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Abstract This paper investigates the stress fields at the onset of plastic yield of variable thickness rotating
orthotropic disk, which is rigidly fixed on an inclusion. In the analytical modeling of the problem, two different
analytical solution methods have been displayed where small deformations have been considered with the
application of plane stress conditions. Well-known power law is considered for the disk’s thickness variation,
and Hill’s yield criterion is applied to obtain the elastic limits. Four parameters have been utilized while
analyzing the limit fields: geometric parameter to manipulate the disk thickness, orthotropy parameter from
the ratio between Young’s modulus in radial and tangential directions, and two parameters owing to the
applied yield criteria. The effects of these parameters on the limit fields have been comprehensively examined
in the numerical examples, and possible outcomes have been discussed. Additionally, using Autodesk Inventor
Nastran, finite element solution of the disk is generated, analytical and numerical results have been compared,
and consequently, closely matching results have been achieved.

Keywords Orthotropic disk · Variable thickness disk · Rotating disk · Stresses at the onset of plastic yield ·
Analytical and FEM solution

1 Introduction

In numerous engineering exercises, various forms of disks are used for different purposes. Metal cutting disks,
disk brakes, rotating motion transferring disks, or related applications can be given as examples. The number
of studies in the literature about disks is quite large due to this wide range of applications. Although these
components have been thoroughly studied, there are still some missing points in the scientific literature. This
paper is planned to fill in some of these points. Prior to revealing the technical details of this work, it is
convenient to refer to what has been researched heretofore.

Firstly, it is pertinent to briefly touch on the studies earlier than 1990s that have been written. The stress
distribution of orthotropic rotating constant thickness disks has been analytically modeled by Genta and Gola
[1]. For rotating circular and elliptical disk geometries of orthotropic material, closed form solutions are
available [2, 3]. In another early study [4], stress distributions have been presented for rotating orthotropic
disk with and without a circular hole at the center. In the article of Misra and Achari [5], exact solutions have
been carried out for thermal stress analysis of orthotopic circular disk subjected to rotating heat source, in
which infinite series and stress function approaches have been utilized. In another thermal stress analysis [6],
orthotropic cylinders have been examined under plane temperature distribution.

It is appropriate to refer to more recent studies following the early ones. In this context, Lubarda [7]
has put forward a general analytical solution for the elastic response of curvilinearly orthotropic pressurized
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annular disks, cylinders, and spheres, where both plane strain and plane stress assumptions have been applied.
Likewise, Zenkour [8] has investigated rotating orthotropic cylinders having variable thickness profiles and
constant solid cores. The stresses and displacements have been examined for five different cases in which
various core and material (isotropic and orthotropic) combinations have been considered. In the article of
Abd-Alla et al. [9], a long cylinder made of orthotropic material has been considered. The constant thickness
cylinder has been subjected to various boundary and loading conditions, which are solid cylinder, cylinder on
a rigid shaft, and cylinder with a central hole. Exact solutions of rotating strain hardening orthotropic cylinders
have been exhibited byLeu andHsu [10]. Therein, Voce hardening law andHill’s yield criterion have been used.
Additionally, exact solutions have been validated with Abaqus, andmatching results have been achieved. In the
paper ofNie et al. [11],material tailoring is discussed to acquire desired stress and displacement field of rotating
orthotopic fiber reinforced disk of variable thickness geometry. As known, rotating disks may become unstable
at some angular velocities. In the study of Tutuncu [12], influence of anisotropy on the instability of polar
orthotopic rotating disks has been addressed. In a similar manner, Tutuncu andOzturk [13] have analyzed stress
redistributions and instabilities of orthotopic cylinders. In the last two mentioned articles, it has been seen that
when the classical solutions have been considered, second-order nonhomogeneous differential equations need
to be solved. On the other hand, when instabilities have been taken into account, these differential equations
have been replaced with Bessel differential equations. Apart from instabilities, singularities may take place in
the examinations of disks and shells due to mathematical modeling and various material parameters. In the
research of Jain et al. [14], the aim is to investigate singularities of rotating orthotropic disks and solids where
Young’s modulus in tangential direction (Eθ ) is smaller than the one in the radial direction (Er). According
to the authors statements when Eθ ≥ Er no singularity has been observed. Similarly, Alexandrova et al. [15]
have focused on the singularities of rotating constant thickness orthotropic disk under temperature gradient.

Another related topic is the thermomechanical analysis of orthotopic disks and cylinders. Recently, Sharifi
[16] hasmodeled the rotating orthotopic disk under thermal shock via Lord-Shulman theory of thermoelasticity.
El-Naggar et al. [17] have examined the thermal stresses of rotating orthotropic cylinders by combining
analytical expressions with finite difference approach. The problem of multilayered orthotropic cylindrical
geometry subjected to dynamic thermal loading has been investigated analytically by Abd-Alla et al. [18].
Wherein, thermoelastic stress and displacement have been observed at different time frames. Ding et al. [19]
have carried out solutions for the orthotropic and isotropic cylindrical shells subjected to dynamic thermoelastic
loads under plane strain assumption. Rotating orthotropic cylinders under magneto-thermoelastic loads has
been studied by Abd-Alla and Mahmoud [20]. In the article, the authors have conducted semi-analytical
methods. Besides the mentioned mechanical and thermal loads on orthotopic disks and cylinders, from a
broader frame, there are some studies that cover the vibration and stability of these orthotopic geometries
[21–24]. In addition to orthotropy, some investigations [25–28] have considered rotating functionally graded
polar orthotopic disks.

It has been seen from the mentioned articles that most studies generally pay attention to the elastic stresses
not the stresses at the onset of plastic yield or elastic–plastic stresses. Additionally, diskswith constant thickness
geometry have mostly been considered for the orthotropic disks. In this study, elastic stresses at the onset
of plastic yield are investigated comprehensively with the variable thickness consideration. Two different
analytical solutions and finite element method (FEM) approaches are performed. The considered geometry is
portrayed in Fig. 1, and the geometric function (𝒽(r )) is given below

𝒽(r ) � 𝒽ro

[
r

ro

]ℊ
, (1)

in which 𝒽ro is the thickness of the disk at the outer radius ro and ri is the inner radius, ℊ is the parameter of
geometry. Depending on the value ofℊ, the disk takes convex (ℊ < 0), annular (ℊ � 0), and concave (ℊ > 0)
forms. This function is a common model that can be seen in other related research papers as well [26, 29–31]
and is called power-law function in the literature. The solution procedure (analytical, semi-analytical, or fully
numerical) varies depending on the geometric function and material property variations.

Following the introduction, this paper continues as follows: in the next section, governing relations are
given, and two different solution methods are presented. In Sect. 3, numerical results are exhibited utilizing
analytical solutions. In Sect. 4, analytical and FEM approaches are compared. In the last Sect. 5, obtained
results are summarized.
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Fig. 1 Illustration of the orthotropic disk geometry

2 Governing relations

The disk component is thin enough to apply plane stress conditions, which indicates that the stress in the axial
direction is negligible, σz � 0. Additionally, it is considered that the applied mechanical load, angular rotation,
causes small deformations on the disk geometry. Due to the circular geometry of the component, cylindrical
polar coordinate system (r , θ , z) has been used for designating relations. Accordingly, the geometric relations
between strain and displacement can be expressed as

εr � d𝓊
dr

, εθ � 𝓊
r

. (2)

wherein, 𝓊 � 𝓊(r ) is the displacement in radial direction, d is the differential operator, εr � εr(r ) and
εθ � εθ (r ) are the strains in radial (r ) and tangential (θ ) directions respectively. Followingly, strain–stress
relation via utilizing generalized Hooke’s law is expressed

εr � d𝓊
dr

� 1

Er
σr − vθr

Eθ

σθ , (3)

εθ � 𝓊
r

� −vrθ

Er
σr +

1

Eθ

σθ . (4)

In the above two equations, σr � σr(r ) and σθ � σθ (r ) are the stresses in radial and tangential directions.
Er, Eθ , vrθ , and vθr are themechanical properties of the orthotropic disk, which are changingwith the direction
of the material. Herein, E and v denote Young’s modulus and Poisson’s ratio. Additionally, subscripts of these
mechanical properties correspond to the related directions. By rearranging strain–stress relations, associated
stress–strain relations are found, which are

σr � Er

1 − vrθ vθr
εr +

Ervθr

1 − vrθ vθr
εθ , (5)

σθ � Eθ vrθ

1 − vrθ vθr
εr +

Eθ

1 − vrθ vθr
εθ . (6)

The introduced Poisson’s ratios have connecting relations, in other words Poisson’s ratios are not inde-
pendent of each other. Due to the Maxwell relations, see reference [32], the following expression can be
written

vθr

Eθ

� vrθ

Er
→ Eθ

Er
� vθr

vrθ
� O, (7)

in which O is the orthotrophy index. In the case of O > 1, the material is stiffer in the tangential direction.
Similarly, O < 1 case indicates radial stiffness in the material. Additionally, orthotropy index cannot be equal
to zero or smaller than zero. While the material is obeying Hooke’s law within the elastic limits, all the load
applied to the solid body is stored as strain energy. Due to the positive definiteness of this energy, Young’s
moduli are positive, and Poisson’s ratios are constrained by

0 < vrθ vθr < 1. (8)
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Owing to Eqs. (7) and (8), properties should fulfill [7, 27],

|vθr | <

√
Eθ

Er
� √

O, |vrθ | <

√
Er

Eθ

�
√

1

O
. (9)

From Eq. (7), properties can be connected as

Eθ � OEr, vθr � Ovrθ . (10)

Substituting the above two expressions into the strain–stress relations yields to

εr � 1

Er
[σ r − vrθσθ ], (11)

εθ � 1

Er
[
1

O
σθ − vrθσr]. (12)

Utilizing the newly introduced strain–stress relations, stress–strain relations become

σr � Er

1 − Ovrθ 2
εr +

OErvrθ

1 − Ovrθ 2
εθ , (13)

σθ � OErvrθ

1 − Ovrθ 2
εr +

OEr

1 − Ovrθ 2
εθ . (14)

Subsequent to defining elastic relations, in order to obtain a convenient solution, equilibrium equation and
compatibility condition should be satisfied with the applied boundary conditions. Let’s begin by introducing
the equilibrium equation in radial direction

d

dr
[𝒽(r)rσr(r)] − 𝒽(r)σθ (r) � −𝒽(r)ϕω2r2, (15)

where ϕ is the density of the disk material and ω is the angular rotation. The compatibility condition is

d

dr
[rεθ ] − εr � 0. (16)

As given in Fig. 1, the disk is rigidly fixed on a rotating inclusion and the outer radius is in traction free
conditions. Under these circumstances, boundaries take the following forms

𝓊(ri) � 0, σr(ro) � 0. (17)

After presenting the essential governing relations, we can now get into the analytical solutions. In order to
acquire the stress and displacement functions, two different analytical solutions are introduced. Each of them
is given in detail below.

2.1 Solution Method 1 (SM1)

In this method, the solution is initiated by introducing a stress function, ψ � ψ(r ), which is of the form

ψ � 𝒽(r)rσr(r). (18)

This function or a similar form of the function can be seen in some related articles as well, see [14, 27, 29,
31]. By using this identity with Eq. (15), directional stresses can be presented as

σr � ψ

r𝒽
, σθ � 1

𝒽
dψ

dr
+ ϕω2r2. (19)

Let’s insert the above radial and tangential stress terms into Eqs. (11) and (12), which results in

εr � 1

Er
[
ψ

r𝒽
− vrθ

1

𝒽
dψ

dr
− vrθϕω2r2], (20)

εθ � 1

Er

[
1

O

1

𝒽
dψ

dr
+
1

O
ϕω2r2 − vrθ

ψ

r𝒽

]
. (21)
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Substituting the above radial and tangential strain terms into Eq. (16) with Eq. (1) renders to the below
differential equation

r2
d2ψ

dr2
+A1r

dψ

dr
+A2ψ � A3r

ℊ+3, (22)

Here, A j terms are the real constants of the differential equation. These terms are

A1 � 1 − ℊ,

A2 � O[ℊvrθ − 1],

A3 � −ϕω2𝒽ro

roℊ
[3 + Ovrθ ]. (23)

Solution of Eq. (22) provides the stress function

ψ � C1rA4 + C2rA5 +A6r
ℊ+3. (24)

C1 and C2 are the integration constants and new A j terms are

A4 � 1

2

{
1 − A1 −

√
[A1 − 1]2 − 4A2

}
,

A5 � 1

2

{
1 − A1 +

√
[A1 − 1]2 − 4A2

}
,

A6 � A3

ℊ2 + ℊ[5 +A1] + 6 + 3A1 +A2
. (25)

Combining Eqs. (1), (19), and (24), stress in radial and tangential directions become

σr � C1 ro
ℊ

𝒽ro
rA4+ℊ−1 + C2 ro

ℊ

𝒽ro
rA5+ℊ−1 +

A6ro
ℊ

𝒽ro
r2, (26)

σθ � C1A4roℊ

𝒽ro
rA4+ℊ−1 + C2A5roℊ

𝒽ro
rA5+ℊ−1 +

A6roℊ
[
3 + ℊ

]
+𝒽roϕω2

𝒽ro
r2. (27)

Substituting the above two stresses into Eq. (12) and multiplying by r , see Eq. (1), radial displacement
turns out to be

𝓊 � C1 ro
ℊ[A4 − Ovrθ ]

𝒽roErO
rA4−ℊ + C2 ro

ℊ[A5 − Ovrθ ]

𝒽roErO
rA5−ℊ +

A6roℊ
[
3 + ℊ − Ovrθ

]
+𝒽roϕω2

𝒽roErO
r3. (28)

Applying boundary conditions in Eq. (17) to Eqs. (26) and (28), the integration constants are found

C1 � ri3+ℊroA5 [A6roℊ(3 + ℊ − Ovrθ ) +𝒽roϕω2] − riA5ro3+2ℊA6[A5 − Ovrθ ]

riA5roA4+ℊ[A5 − Ovrθ ] + riA4roA5+ℊ[Ovrθ − A4]
,

C2 � riA4ro3+2ℊA6[A4 − Ovrθ ] − ri3+ℊroA4 [A6roℊ(3 + ℊ − Ovrθ ) +𝒽roϕω2]

riA5roA4+ℊ[A5 − Ovrθ ] + riA4roA5+ℊ[Ovrθ − A4]
. (29)

As can be seen, the analytical solution has been derived by integrating stress function into the problem.
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2.2 Solution Method 2 (SM2)

Another analytical approach is presented in this subsection. Let’s first insert radial and tangential strains in
Eq. (2) to Eqs. (13) and (14) then we acquire stress-displacement relations

σr � Er

1 − Ovrθ 2

d𝓊
dr

+
OErvrθ

1 − Ovrθ 2

𝓊
r
, (30)

σθ � OErvrθ

1 − Ovrθ 2

d𝓊
dr

+
OEr

1 − Ovrθ 2

𝓊
r

. (31)

Applying Eqs. (1), (30), and (31) to the equilibrium equation in (15), one acquires

r2
d2𝓊
dr2

+ B1r
d𝓊
dr

+ B2𝓊 � B3r
3. (32)

As in the above SM1 approach, some abbreviations are used as well. In order to avoid anymisunderstanding
issue, instead of A j , B j denotation is employed. Here,

B1 � 1 + ℊ,

B2 � O[ℊvrθ − 1],

B3 � ϕω2

Er
[Ovrθ

2 − 1]. (33)

Solution of Eq. (32) is of the form

𝓊 � K1r
B4 +K2r

B5 + B6r
3. (34)

Above function is the general solution of the radial displacement. Terms K1 and K2 are the integration
constants and B4, B5 and B6 are

B4 � 1

2

{
1 − B1 −

√
[B1 − 1]2 − 4B2

}
,

B5 � 1

2

{
1 − B1 +

√
[B1 − 1]2 − 4B2

}
,

B6 � B3

6 + 3B1 + B2
. (35)

Making use of Eq. (2) with Eq. (34), strains turn out to be

εr � d𝓊
dr

� K1B4r
B4−1 +K2B5r

B5−1 + 3B6r
2, (36)

εθ � 𝓊
r

� K1r
B4−1 +K2r

B5−1 + B6r
2. (37)

Inserting the above strains into Eqs. (13) and (14), stresses become

σr � K1
Er[B4 + Ovrθ ]

1 − Ovrθ 2
rB4−1 +K2

Er[B5 + Ovrθ ]

1 − Ovrθ 2
rB5−1 +

B6Er[3 + Ovrθ ]

1 − Ovrθ 2
r2, (38)

σθ � K1
ErO[B4vrθ + 1]

1 − Ovrθ 2
rB4−1 +K2

ErO[B5vrθ + 1]

1 − Ovrθ 2
rB5−1 +

B6ErO[3vrθ + 1]

1 − Ovrθ 2
r2. (39)

Using boundary conditions in Eq. (17) with Eqs. (34) and (38), K1 and K2 render as

K1 � −rB5
i r3oB6[3 + Ovrθ ] − r3i r

B5
o B6[B5 + Ovrθ ]

rB5
i rB4

o [B4 + Ovrθ ] − rB4
i rB5

o [B5 + Ovrθ ]
,

K2 � rB4
i r3oB6[3 + Ovrθ ] − r3i r

B4
o B6[B4 + Ovrθ ]

rB5
i rB4

o [B4 + Ovrθ ] − rB4
i rB5

o [B5 + Ovrθ ]
. (40)
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Table 1 Comparison of normalized stress and displacement fields obtained by SM1 and SM2 in which ℊ � O � H � G � 0.50

SM1 SM2 SM1 SM2 SM1 SM2 SM1 SM2
r σH σH σr σr σθ σθ 𝓊 𝓊

0.5 1 1 1.059626 1.059626 0.132453 0.132453 1.01e-16 7.91e-17
0.6 0.464258 0.464258 0.748705 0.748705 0.164977 0.164977 0.085667 0.085667
0.7 0.210407 0.210407 0.519019 0.519019 0.168012 0.168012 0.144388 0.144388
0.8 0.081543 0.081543 0.329551 0.329551 0.155269 0.155269 0.182520 0.182520
0.9 0.022037 0.022037 0.160174 0.160174 0.132952 0.132952 0.203274 0.203274
1.0 0.010843 0.010843 -1.9e-16 -1.6e-16 0.104131 0.104131 0.208263 0.208263

2.3 Orthotropic yield criterion

After two different analytical solutions have been revealed, the elastic limits of the component are obtained
utilizing one of these solutions. In order to estimate these limits, Hill’s yield criterion is considered. The
criterion, σH � σH(r ), is

σH � G(σr)
2 + F(σθ )

2 + H(σr − σθ )
2 � (σY)2. (41)

G, F, andH are the dimensionless parameters of the criterion, and σY is the equibiaxial tensile yield strength
of the material. The parameters should obey

G + F � 1,G ∗ F + H > 0. (42)

The first constituent of the above equation stands for consistency, and the second is necessary for an
elliptical yield locus, for details see [33, 34]. When σH � (σY)2 takes places, the rotating component reaches
to its elastic limit. The angular velocity magnitude that satisfies σH � (σY)2 condition is the limit velocity.

3 Numerical evaluations

In this section, numerical examples are generated to understand the behavior of various parameters on the disk.
Throughout the examples including Figs. 2, 3, 4, 5, 7 and Table 1, normalized forms are used which are

σH � σH
(σY)2

, σr � σr

σY
, σθ � σθ

σY
,𝓊 � 𝓊Er

roσY
, r � r

ro
,� �

√
ϕ

σY
(ωro)2. (43)

In these expressions, the first four terms are the stresses and radial displacement, r and � are the non-
dimensional disk radius and angular velocity. For the disk, geometric and material parameters are taken as
ri � 50 mm, ro � 100 mm, vrθ � 0.25, ϕ � 2000 kg/m3 Er � 35 ∗ 109 Pa, σY � 300 ∗ 106 Pa. These
parameters are fixed throughout the samples. Other parameters, ℊ, O, H, and G, are altered one by one to
analyze their effect individually. Prior to detailing the numerical evaluations, firstly, let’s compare the results
obtained from SM1 and SM2 to validate the accuracy of the proposed methods. For this purpose, an example
is expressed in Table 1 where ℊ � O � H � G � 0.50. Under these conditions, limit angular velocity is
calculated as � � 1.2975 for both SM1 and SM2. It is observed from the tabulated results that both stress
and displacement fields are in nearly perfect agreement. Only difference occurs at the inner radius of the
displacement and outer radius of the radial stress. These small changes most possibly have occurred due to
number rounding or digit cutting differences.

In addition to SM1 and SM2 approaches, the results have been comparedwith another study, see [35]. In the
reference, orthotropic rotating discs subjected to radial thermal loads with free-free boundary conditions have
been investigated. In order to apply these boundaries, instead of Eq. (17), σr(ri) � 0 and σr(ro) � 0 conditions
have been utilized. The disk in the reference has a constant thickness. Hence, the geometric parameter has been
taken asℊ � 0.00. Additionally, instead of finding the limit angular velocity, it has been assigned as constant,
ω � 94.25 rad/s. Geometric and material properties have been considered as ri � 40 mm, ro � 100 mm,
vθr � 0.15, ϕ � 2030 kg/m3 Er � 21.80∗109 Pa and Eθ � 26.95∗109 Pa. The results can be compared once
the conditions and values mentioned above are applied to this examination. At the inner radius of the disk, the
radial stress, tangential stress, and radial displacement from both examinations are given in Table 2. Wherein,
instead of normalization, dimensions have been utilized to be compatible with the reference. As can be seen
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Table 2 Comparison of radial stress, tangential stress, and radial displacement at r � ri

𝓊(ri) σr(ri) σθ (ri)

This study 0.225 mm 0.00 MPa 151.57 MPa
Reference [35] 0.224 mm 0.00 MPa 150.95 MPa
% difference 0.44 0.00 0.41

from the tabulated results, the obtained difference is less than one percent. Consequently, high accuracy has
been acquired.

After the above verification procedures, we may begin the analysis. In the first example, disk profile is
taken into account. Influence of the profile on the stresses and radial displacement at the onset of plastic
yield is examined. Depending on geometric parameter ℊ, Fig. 2 is plotted. Therein, other parameters are set
as O � H � G � 0.50. The reason of setting other parameters to the same number is for simplicity. Yet,
it is appropriate to mention what setting these parameters to 0.50 means. O � 0.50 implies that the disk is
less stiff in tangential direction, see Eq. (10). H and G are the parameters belonging to the yield criterion in
Eq. (41). These two parameters should satisfy conditions in Eq. (42). Using G � 0.50 and the first constituent
of Eq. (42), F becomes 0.50 as well. From the second constituent of the same equation, we have G∗F+H > 0.
The mathematical case F � H � G � 0.50 satisfies the inequality. Under these conditions, Fig. 2 and its
constituents are observed by manipulating parameter ℊ. According to the first constituent 2a, the disk reaches
its limit at the contacting inner radius with the inclusion. In Eq. (43), it is stated that σH � σH/(σY)2. If the
yield criterion in Eq. (41) and thementioned normalized quantity are observed together, it is apparent that when
σH � 1 happens, yield commences. The figure is plotted for five different ℊ values, and the corresponding
normalized angular velocities are given at the figure constituent. For instance, when O � H � G � 0.50 and
ℊ � −0.50, the calculated angular velocity is � � 1.60894. The corresponding angular velocities, which are
calculated with Eq. (41), can be tracked for other assigned values as well. According to the obtained velocity
values, one may express that negative ℊ values cause higher � acquisition. Therefrom, it can be interpreted
that convex geometry is more favorable if the disk is designed for high velocities. In other words, tapering
the geometry along the outer radius may result in higher yielding possibilities. In the second constituent
2(b), corresponding radial stresses are given. As expected, the component is radially stress-free at the outer
radius in harmony with the implemented boundary condition. However, the interesting part is that the disk
reaches higher values than its yield limits at the inner radius (@ r � ri, σr > 1). This phenomenon can
be explained by digging deeper into the yield criterion. Essentially, a yield criterion is the combination of
stresses. When these combinations reach a certain limit, which is the yield limit of the material, we state that
the component has arrived at its elastic limit. Depending on the material characteristics, further load may cause
linear hardening, nonlinear hardening, or sudden rapture. These stress combinations are highly influenced by
the yield criteria parameters F, H and Gwhich are going to be discussed in the following examples. Depending
on these parameters, shape of the yield locus alters and consequently stress combinations get affected. This
interpretation is valid from a mathematical perspective. Another explanation is a physical possibility. The disk
holds the rigid inclusion tightly around the inner diameter of the disk; thus, stress concentrations occur along
the inner perimeter. In the third constituent 2(c), tangential stresses are shown. This stress is rather smaller
than the radial ones in terms of magnitudes. Also, their distributions are considerably different than the radial
ones. In fact, this magnitude comparison reveals the similarity between the distribution of the yield stress
and the radial stress. It is previously mentioned that the yield stress is the combination of stresses, and the
radial stress’ magnitude is considerably higher than the tangential one. In the case of these combinations,
the distribution profile of the yield stress is, of course, going to be similar to the radial one. In the fourth
constituent 2(d), radial displacement is illustrated. Due to rigid fixation around the inclusion the displacement
around the inner diameter is zero, also, see the first boundary condition in Eq. (17). It is apparent from the
figure that displacement gets to its maximum at or around the outer diameter. When parameter ℊ is smaller,
the displacement tends to increase. From a physical point of view, this occurrence is expected. When the value
of ℊ is negative, it means that the component is tapered along the radius. In other words, the thickness of the
disk reduces. For positive values of ℊ, the disk thickens along radius. Therefore, the tapering profile formed
in thickness causes an increase in displacement toward the outer edge of the disk rotating at high speed. What
is seen in the figure contains compatibility with this interpretation.

After the geometric discussions about the disk profile, material effects on the stress fields, particularly
the effect of orthotropy is handled. As in the previous example, parameters are set to the same number,
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Fig. 2 Effect of disk geometry parameter on the normalized a yield function, b radial stress, c tangential stress, and d radial
displacement where O � H � G � 0.50

ℊ � H � G � 0.50 and orthotropy parameter O is altered. Parameter ℊ � 0.50 prescribes that the disk is
concave and as mentioned earlier H, G and F are in an acceptable numerical range. After these arrangements,
parameter O is examined. Since O must be greater than zero, firstly, it is set to a relatively small number 0.01
then it is observed up to 1. In Fig. 3a, yield function distributions are given at the elastic limits. The calculated
limiting angular velocity values are presented in the figure constituent as well. Accordingly, yielding begins
at r � ri for the illustrated cases. The radial stress variations are given in Fig. 3b. Therefrom, it is noticed that
increment in parameter O also rises the stresses in this direction. Additionally, higher than yield limit stress
happening at the inner diameter is seen as well. From a physical perspective, this incident can be described as
the orthotropy increment in the tangential direction increasing the radial limit stresses in the disk.WhenO � 1,
disk becomes isotropic, Young’s moduli and Poisson’s ratios turn out to be Eθ � Er � E , vθr � vrθ � v.
Followingly, tangential stresses are given in Fig. 3c. It is seen from the plotting that higher orthotropy values
notably rises the stress in tangential direction. While the magnitude of tangential stress at the inner and outer
radius are close to each other, at an arbitrary radial location stress magnitude gets to its apex value. Lastly,
radial displacement is shown in Fig. 3d. Wherein, it is observed that considerably small alterations occur by
changing parameter O.
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Fig. 3 Effect of orthotropy parameter on the normalized a yield function, b radial stress, c tangential stress, and d radial dis-
placement where ℊ � H � G � 0.50

In the next step, yield criterion parameters are focused on. For this purpose, we may begin by examining
parameter H, while other parameters are kept constant as ℊ � O � G � 0.50. Parameter H is changed
in between zero to one with 0.25 increments. As in the former examples, yield function distributions are
presented in Fig. 4a. Calculated limit angular velocity values are available in this figure as well. Accordingly,
when H � 0 the disk reaches its highest �. In order to apprehend this occurrence, one should consider the
criterion in Eq. (41). Mathematically, H � 0 implies that the term in front of H which is (σr − σθ )

2 vanishes.
Therefore, the magnitude that comes from (σr − σθ )

2 is eliminated. Apparently, calculated � value from this
elimination increases the magnitude of �. As the assigned value to H increases velocity tends to decrease. In
the subsequent constituent Fig. 4b, radial stresses are demonstrated. According to the constituent, it is obvious
that parameter H prominently effects the magnitude of the estimated limit radial stresses. Especially, when
H � 0, radial stress goes up to 40 percent greater than the yield limit. From a mathematical perspective, this is
possible. However, from a physical perspective, it is not likely. This much difference may cause plasticization
in radial direction. If we take a look at other distribution such asH � 0.75 orH � 1, it is seen that radial stress
at the inner diameter is less than the yield limit. These cases are much likely to happen. H � 0.50 case is also
acceptable butH � 0.00 andH � 0.25 cases aremathematically possible but physically exaggerated incidents.
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Fig. 4 Effect of yield criterion parameter H on the normalized a yield function, b radial stress, c tangential stress, and d radial
displacement where ℊ � O � G � 0.50

Next, tangential stresses are shown in Fig. 4c. Thereat, it is observed that increment in H value reduces the
limit stress approximations in tangential direction. In the last figure part, Fig. 4d, radial displacements are
shown. As in the stress distributions, for the displacements, we observe reduced displacement distributions
with greater H values. Overall, it is apparent that H is a prominent parameter that influences both stresses and
displacements.

In the subsequent step, another yield parameter, G, is going to be discussed. Within the scope of this
discussion, other parameters are fixed to the same numerical value, ℊ � O � H � 0.50. Before detailing
effects of parameter G, it should be clarified that manipulating G means indirectly altering parameter F since
G+F � 1 from Eq. (42). Due to F � 1−G, when a number is assigned toGwe automatically obtain a value for
F. So, in this part of the research, we not only examine parameterG but also parameter F. In Fig. 5a, normalized
yield function is depicted. As in the above case, for values between zero and one, five different values have
been set to parameter G. According to the figure, yielding initiates at the inner diameter and when the value
of G is smaller or F greater, disk yields at higher value of �. Since there is no restriction at the outer diameter
of the disk, combination of stresses reduces along the radius. In the ensuing plot, Fig. 5b, radial stresses are
demonstrated. When G is zero or close to zero, radial stress exceeds the yield limit considerably. This is once
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Fig. 5 Effect of yield criterion parameter G on the normalized a yield function, b radial stress, c tangential stress, and d radial
displacement where ℊ � O � H � 0.50

again mathematically possible, yet unlikely to occur. Value of G around 0.50 to 1.00 is much more possible.
In the case of G � 0, the term (σr)

2 in Eq. (41) vanishes. Similarly, when G � 1, (σθ )
2 disappears. Having

these two extreme cases may cause imbalances and yield to unsatisfactory interpretations. Next, tangential
stresses are displayed in Fig. 5c. One observes from the figure that the stresses at the onset of plastic yield
in this direction are prone to reduction with incrementing parameter G. This comment is valid for the radial
displacements as well, see Fig. 5d.

4 Finite element method-based analysis

Up to this point, analytical methods have been utilized to understand the behavior of the stress fields of the
rotating disk. Here, using Autodesk Inventor Nastran 2024, FEM-based solution of the disk is examined.
Followingly, analytical and FEM solutions have been compared. In the samples, annular disk geometry is
taken into account, in other words ℊ � 0.00. The orthotropy parameter is assigned as O � 0.285. In the
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program, in order to track the yield envelope, von Mises stress is available. If the parameters of Eq. (41) are
set as G � H � F � 0.50 then the criterion is converted to von Mises (σ𝓋M) in principal directions, which is

σ𝓋M �
√

(σr)
2 + (σθ )

2 − σrσθ � σY. (44)

The criterion in normalized form can be expressed as σ𝓋M � σ𝓋M/σY. In the FEM analysis, other
parameters remain the same, which are ri � 50mm, ro � 100mm, vrθ � 0.25, ϕ � 2000 kg/m3 Er � 35∗109
Pa, σY � 300∗106 Pa. Following these arrangements, the obtained results are presented in Fig. 6’s constituents.
At the first constituent (a) instead of Hill’s criterion von Misses is given. In part (b), (c) and (d) corresponding
radial stress, tangential stress and displacement are exhibited. On the left side of these figure parts, numerical
color label chart is shown. By using the stress linearization tool of the commercial program, from one selected
node to another along the radius of the disk, the stress distributions in radial, tangential, and axial directions
can be tracked. It should be noted that since the disk is considerably thin compared to radial distance, the
stress in the axial direction is zero; in other words, plane stress conditions are valid. In the program, the stress
linearization tool is unfortunately not available for displacements yet. Thus, in order to track the displacements,
the data points in radial and tangential directions which are gathered by stress linearization are combined with
the analytical relations to obtain the displacement. As can be seen from Fig. 6 and its associative parts, the
stress and displacements are not presented in normalized form. However, normalized distributions are utilized
to this point. The data points obtained from the program are converted to normalized form to be in harmony.
Followingly, analytical and FEM results are compared in Fig. 7. Overall, both analytical and FEM results are
confirming each otherwith an acceptable difference. The differences havemostly occurred somewhere arbitrary
along the radius. At the inner and outer diameters analytical and FEM results are matching. In order to achieve
close results, considerably fine meshing is applied to the disk. As mesh geometry parabolic mesh elements
are applied. In the computational procedure, 1,877,643 nodes and 1,394,680 elements have been utilized. The
computational procedure took around 8 min. However, this time is only around 30 s in Mathematica 8 with
an efficiently written mathematical code. It is obvious that for a simple axisymmetric geometry where the
analytical solution is available, analytical solution is much preferable. Additionally, in some cases, assigning
material parameters to the software is not a simple task since they generally require a considerable number
of parameters to do calculations. On the other hand, when the analytical solution is not present or difficult to
attain, clearly, FEM analysis is a more suitable option.

5 Results and discussion

In this study, stress analysis of variable thickness disk of orthotropicmaterial is examined via both analytical and
FEM approaches. Various parameters have been taken into account and effect of each parameter is investigated.
In the parametric investigation, while manipulating one parameter other parameters have been fixed. So that,
each parameter’s influence can be comprehended separately. Consequently, achieved results are summarized
below:

(I) Geometric parameter ℊ is an important constant that effects both stresses and displacements. For the
considered disk geometry function, having negative values of ℊ is preferable. Negative ℊ values cause
decreasing thickness or in other words tapered geometry on the disk. When this geometry is employed,
the limit angular velocity rises.

(II) Orthotropy parameter O is the material parameter that influences mostly stresses, particularly the ones
in tangential direction. When the orthotropy parameter is increased the disk yields at higher angular
velocities. Another way to describe this occurrence is tangentially dominant orthotropy results in higher
velocity values.

(III) Parameters H and G are substantial parameters of the yield criterion. Interestingly, for some values of
H and G, radial stress may go considerably higher than the effective yield stress at the inner diameter
of the disk at the limit velocities. A little higher radial stress magnitude than the yield limit at the inner
diameter may occur; however, considerable differences are not much likely in a realistic sense. These
cases are rather mathematical possibilities.

(IV) In the numerical examples, both analytical andFEMapproaches havebeen compared. In both approaches,
good agreement with some differences has been reached. Nevertheless, when the analytical solution is
available, it is much preferred over FEM in terms of computation time and accuracy.
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Fig. 6 Stress and displacement fields of the orthotropic annular disk a von Mises stress, b radial stress, c tangential stress, and
d radial displacement where G � H � F � 0.50

Fig. 7 Comparison of the normalized stress and displacement fields of the orthotropic annular disk a von Mises stress, b radial
stress, c tangential stress, and d radial displacement where G � H � F � 0.50
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31. Farukoğlu, Ö.C., Korkut, İ: Thermo-mechanical stress analysis of rotating fiber reinforced variable thickness disk. J. Strain
Anal. Eng. Des. 57(8), 664–676 (2022). https://doi.org/10.1177/03093247211060996

32. Kaw, A.K.: Mechanics of composite materials. CRC Press, Boca Raton (2005)
33. Hill, R.: A user-friendly theory of orthotropic plasticity in sheet metals. Int. J. Mech. Sci. 35(1), 19–25 (1993). https://doi.

org/10.1016/0020-7403(93)90061-X
34. Hill, R.: A theory of the yielding and plastic flow of anisotropic metals. Proc. R. Soc. A: Math. Phys. Eng. Sci. 193(1033),

281–297 (1948). https://doi.org/10.1098/rspa.1948.0045
35. Callioglu, H.: Stress analysis of an orthotropic rotating disc under thermal loading. J. Reinf. Plast. Compos.Reinf. Plast.

Compos. 23(17), 1859–1867 (2004). https://doi.org/10.1177/0731684404041142

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

https://doi.org/10.1007/s40430-018-1216-3
https://doi.org/10.1007/s00707-017-1896-2
https://doi.org/10.1007/s12008-023-01447-w
https://doi.org/10.1002/zamm.202000356
https://doi.org/10.1002/zamm.202200506
https://doi.org/10.1177/03093247211060996
https://doi.org/10.1016/0020-7403(93)90061-X
https://doi.org/10.1098/rspa.1948.0045
https://doi.org/10.1177/0731684404041142

	A parametric study on the elastic limit stresses of rotating variable thickness orthotropic disk
	Abstract
	1 Introduction
	2 Governing relations
	2.1 Solution Method 1 (SM1)
	2.2 Solution Method 2 (SM2)
	2.3 Orthotropic yield criterion

	3 Numerical evaluations
	4 Finite element method-based analysis
	5 Results and discussion
	References




