ2) +
(
(M (1)

11 )−1 − (M (0)
11 )−1

)

×(θ2 − θ1)(y − θ2) + (M (0)
11 )−1

(
y2

2 − θ22
2

)] (
2K−1 +

〈
M−1

11

〉)−1

−I

(
y2

2 − θ22
2

)
− 〈Bk(y)〉 (y − θ2)

}
, for y ∈ (θ2, 1)
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and

Bj j (y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(M (0)
11 )−1

[
−M (0)

j j + ρ(0)

ρ̂
M̂ j j

]
y2

2 + (M (0)
11 )−1A j j , for y ∈ (0, θ1),

(M (0)
11 )−1

[
−M (0)

j j + ρ(0)

ρ̂
M̂ j j

]
θ21
2 + (M (0)

11 )−1A j jθ1

+(M (1)
11 )−1

{(
ρ(0)−ρ(1)

ρ̂

)
M̂ j jθ1(y − θ1)

+
[
−M (1)

j j + ρ(1)

ρ̂
M̂ j j

] (
y2

2 − θ21
2

)}
+ (M (1)

11 )−1A j j (y − θ1), for y ∈ (θ1, θ2),

(M (0)
11 )−1

[
−M (0)

j j + ρ(0)

ρ̂
M̂ j j

]
θ21
2 + (M (0)

11 )−1A j jθ1

+(M (1)
11 )−1

{(
ρ(0)−ρ(1)

ρ̂

)
M̂ j jθ1(θ2 − θ1) +

[
−M (1)

j j + ρ(1)

ρ̂
M̂ j j

] (
θ22
2 − θ21

2

)}

+(M (1)
11 )−1A j j (θ2 − θ1) + (M (0)

11 )−1
{(

ρ(1)−ρ(0)

ρ̂

)
M̂ j j (θ2 − θ1)(y − θ2)

+
[
−M (0)

j j + ρ(0)

ρ̂
M̂ j j

] (
y2

2 − θ22
2

)}
+ (M (0)

11 )−1A j j (y − θ2), for y ∈ (θ2, 1),

when j = k = 2 or 3 and Bjk = 0 for j �= k.

A11 = −
(
2K−1 +

〈
M−1

11

〉)−1
[
2K−1

(
−

(
2K−1 +

〈
M−1

11

〉)−1 + ρ(0)

ρ̂
M̂11

)
θ1

+(M (0)
11 )−1

{
−

(
2K−1 +

〈
M−1

11

〉)−1 + ρ(0)

ρ̂
M̂11

}
θ21

2
+ (M (1)

11 )−1

×
{(

ρ(0) − ρ(1)

ρ̂

)
M̂11θ1(θ2 − θ1) +

[
−

〈
M−1

11

〉−1 + ρ(1)

ρ̂
M̂11

] (
θ22

2
− θ21

2

)}

+ (M (0)
11 )−1

{(
ρ(1) − ρ(0)

ρ̂

)
M̂11(θ2 − θ1)(1 − θ2)

+
[
−

〈
M−1

11

〉−1 + ρ(0)

ρ̂
M̂11

] (
1

2
− θ22

2

)}]
,

A22 = −
(
2K−1 +

〈
M−1

11

〉)−1
[
2K−1

(
−M (0)

22 + ρ(0)

ρ̂
M̂22

)
θ1

+ (M (0)
11 )−1

{
−M (0)

22 + ρ(0)

ρ̂
M̂22

}
θ21

2
+ (M (1)

11 )−1

{(
ρ(0) − ρ(1)

ρ̂

)
M̂22

×θ1(θ2 − θ1) +
[
−M (1)

22 + ρ(1)

ρ̂
M̂22

] (
θ22

2
− θ21

2

)}
+ (M (0)

11 )−1

×
{(

ρ(1) − ρ(0)

ρ̂

)
M̂22(θ2 − θ1)(1 − θ2) +

[
−M (0)

22 + ρ(0)

ρ̂
M̂22

] (
1

2
− θ22

2

)}]

and

A33 = −
(
2K−1 +

〈
M−1

11

〉)−1
[
2K−1

(
−M (0)

33 + ρ(0)

ρ̂
M̂33

)
θ1

+ (M (0)
11 )−1

{
−M (0)

33 + ρ(0)

ρ̂
M̂33

}
θ21

2
+ (M (1)

11 )−1

{(
ρ(0) − ρ(1)

ρ̂

)
M̂33θ1(θ2 − θ1)

+
[
−M (1)

33 + ρ(1)

ρ̂
M̂33

] (
θ22

2
− θ21

2

)}
+(M (0)

11 )−1

{(
ρ(1) − ρ(0)

ρ̂

)
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×M̂33(θ2 − θ1)(1 − θ2) +
[
−M (0)

33 + ρ(0)

ρ̂
M̂33

] (
1

2
− θ22

2

)}]
,

Q11(y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
−

(
2K−1 +

〈
M−1

11

〉)−1 + ρ(0)

ρ̂
M̂11

]
y, for y ∈ (0, θ1),

(
ρ(0)−ρ(1)

ρ̂

)
M̂11θ1 +

[
−

(
2K−1 +

〈
M−1

11

〉)−1 + ρ(1)

ρ̂
M̂11

]
y, for y ∈ (θ1, θ2),

(
ρ(1)−ρ(0)

ρ̂

)
M̂11(θ2 − θ1) +

[
−

(
2K−1 +

〈
M−1

11

〉)−1 + ρ(0)

ρ̂
M̂11

]
y,

for y ∈ (θ2, 1),

and

Q j j (y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
−M (0)

j j + ρ(0)

ρ̂
M̂ j j

]
y, for y ∈ (0, θ1),(

ρ(0)−ρ(1)

ρ̂

)
M̂ j jθ1 +

[
−M (1)

j j + ρ(1)

ρ̂
M̂ j j

]
y, for y ∈ (θ1, θ2),(

ρ(1)−ρ(0)

ρ̂

)
M̂ j j (θ2 − θ1) +

[
−M (0)

j j + ρ(0)

ρ̂
M̂ j j

]
y, for y ∈ (θ2, 1),

when j = k = 2 or 3. and Q jk = 0 for j �= k.

Appendix B Derivation of closed-form expression of η∗

For O(ε2), we consider

η∗ = M̂ jk1k2l M̂
−1
jk1

P̂ M̂−1
k2l

=
〈
Mk21

dN jk1l

dy
+ Mk2l N jk1 − ρ(y)

ρ̂
M̂k2l N jk1

〉
M̂−1

jk1
P̂ M̂−1

k2l
. (B.22)

Considering the third local problem with multiplication by Nk and taking null average, we obtain〈
Nk

[
d

dy

(
M11

dN jk1l

dy
+ M1l N jk1

)]〉
= −

〈
Ni

(
Ml1

dN jk1

dy
+ Mjl Nk1 − ρ(y)

ρ̂
M̂ jl Nk1

)〉
. (B.23)

On integrating by parts the left hand side, we obtain〈
M11

dN jk1l

dy
+ M1l N jk1

〉
= −

〈
Ni

(
Ml1

dN jk1

dy
+ Mjl Nk1 − ρ(y)

ρ̂
M̂ jl Nk1

)〉

−
〈(
M−1

11 M1k2M1l − M−1
11 A1k2M1l − Mk2l

)
N jk1

〉
. (B.24)

Now, we note that 〈
ρ

ρ̂
M̂k2l N jk1

〉
= −

〈
RM̂k2l

dN jk1

dy

〉
, (B.25)

where R = ∫ y
0

(
ρ(y)
ρ̂

− 1
)
dξ .

On the other hand, using (B.24) and (B.25), we obtain the expression of η∗ as

η∗ =
[〈

RM̂k2l
dN jk1

dy

〉
−

〈
Ni

(
Ml1

dN jk1

dy
+ Mjl Nk1 − ρ

ρ̂
M̂ jl Nk1

)〉

−
〈(
M−1

11 M1k2M1l − M−1
11 A1k2M1l − Mk2l

)
N jk1

〉]
M̂−1

jk1
P̂ M̂−1

k2l
. (B.26)

Using Eq.(A.12), we obtain the closed-form expression of Eq.(B.26) as follows:

η∗ =
[〈
RM̂k2l M

−1
11 Q jk1

〉
+

〈
RM̂k2l M

−1
11 A jk1

〉
−

〈
RM̂k2l M

−1
11 M1 j Nk1

〉
−

〈
NiMl1M

−1
11 Q jk1

〉

−
〈
NiMl1M

−1
11 A jk1

〉
+

〈
NiMl1M

−1
11 M1 j Nk1

〉
− 〈

NiM jl Nk1

〉 +
〈
Ni

ρ

ρ̂
M̂ jl Nk1

〉

−
〈(
M−1

11 M1k2M1l − M−1
11 A1k2M1l − Mk2l

)
N jk1

〉]
M̂−1

jk1
P̂ M̂−1

k2l
. (B.27)
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