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Abstract This paper has proposed an efficient analysis method to calculate interface stress intensity factors
(SIFs) based on a proportional stress field of a reference problem whose exact solution is available. In the
previous proportional methods, the same crack length and the same element size were applied to both reference
and unknown problems so that the sameFEMerror can be produced. Therefore, when analyzingmany unknown
problems, the conventional method needs to analyze many reference problems at the same time. Since this
approach is time-consuming, this paper considers how to calculate many crack lengths efficiently by using
only one single reference solution modeling. For this purpose, several general relations of SIFs are derived for
the unknown and the reference problems when both crack length and element size are different. To analyze
many unknown problems accurately by using a single reference solution modeling, how to choose the most
suitable element dimension of the reference model is clarified. The proposed method is especially useful for
crack propagation analysis.

Keywords Stress intensity factor · Interface crack · Bimaterial plate · Finite element method · Proportional
stress field

List of symbols

a Length of the interface crack in the unknown problem
2a* Length of the interface crack in the reference problem
C1, C2 Normalized factors for short interface edge crack based on the singular stress field at

the interface end without the crack
E Young’s modulus
e Minimum element size at the crack tip in the unknown problem
e* Minimum element size at the crack tip in the reference problem
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F1, F2 Normalized stress intensity factors for interface crack based on applied stress
G Shear modulus
H11, H22 Material combination parameters for orthotropic bimaterial
K1, K2 Stress intensity factors of an interface crack in the unknown problem
K1

*, K2
* Stress intensity factors of an interface crack in the reference problem

K I, K II Stress intensity factors of crack in a homogeneous plate
L Height of the bimaterial plate
r Distance from the interface crack tip
T, S Tensile and shear stresses applied to the reference problem
W Width of the bimaterial plate
α, β Dundurs’ material composite parameters for isotropic bimaterial
α, β Suo’s material composite parameters for orthotropic bimaterial
ε Oscillation singular index of an interface crack
εx Normal strain in x-direction
σ Applied remote stress
σ y, τ xy Stress components along the bimaterial interface
σy, FEM(r ), τxy, FEM(r ) Interface stress distributions around the crack for the unknown problem
σ ∗
y, FEM(r ), τ ∗

xy, FEM(r ) Interface stress distributions around the crack for the reference problem
σy0, FEM, τxy0, FEM Stress values at the crack tip node calculated by FEM in the unknown problem
σ ∗
y0, FEM,τ ∗

xy0, FEM Stress values at the crack tip node calculated by FEM in the reference problem

σ T�1∗
y0, FEM, τ T�1∗

xy0, FEM Stress values at the crack tip node calculated by FEM in the reference problem under
the tensile stress T � 1 (S � 0)

σ S�1∗
y0, FEM, τ S�1∗

xy0, FEM Stress values at the crack tip node calculated by FEM in the reference problem under
the shear stress S � 1 (T � 0)

�, ρ Composite parameters representing material anisotropy of orthotropic bimaterial
λ Order of the stress singularity at the interface end without the crack
ν Poisson’s ratio

1 Introduction

Adhesive joining methods are expanding their use in many industries to reduce weight and improve functional-
ity. When different materials are bonded, a singular stress field is usually generated at the interface end casing
interface cracks and leading to final failure. Therefore, it is important to understand the initiation and propa-
gation behavior of interfacial cracks to evaluate the debonding strength of the adhesive joint. Several studies
are available regarding interface cracks. Different from ordinary cracks, the interface stress intensity factor
SIF varies depending on the material combination as well as the geometries. They are useful for evaluating the
interface strength of dissimilar materials [1–8]. Recently, the adhesive strength was discussed in terms of the
SIF of the interface crack [9–11]. The authors have shown that the adhesive joint strength can be expressed
as a constant value of the intensity of singular stress field (ISSF) at the interface end [12–14]. The authors
also have indicated that several joint strengths can be expressed as a constant value of the SIF by assuming a
fictitious edge interface crack at the interface end [15, 16]. Those interface fracture mechanics approach shows
the usefulness of the solution of the edge interface crack.

Regarding ordinary cracks, Nisitani found that the stress value at the crack tip obtained by the finite
element analysis can be a parameter representing the singular stress field around the crack tip. Based on this,
they proposed so-called the crack tip stress method that can evaluate the stress intensity factors conveniently
and accurately [17–19]. This method provides us under which conditions two stress fields can be equivalent.
Assume that FEM analysis with the same mesh size is applied to two different crack problems. If the FEM
stress values at the crack tip is the same, the real SIF is also the same. Here, two problems are denoted as
follows; one is a reference problem whose exact SIF is known, and the other is an unknown problem whose
SIF must be obtained. Then, the unknown SIF can be calculated from only the two stress values without
extrapolation. Here, it is important to apply the same element divisions to the two problems.

Regarding interfacial cracks, even under a simple remote tensile stress T, two distinct oscillation singular
stress fields cannot be expressed by applying the same approach useful for the ordinary cracks directly. As a
reference problem, therefore, the authors proposed that two exact solutions should be used. Specifically, the
authors showed that the stress fields of unknown problems can be successfully created by superposing two
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Fig. 1 Illustration how to obtain unknown SIF by adjusting T and S of reference solution to obtain the identical singular stress
field a An unknown problem and b a reference problem consisting of c, d

fundamental loads, one is by adjusting a remote tensile stress T and the other is by adjusting a remote shear
stress S (see Fig. 1) [20–22].

Regarding interfacial cracks, applying the same element size is not enough, and applying the same crack
length for the two problems is necessary. This is because the definition of the SIF includes the crack length
different from the definition of ordinary cracks. Therefore, when analyzing many unknown problems, it is
necessary to analyze many reference problems. In the previous studies, Lan et al. [23] proposed a similar
analysis method focusing on the crack open displacement although the element size effect was not examined.
Regarding ordinary cracks, Nisitani-Teranishi showed how to calculate SIFs when the element size is not equal
although interface cracks were not considered [18, 19]. Considering those situations, this paper will consider
how to calculate many different crack lengths efficiently by using only one single reference solution modeling.
For this purpose, several useful relations of SIFs will be discussed for the unknown and the reference problems
when both crack length and element size are different. Furthermore, to analyze many unknown problems
accurately by using a single reference solution modeling, how to choose the most suitable element dimension
of the reference model will be clarified. The usefulness will be confirmed for several interface crack problems
including an edge crack in orthotropic bimaterial.

2 Conventional proportional method versus new proportional method to calculate SIF

2.1 Conventional proportional method

First, the conventional proportional method will be explained to analyze the interface stress intensity factors
[20–22]. In this method, the interface stress intensity factor is calculated by using a proportional stress field
of a reference solution. In the method, stress values at the crack tip node are analyzed by applying the finite
element method. Then, the stress intensity factor is determined from the crack tip stress values for the unknown
problem and the reference problem as shown in Fig. 1. The method provides a proportional singular stress
field of the unknown problem in Fig. 1a by adjusting remote tensile stress T and remote shear stress S applied
to the reference problem in Fig. 1b whose stress intensity factor is already known. The reference problem in
Fig. 1b can be expressed by superposing the problem under tensile stress in Fig. 1c and the problem under
shear stress in Fig. 1d.

Figure 2 compares the interface stress distributions around the crack for the unknown problem σy, FEM(r ),
τxy, FEM(r) and for the reference problem σ ∗

y, FEM(r ), τ ∗
xy, FEM(r ). Figure 2a shows the case when the crack tip

normal stress values are matched as σy0, FEM � σ ∗
y0, FEM but τxy0, FEM �� τ ∗

xy0, FEM. Figure 2b shows the case
when both of the crack tip stress values are matched as σy0, FEM � σ ∗

y0, FEM and τxy0, FEM � τ ∗
xy0, FEM. The

interfacial crack always have peculiar mixed mode singular stress fields due to T and S. However, if both of the
crack tip node stress values are matched as σy0, FEM � σ ∗

y0, FEM and τxy0, FEM � τ ∗
xy0, FEM, the singular stress

distributions are the same. Figure 2 shows the FEM stress coincidence, but the real stresses also coincide each
other since the same FEM mesh is applied.
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Fig. 2 FEM stress distributions around the interface crack tip for Fig. 1a, b showing that if the FEM crack tip stress is the same
as σy0, FEM � σ ∗

y0, FEM and τxy0, FEM � τ ∗
xy0, FEM, the FEM stress distributions are identical. a When σy0, FEM � σ ∗

y0, FEM and
τxy0, FEM � τ ∗

xy0, FEM two singular stress fields cannot be identical. b When σy0, FEM � σ ∗
y0, FEM and τxy0, FEM � τ ∗

xy0, FEM two
singular stress fields can be identical

The single interface crack in an infinite bimaterial plate subjected to the tension T and shear S in Fig. 1b
is selected as the reference problem because the interface crack tip is always mixed mode state. The stress
values at the interface crack tip node calculated by FEM in the reference problem under the tensile stress T
� 1 (S � 0) in Fig. 1c are denoted by σ T�1∗

y0, FEM, τ T�1∗
xy0, FEM. The stress values at the interface crack tip node

calculated by FEM in the reference problem under the shear stress S � 1 (T � 0) in Fig. 1d are denoted by
and σ S�1∗

y0, FEM, τ S�1∗
xy0, FEM. Also, the crack tip stress values of the unknown problem are also denoted by σy0, FEM,

τxy0, FEM. To satisfy the same crack tip stress condition between the reference and the unknown problems, that
is, σy0, FEM � σ ∗

y0, FEM and τxy0, FEM � τ ∗
xy0, FEM, the external loading stress T and S in the reference problem

can be determined from Eq. (1).

T � σy0,FEM · τ S�1∗
xy0,FEM − σ S�1∗

y0,FEM · τxy0,FEM

σ T�1∗
y0,FEM · τ S�1∗

xy0,FEM − σ S�1∗
y0,FEM · τ T�1∗

xy0,FEM

, S � σ T�1∗
y0,FEM · τxy0,FEM − σy0,FEM · τ T�1∗

xy0,FEM

σ T�1∗
y0,FEM · τ S�1∗

xy0,FEM − σ S�1∗
y0,FEM · τ T�1∗

xy0,FEM

when σy0,FEM � σ ∗
y0,FEM, τxy0,FEM � τ ∗

xy0,FEM (1)

The definition of stress intensity factor is based on the interface crack length 2a* as shown in Eq. (2).

σy + iτxy � K ∗
1 + i K ∗

2√
2πr

( r

2a∗
)iε

, ε � 1

2π
ln

[(
κA

GA
+

1

GB

)
/

(
κB

GB
+

1

GA

)]
(2)

Here, r is the distance from the crack tip, 2a∗ is the crack length of the reference problem. The notation
ε is the oscillation singular index, shear modulus G j , κ j � 3 − 4ν j (plane strain), κ j � (3 − ν j )/(1 + ν j )
(plane stress) and Poisson’s ratio ν j ( j � A, B). The subscript “ j” represents the material A and B. From the



Analysis method useful for calculating various interface 783

Fig. 3 Conventional proportional method where reference solution models have the same crack length and the same minimum
mesh size of the unknown problems as a∗ � a and e∗ � e. If many crack lengths a1, a2, a3.. must be solved for unknown
problem, many reference models a1, a2, a3 . . . must be solved

remote stresses T and S obtained by Eq. (1), the interface stress intensity factor of the reference problem can
be expressed as

K ∗
1 + i K ∗

2 � (T + i S)
√

πa∗(1 + 2iε), with T , S in Eq. (1). (3)

From σy0, FEM � σ ∗
y0, FEM, τxy0, FEM � τ ∗

xy0, FEM, the stress intensity factor of Eq. (3) is equal to that of
the unknown problem as shown in Eq. (4).

K1 + i K2 � K ∗
1 + i K ∗

2 � (T + i S)
√

πa∗(1 + 2iε), with T , S in Eq. (1)

when e � e∗, a � a∗, σy0,FEM � σ ∗
y0,FEM, τxy0,FEM � τ ∗

xy0,FEM. (4)

In the conventional proportional method, the FEM models of the reference and the unknown problems
have the same crack length and the same FEMmesh pattern around the interface crack tip. Therefore, the same
number of FEM models must be prepared for the reference problems as well as the unknown problems, as
indicated in Fig. 3 [20–22].

2.2 New proportional method useful for solving different crack length by using a single reference solution

Figure 4 illustrates interfacial edge crack problems considered in this Section. Assume many different crack
lengths a1, a2, a3…must be solved by using only one referencemodel whose crack length 2a∗. In the unknown
problems, the crack lengths are different a∗ �� ak(k � 1, 2, 3 . . . ), but the FEM element sizes are the same
e � e∗. At this time, Eqs. (1)~(4) in Sect. 2.1 can be applied, but the crack length difference should be
considered for Eqs. (3) and (4). To satisfy the same FEM stress σy0, FEM � σ ∗

y0, FEM and τxy0, FEM � τ ∗
xy0, FEM

at the crack tip for the reference and the unknown problems, the external remote stress T and S in the reference
problem can be determined from Eq. (1). Then, the stress intensity factor K1 � K ∗

1 , K2 � K ∗
2 can be

determined from Eq. (2). However, it should be noted that K1 � K ∗
1 , K2 � K ∗

2 are defined on the basis of
Eq. (3) including the oscillation term (r/2a∗)iε regarding the crack length 2a∗. Generally, the stress intensity
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Fig. 4 Anew proportional method for calculating the SIF of unknown problemswith various crack lengths from a single reference
FEM modeling

factor of each interface crack should be expressed from the own crack length ak(k � 1, 2, 3 . . . ). Therefore,
the following equation is applied to converting the stress intensity factor to the own crack length ak .

K1 + i K2 � (K ∗
1 + i K ∗

2 )
(ak
a∗

)iε � (T + i S)
√

πa∗(1 + 2iε)
(ak
a∗

)iε
with T , S in Eq. (1)

when e � e∗, ak �� a∗, σy0,FEM � σ ∗
y0,FEM, τxy0,FEM � τ ∗

xy0,FEM. (5)

2.3 New proportional method useful for solving different FEM mesh by using a single reference solution

Next, as shown in Fig. 5, consider several unknown problems whose element size around the crack tip is
different by using one reference solution modeling. Regarding an ordinary crack in a homogeneous plate
(GA � GB , νA � νB), Fig. 6 shows the FEM stress distributions (a) σy, FEM(r) and (b)

√
e ·σy, FEM(r/e)when

a/W � 0.1 including the FEM crack tip stress σy0, FEM by varying the FEM element size around the crack
tip. Figure 6 is useful for examining how to apply the reference problem whose mesh size is different from
unknown problem. In Fig. 6, the crack length is fixed as a � 10 mm and the minimum element dimension at
the crack tip varies as e1 � a/33 × 3−7, e2 � a/33 × 3−5, e3 � a/33 × 3−3.

As shown in Fig. 6a, the stress distribution σy, FEM(r) as well as crack tip stress σy0, FEM increase with
decreasing the minimum element size although the real stress σy0, FEM becomes infinity. As shown in Fig. 6b,
however, the distributions

√
e · σy, FEM(r/e) are almost independent of the element dimension e. It may be

concluded that the value at the crack tip node stress
√
e · σy0, FEM is almost constant when the same problem

is analyzed by varying element size e. This is because the FEM stress value at the crack tip node is calculated
as the extrapolating value of the stress values at the integration points of the surrounding elements, which is
proportional to 1/

√
r [24]. Therefore, when the crack problem of homogeneous material is analyzed by FEM

with different element sizes e∗ and e, the crack tip stress difference due to element size can be expressed as
√
e · σy0, FEM � √

e∗ · σ ∗
y0, FEM.

The stress distributions are also identical and can be expressed as
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Fig. 5 A new proportional method for calculating the SIF of unknown problem with various mesh sizes from a single reference
FEM model

Fig. 6 Mesh dependency of σy, FEM(r) and mesh-independency of
√
e · σy, FEM(r/e) for an edge crack in homogeneous finite

plate when GA � GB , νA � νB , a � 10 mm, a/W � 0.1 in Fig. 1a. a FEM stress distribution σy, FEM(r) by varying the element
size ei. b

√
e · σy, FEM(r/e) is independent of ei

√
e · σy, FEM(r/e) � √

e∗ · σ ∗
y, FEM

(
r/e∗).

Therefore, when the crack problem of homogeneous material is analyzed by FEM with different element
sizes e and e∗, their stress intensity factors KI , K ∗

I have a following relation (6) when σy0, FEM � σ ∗
y0, FEM.

KI �
√

e

e∗ K
∗
I �

√
e

e∗ T
√

πa∗ in Fig. 1 with GA � GB , νA � νB

when e �� e∗, a � a∗, σy0,FEM � σ ∗
y0,FEM (6)

Equation (6) can be used to determine the SIF of an unknown problem from a SIF of a reference solution.
Here,KI denotes the SIF of the unknown problem (a, W , e) in a homogeneous cracked plate and K ∗

I is the
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Fig. 7 Effect of the element size on the FEM interface stress distribution for an edge crack in isotropic bimaterial plate when
GB/GA � 10, νA � νB � 0.3, a/W � 0.1 with a � 10 mm, e � a/33 × 3−5, e � a/33 × 3−5 and e∗ � a/33 × 3−3. a FEM
interface stress distributions are not identical since e �� e∗ as σy, FEM(r ) �� σ ∗

y0, FEM(r ), τ ∗
xy, FEM(r ) �� τ ∗

xy, FEM(r ) although at
the crack tip σy0, FEM � σ ∗

y0, FEM, τxy0, FEM � τ ∗
xy0, FEM, b FEM interface stress distributions are identical as σy, FEM(r/e) �

σ ∗
y, FEM(r/e∗), τxy, FEM(r/e) � τ ∗

xy, FEM(r/e∗) as well as at the crack tip σy0, FEM � σ ∗
y0, FEM, τxy0, FEM � τ ∗

xy0, FEM

SIF of the reference problem (a∗, W ∗, e∗) when their FEM stress values at the crack tip are the same as
σ ∗
y0, FEM � σy0, FEM under remote tensile stress T .
Due to the oscillation singularity, the effect of the FEM element size of interfacial cracks might be slightly

different from the effect of the FEM element size of ordinary cracks. Figure 7a shows the interface stress
distribution around the crack tip for the reference and unknown problems with different crack tip element
sizes. Here, the crack length is fixed as a∗ � a � 10mm, the element size for the unknown problem is fixed as
e � a/33 × 3−5, and the element size for the reference bimaterial infinite plate is fixed as e∗ � a/33 × 3−3.
The stress distribution of the unknown problem under remote tensile stress σ � 1 MPa produces the FEM
stress σy0, FEM, τxy0, FEM at the crack tip. To produce the same FEM stress values as σy0, FEM � σ ∗

y0, FEM,
τxy0, FEM � τ ∗

xy0, FEM, the remote tensile stress T and the remote shear stress S applied to the reference
problem is determined from Eq. (1) as

T � 3.73266, S � −0.45552

Figure 7a shows that FEM interface stress distributions are not identical as
σy, FEM(r ) �� σ ∗

y, FEM(r ), τxy, FEM(r ) �� τ ∗
xy, FEM(r ) although at the crack tip σy0, FEM � σ ∗

y0, FEM,
τxy0, FEM � τ ∗

xy0, FEM. This is because FEM mesh size is different as e �� e∗. Instead, Fig. 7b shows the
stress distributions can be identical when the x-axis is the relative distance r/e as can be expressed as

σy, FEM(r/e) � σ ∗
y, FEM

(
r/e∗), τxy, FEM(r/e) � τ ∗

xy, FEM

(
r/e∗).

Regarding interface cracks, therefore, it may be concluded that the SIF of the unknown problems whose
element size is different from the element size of the reference problem has the similar relation (6).
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When the FEM stress at the interface crack tip is the same for the unknown and the reference problems as
σy0, FEM � σ ∗

y0, FEM, τxy0, FEM � τ ∗
xy0, FEM although their crack tip element sizes are different, the following

relation can be expected from Fig. 7b and Eq. (2).

K1 + iK2√
2πe

( e

2a

)iε � K ∗
1 + i K ∗

2√
2πe∗

(
e∗

2a∗

)iε

� σy + iτxy
∣∣
r�e � σ ∗

y + iτ ∗
xy

∣∣∣
r�e∗

when e �� e∗, a � a∗, σy0,FEM � σ ∗
y0,FEM, τxy0,FEM � τ ∗

xy0,FEM. (7)

Therefore, Eq. (7) becomes

K1 + i K2 �
√

e

e∗
(
K ∗
1 + i K ∗

2

)(e∗

e

)iε

�
√

e

e∗ (T + i S)
√

πa∗(1 + 2iε)

(
e∗

e

)iε

with T , S in Eq. (1) when e �� e∗, a � a∗, σy0,FEM � σ ∗
y0,FEM, τxy0,FEM � τ ∗

xy0,FEM. (8)

Equation (8) shows the relation of SIF between unknown and reference problems of an isotropic bimaterial
whose elastic properties are controlled by (α, β). Here, K1, K2 denote SIFs of an unknown problem (a, W ,
e) when the FEM stress value σy0, FEM, τxy0, FEM appear at the interface crack tip under an external tensile
stress. Instead, K ∗

1 , K
∗
2 in Eq. (8) denote SIFs of a reference problem (a∗ � a, W ∗, e∗) when the same FEM

stress σ ∗
y0, FEM � σy0, FEM and τ ∗

xy0, FEM � τxy0, FEM appear at the interface crack tip under remote stress T ,
S. Since T � 3.73266 and S � -0.45552 are applied to the reference problem as shown in Fig. 7, the SIFs are
calculated from Eq. (3) as

K ∗
1 � 3.8181 MPa

√
mm, K ∗

2 � 0.24454 MPa
√
mm.

By substituting e∗/e � 9 and ε � 0.0093774 into Eq. (8), the real SIFs for the unknown problem are
obtained from Eq. (8) as

K1 � 1.2291 MPa
√
mm and K2 � 0.3402 MPa

√
mm.

To confirm the accuracy of the new proportional method, by applying the conventional proportional method
by using the same element size e � e∗ � a/33 × 3−5, the SIFs are calculated as

K1 � 1.2292 MPa
√
mm and K2 � 0.33999 MPa

√
mm.

The difference between the results of the conventional method and the new method is 0.05% or less, and
the Eq. (8) with different element size models gives highly accurate results.

2.4 New proportional method for different crack length and FEM mesh by using a single reference solution

Next, as shown in Fig. 8, let’s consider solving several unknown problems whose crack lengths and the element
sizes at the crack tip are different by using a single reference problem. As described in Sect. 2.3 and 2.4, when
the FEM crack tip stresses are the same as σy0, FEM � σ ∗

y0, FEM, τxy0, FEM � τ ∗
xy0, FEM, the relation of SIF

between the unknown and the reference problems in an isotropic bimaterial can be expressed as follows from
Eqs. (6) and (8).

K1 + i K2 �
√

e

e∗ (K
∗
1 + i K ∗

2 )

(
e∗

e

a

a∗

)iε

�
√

e

e∗ (T + i S)
√

πa∗(1 + 2iε)

(
e∗

e

a

a∗

)iε

, with T , S in Eq. (1)

when e �� e∗, a �� a∗, σy0,FEM � σ ∗
y0,FEM, τxy0,FEM � τ ∗

xy0,FEM (9)

Equation (9) shows the relation of SIF between unknown and reference problems of an isotropic bimaterial
whose elastic properties are controlled by (α, β). Here, K1, K2 denote SIFs of an unknown problem (a, W ,
e) when the FEM stress value σy0, FEM, τxy0, FEM appear at the interface crack tip under an external tensile
stress. Instead, K ∗

1 , K
∗
2 in Eq. (9) denote SIFs of a reference problem (a∗, W ∗, e∗) when the same FEM stress

σ ∗
y0, FEM � σy0, FEM and τ ∗

xy0, FEM � τxy0, FEM appear at the interface crack tip under remote stress T ,S.
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Fig. 8 A new proportional method for calculating the SIF of unknown problems having various crack lengths and different mesh
sizes by using a single reference FEM model

If the ratio of the element size to the crack length is the same between the reference and the unknown FEM

models is equal as e∗/a∗ � e/a, the oscillation term becomes
(
e∗
e

a
a∗

)iε � 1 in Eq. (9). Then, the following

relation (10) is obtained.

K1 + i K2 �
√

e

e∗ (K
∗
1 + i K ∗

2 ) �
√

e

e∗ (T + i S)
√

πa∗(1 + 2iε), with T , S in Eq. (1)

when
e∗

a∗ � e

a
,

(
e∗

e

a

a∗

)iε

� 1 but e �� e∗, a �� a∗, σ ∗
y0,FEM � σy0,FEM, τ ∗

xy0,FEM � τxy0,FEM (10)

Equation (10) is a useful SIF relation between the two problems in an isotropic bimaterial whose elastic
properties are controlled by (α, β). Here, K1, K2 denote SIFs of an unknown problem (a, W , e) when the
FEM stress value σy0, FEM, τxy0, FEM appear at the interface crack tip under given external loading. Instead,
K ∗
1 , K

∗
2 in Eq. (10) denote SIFs of a reference problem (a∗, W ∗, e∗) when the same FEM stress appear as

σ ∗
y0, FEM � σy0, FEM, τ ∗

xy0, FEM � τxy0, FEM at the interface crack tip under remote stress T ,S.
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Fig. 9 SIF ratio for the similarity ratio n can be expressed as K
K ∗ �

√
a
a∗ �

√
e
e∗ � √

n under the same remote stress σ and under

the similar FEM mesh as a
a∗ � e

e∗ � n. a K ∗ � K ∗
1 + i K ∗

2 , b K � K1 + i K2

Equation (10) is the same as Eq. (6) for ordinary cracks in a homogeneous plate, which can be also derived
by applying the homogeneous material condition ε � 0 to Eq. (9). To understand Eq. (10) intuitively, Fig. 9
illustrates the SIF relation for the interface crack problem having similar dimensions under the same remote
stress σ. Assume the similarity ratio n and the FEM mesh is also similar as a/a∗ � e/e∗ � n. Then, the SIF
ratio can be expressed as K/K ∗ � √

a/a∗ � √
e/e∗ � √

n. This is because the dimensionless SIF is the same
as F(a/W ) � F(a∗/W ∗). From a/a∗ � e/e∗ � n, Eq. (10) can also be obtained from Fig. 9.

In the conventional proportional method, it is necessary to apply the same FEM mesh to the reference
problem requiring a great deal of labor in creating an FEM model. Instead, this new proportional method has
the advantage of being able to efficiently analyze many unknown problems having different crack lengths and
element dimensions by using a single reference FEM model.

3 Solution of interface crack SIFs in isotropic bimaterial

In order to confirm the usefulness of the new proportional method explained in Sect. 2, the edge interface crack
problem in isotropic bimaterial plate is analyzed as shown in Fig. 1a. The MSC.Marc finite element analysis
program is used. The crack length varies from a � 0.1 to 10 [mm] corresponding to a/W � 0.001 ∼ 0.1. The
widthW and length L of the bonded strip are fixed toW � 100 [mm] and L � 2W. In Fig. 1a, materials A and B
are both isotropic elastic bodies, with shear modulus G j and Poisson’s ratio ν j ( j � A, B). The subscript “ j”
represents the material A and B. The elastic constants are GB/GA � 10, νA � νB � 0.3 under plane stress
condition which were adopted by other researchers [23, 25, 26], the Dundurs composite parameters defined in
Eq. (11) are α � 0.818, β � 0.286 and the oscillatory singularity index ε � 0.0938. The tensile stress is set to
be σ � 1 [MPa].

α � GA(κB + 1) − GB(κA + 1)

GA(κB + 1) + GB(κA + 1)
, β � GA(κB − 1) − GB(κA − 1)

GA(κB + 1) + GB(κA + 1)
(11)

Table 1 shows the crack tip FEMstress values of the reference problemused in the conventional proportional
method when GB/GA � 10, νA � νB � 0.3, α � 0.818, β � 0.286. The minimum element dimension of the
reference problem is e∗ � 10/33×3−7� 0.0001386 [mm], and the plate width isW ∗ � 1500a∗, which can be
considered the bonded infinite plate since the plate width independency can be confirmed whenW ∗ ≥ 1500a∗.
In the conventional proportional method, the crack length is set to a∗� 10, 5, 1, 0.1 to be equal to the crack
length of the unknown problem as a∗=a. To analyze four different crack lengths, it is necessary to analyze the
corresponding four reference problems as well as four unknown problems. Table 1 can be used as a reference
solution’s FEM model.
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Table 1 An example of FEM stress values at crack tip of reference problem in Fig. 1b used for conventional proportional method
by applying the element size e∗ � 10/33 × 3−7� 0.0001386 [mm] when W ∗ � 1500a∗, GB/GA � 10, νA � νB � 0.3,
α � 0.818,β � 0.286

a∗ [mm] σ T�1∗
y0, FEM [MPa] τ T�1∗

xy0, EFM [MPa] σ S�1∗
y0, FEM [MPa] τ S�1∗

xy0, FEM [MPa]

10 149.231 − 177.014 317.332 91.316
5 119.867 − 120.713 217.037 72.572
1 67.575 − 48.496 87.988 40.186
0.1 26.826 − 12.265 22.572 15.699

Table 2 shows the obtained SIF of the unknown problem in Fig. 1a when the crack length a� 10, 5, 1,
0.1 [mm], which is corresponding to a/W=0.1, 0.05, 0.01, 0.001 for the fixed geometries W � 100[mm],
W ∗ � 1500a∗ and for the fixed material combinations GB/GA � 10, νA � νB � 0.3, α � 0.818, β � 0.286.
Dimensionless SIFs F1, F2 are defined in Eq. (12).

F1 � K1

σ
√

πa
, F2 � K2

σ
√

πa
(12)

Table 2 explains how much extent F1, F2 values in Fig. 1a varies by the unknown problem modeling (a,
W , e) and the reference solution modeling (a∗, W ∗, e∗). First, at the upper part of Table 2, the results of the
conventional method are shown. Second, at the middle part of Table 2, the results of the newmethod are shown.

Third, at the lower part of Table 2, the results of the new methods recommended are shown. At the upper
part of Table 2, the results of the conventional method are obtained by using Eqs. (1), (2), and (4). These results
are most reliable since they are obtained by applying the samemesh size and the crack length as e � e∗, a � a∗
so that the same FEM error can be expected between the unknown and reference problems. The element size
is fixed as e � e∗ � 10/33 × 3−7 � 0.0001386 [mm] for all models.

At the middle part of Table 2, the results of the new proportional method are examined by varying the FEM
mesh size as e/e∗=0.1, 3, 10, 100. Here, the reference model is fixed as the crack length a∗� 10 [mm] and
the minimum element size e∗ � 10/33 × 3−7� 0.0001386 [mm] in Table 1. Since the crack length and the
element size are different between the reference problem and the unknown problem, the SIFs are calculated
using the relationship in Eq. (9). Compared with the results of the conventional proportional method at the
upper part of Table 2, it is seen that the error in F1 is less than 0.17% and the error in F2 is less than 1.3%.
Even in the new proportional method where both the crack length and the element size are different, the values
of F1 and F2 is almost the same. It is confirmed that the new proportional method based on Eq. (9) is effective
and useful.

At the lower part of Table 2, the results of the new proportional method based on Eq. (10) are shown. The
ratio of the element size to the crack length is fixed for the reference and the unknown models as e∗/a∗ � e/a.
Since the ratio e∗/a∗ � e/a� constant in the reference and the unknown problems, the SIF is calculated
by using the Eq. (10). These results are in good agreement to more than four digits with the results of the
conventional proposed method. Even though the crack length and the element size are different from the
reference problem, it is found that the new proportional method based on relation (10) is very effective and
useful. To use the same ratio of the element size to the crack length for the reference and the unknown models
as e∗/a∗ � e/a is recommended since the same accuracy of the conventional method can be expected although
a single reference solution can be applied to different crack length.

Table 3 summarizes F1, F2 values for the wide range of a/W �→ 0 ∼ 0.5 obtained by the recommended
new method based on Eq. (10) in comparison with the results of other researchers when GB/GA � 10,
νA � νB � 0.3, α � 0.818, β � 0.286. The present results are in good agreement with the results of Lan
et al. obtained by the proportional crack opening displacement method [23]. The absolute values of F1 and
F2 gradually increase when a/W → 0 in the range a/W < 0.1. The previous papers [27–31] showed that
the SIF of a small edge crack is controlled by the singular stress field at the interface end without the crack.
As a/W→0, one of authors has reported that F1, F2 values of the interface edge crack in a bonded strip are
controlled by the singular stress field at the interface end without the crack as shown in Eq. (13).

F1 → C1/(a/W )1−λ, F2 → C2/(a/W )1−λ when a/W → 0 (13)

Table 3 shows those C1, C2 values defined in Eq. (13) become constant as a/W → 0 [30]. The values of
C1, C2 when a/W → 0 are interpolated by [27, 28]. Here, λ is the singularity index at the interface end when
there is no crack.
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Table 3 Dimensionless SIFs F1, F2 of an edge interface crack in an isotropic bimaterial plate in Fig. 1a when GB/GA � 10,
νA � νB � 0.3, α � 0.818, β � 0.286, λ � 0.84081 (the values C1, C2 are indicated in parentheses and the values when
a/W → 0 are interpolated by [27, 28])

a/W F1 F2

Present
(C1)

Lan [23] Matsumoto
[25]

Miyazaki
[26]

Present
(C2)

Lan [23] Matsumoto
[25]

Miyazaki
[26]

→ 0 + ∞
(0.723)

– – – − ∞
(− 0.214)

– – –

0.001 2.173
(0.724)

– – – − 0.6454
(–0.215)

– – –

0.01 1.519
(0.730)

– – – − 0.4514
(–0.217)

– – –

0.05 1.245
(0.773)

– – – − 0.3613
(–0.224)

– – –

0.1 1.229
(0.852)

1.229 1.222 1.229 − 0.3398
(–0.236)

− 0.340 − 0.336 − 0.340

0.2 1.369
(1.060)

1.369 1.366 1.369 − 0.3496
(–0.271)

− 0.349 − 0.348 − 0.349

0.3 1.648
(1.361)

1.648 1.648 1.648 − 0.3994
(–0.330)

− 0.399 − 0.394 − 0.399

0.4 2.089
(1.805)

2.089 2.090 2.090 − 0.4950
(–0.428)

− 0.495 − 0.491 − 0.494

0.5 2.787
(2.496)

2.787 2.789 2.789 − 0.6634
(–0.594)

− 0.664 − 0.661 − 0.663

4 Solution of interface crack SIFs in orthotropic bimaterial

The interfacial crack analysis method described in Sect. 2 can be applied similarly to the interfacial crack in
orthotropic bimaterial. This section explains the stress–strain relationship for orthotropic dissimilar materials,
the definition of the stress intensity factor, and how to apply the proportional method.

4.1 Stress–strain relationship and composite parameters of orthogonally anisotropic materials

The relationship between the stress σ and the strain ε of a two-dimensional orthotropic material is given by
the following Eq. (14) [32–35].

⎧⎨
⎩

εx
εy
εz

⎫⎬
⎭ �

⎡
⎣

β11 β12 0
β21 β22 0
0 0 β66

⎤
⎦

⎧⎨
⎩

σx
σy
σz

⎫⎬
⎭ (14)

Under plane stress,

β11 � 1

E1
,β12 � β21 � −ν12

E1
� −ν21

E2
β22 � 1

E2
,β66 � 1

G12
(15)

Under plane strain,

β11 � 1

E1
− ν231

E3
,β12 � β21 � −ν12

E1
− ν31ν32

E3
β22 � 1

E2
− ν232

E3
,β66 � 1

G12
(16)

Here, Ei denotes Young’s modulus in the i-direction, G12 denotes in-plane shear modulus, and νi j is the
Poisson’s ratio expressing shrinkage in the j-direction when the plate is pulled in the i-direction (i , j � 1, 2).
Assumed that the directions of the two main axes coincide with the x- and y-axes. The following relations
holds between each elastic constant.

ν21

E2
� ν12

E1
,
ν31

E3
� ν13

E1
,
ν32

E3
� ν23

E2
(17)
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Interface 

crack

y

x

e*

Interface 

crack

Fig.10 A reference and an unknown interface crack problems in orthotropic bimaterial plate. a A center interface crack in
orthotropic bimaterial infinite plate (εx A � εx B at y � 0) as a reference problem. b An edge interface crack in an orthotropic
bimaterial plate as an unknown problem

Suo derives the following α and β corresponding to the Dundurs parameters of an isotropic bimaterial
when the main axis of the material coincides with the direction of the interface [32, 33].

α �
{√

β11β22
}
B − {√

β11β22
}
A{√

β11β22
}
B +

{√
β11β22

}
A

,β �
{√

β11β22 + β12
}
B − {√

β11β22 + β12
}
A√

H11H22
(18)

H11 �
(
2n�

1
4
√

β11β22

)
B
+

(
2n�

1
4
√

β11β22

)
A
, H22 �

(
2n�−1/4

√
β11β22

)
B
+

(
2n�−1/4

√
β11β22

)
A
(19)

� � β11

β22
, ρ � 2β12 + β66

2
√

β11β22
, n �

√
1 + ρ

2
(20)

Here, A and B denote Material A and Material B, respectively. In addition, α is a parameter representing
rigidity, and β is a parameter related to oscillation singularity of the interface crack.

4.2 New proportional method for the interface crack problem in orthotropic bimaterial

Figure 10a shows the reference problem to be used for analyzing interfacial cracks in the orthotropic bimaterial.
Although several definitions have been used for the stress intensity factor for the orthotropic interfacial cracks,
in this study, the definition in Eq. (21) proposed by Yuuki et al. will be used [32, 33].

σy + i

√
H11

H22
τxy �

K1 + i
√

H11
H22

K2√
2πr

( r

2a∗
)iε

(21)

Here, r is the distance from the crack tip, and 2a∗ is the crack length of the reference problem. The
parameters H11, H22 in Eq. (21) are defined in Eq. (19). The definition (21) is quite general. When both
materials are isotropic but different, by applying the relation

√
H11/H22 � 1, the definition (21) coincides with

the definition (2) in isotropic bimaterial described in Sect. 2. Also, when both materials are the same isotropic
material, by applying the relation ε � 0 the definition (21) coincides with the definition of a homogeneous
plate.

Based on this definition, the exact solution of an interface crack in the orthotropic bimaterial infinite plate
in Fig. 10a can be expressed in Eq. (22), which is also quite general. When both materials are isotropic but
different, by applying the relation

√
H11/H22 � 1, the solution (22) coincides with the solution in isotropic

dissimilar materials as shown in Eq. (3). Also, when both materials are the same isotropic material, by applying
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the relation ε � 0 the definition (22) coincides with the exact solution of a crack in a homogeneous infinite
plate.

K ∗
1 + i

√
H11

H22
K ∗
2 �

{
T + i

√
H11

H22
S

}√
πa∗(1 + 2iε), with T , S in Eq. (1) (22)

As described in Sect. 2.4, several unknown problems whose crack lengths and the element sizes at the
crack tip are different can be solved by using a single reference problem. When the FEM crack tip stresses
are the same as σy0, FEM � σ ∗

y0, FEM, τxy0, FEM � τxy0, FEM
∗, the relation of SIF between the unknown and the

reference problems in an orthotropic biomaterial can be expressed as follows:

K1 + i

√
H11

H22
K2 �

√
e

e∗

(
K ∗
1 + i

√
H11

H22
K ∗
2

)(
e∗

e

a

a∗

)iε

�
√

e

e∗

(
T + i

√
H11

H22
S

)√
πa∗(1 + 2iε)

(
e∗

e

a

a∗

)iε

, with T , S in Eq. (1)

when e �� e∗, a �� a∗, σy0,FEM � σ ∗
y0,FEM, τxy0,FEM � τ ∗

xy0,FEM (23)

Equation (23) is the relation of the SIFs for unknown and reference problems in an orthotropic bimaterial
whose elastic properties are controlled by (α, β, �A, �B , ρA, ρB) defined in Eqs. (18)–(20). Here, K1, K2
denote the SIFs of an unknown problem (a, W , e) when the FEM stress value σy0, FEM, τxy0, FEM appear at the
interface crack tip under external loading. Instead, K ∗

1 , K
∗
2 in Eq. (23) denote the SIFs of a reference problem

(a∗, W ∗, e∗)when the same FEM stress value σy0, FEM, τxy0, FEM appear at the interface crack tip under remote
stress T ,S. When by applying the isotropic condition

√
H11/H22 � 1 to the orthotropic bimaterial, Eq. (23)

is reduced to Eq. (9).
To calculate the SIF of the interfacial crack, the ratio of the FEM element size to the crack length can be

chosen as e∗/a∗ � e/a for the reference and the unknown problems. Under this condition, Eq. (23) becomes
Eq. (24).

K1 + i

√
H11

H22
K2 �

√
e

e∗

(
K ∗
1 + i

√
H11

H22
K ∗
2

)
�

√
e

e∗

(
T + i

√
H11

H22
S

)√
πa∗(1 + 2iε), with T , S in Eq. (1)

when
e∗

a∗ � e

a
,

(
e∗

e

a

a∗

)iε

� 1 but e �� e∗, a �� a∗, σy0,FEM � σ ∗
y0,FEM, τxy0,FEM � τ ∗

xy0,FEM (24)

The relation (24) derived for the orthotropic bimaterial interface crack is the same as the relation (10) for
the isotropic bimaterial interface crack and is the same as the relation (6) for the normal crack. This can be
explained from the fact that the relation of the SIF having a similar geometrical model in Fig. 9 holds even
in the orthotropic bimaterial interface crack problem. Regarding cracks in homogeneous material, the validity
of Eq. (6) is explained from the mesh-independency of

√
e · σy, FEM(r/e) in Fig. 6 in Sect. 2.3. Regarding

interface cracks in isotropic bimaterial, the validity of Eq. (10) is explained from the effectiveness of numerical
calculation in Table 2 in Sect. 3. Regarding interfacial cracks in orthotropic bimaterial, the validity of Eq. (24)
is explained numerically in Table 6 in Sect. 4.2 as follows.

Equation (24) is quite general and includes Eqs. (10) and (6) as special cases. If both materials are isotropic
but different, the relation H11/H22 � 1 can be applied. Then, Eq. (24) coincides with Eq. (10) for isotropic
heterogeneousmaterials discussed in Sect. 2. Also, if bothmaterials are the same isotropicmaterial, the relation
ε � 0 can be applied. Then, Eq. (10) coincides with Eq. (6) of a homogeneous plate. Equation (24) is simple
and convenient to create FEM meshes effectively when analyzing various stress intensity factors by applying
the proportional method.

4.3 Analysis of interfacial crack problem in orthotropic bimaterial

Several interface cracks in orthotropic bimaterial in Fig. 10b are analyzed under plane strain condition by
applying the proposed method. Table 4 shows material combinations considered in this study. A material
combination AB is a bad pair where the singular stress appears at the interface end [32]. The crack length is
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Table 4 An example of material combination of orthotropic bimaterial plate in Fig. 10 [32]

Material combination E1
[GPa]

E2
[GPa]

E3
[GPa]

G12
[GPa]

ν12 ν31 ν32

Bad pair AB
A 137.9 14.48 14.48 4.98 0.21 0.022 0.21
B 151.7 10.62 10.62 5.58 0.28 0.020 0.28

Material combination � j ρ j H11 H22 α β

Bad pair AB
A 0.1093 4.515 0.07985 0.2649 0.04422 0.01024
B 0.0755 3.658

Table 5 An example of FEM stress value at crack tip of the reference problem (a∗, W ∗, e∗) in orthotropic bimaterial plate in
Fig. 10a which can be used as a reference solution when a∗� 10 [mm], e∗ � 10/33 × 3−7=0.0001386 [mm], W ∗ � 1500 a∗
for the material combination of the bad pair AB in Table 4 where �A � 0.1093, ρA � 4.515, �B � 0.0755, ρB � 3.658, α �
0.04422,β=0.01024

a∗[mm] e∗ [mm] σ T�1∗
y0, FEM [MPa] τ T�1∗

xy0, FEM [MPa] σ S�1∗
y0, FEM [MPa] τ S�1∗

xy, FEM [MPa]

10 0.0001386 425.241 20.2726 − 9.0482 183.552

set as a� 10 [mm]. Table 5 shows the FEM stress value at the crack tip of the reference solution modeling
(a∗, W ∗, e∗) when the crack length a∗� 10 [mm], the minimum element size e∗ � 10/33× 3−7=0.0001386
[mm], and the plate width W ∗=1500 a∗. Table 5 can be used as a reference solution’s FEM model.

Table 6 shows SIFs of an unknown problem. At the upper part, the results of the conventional method are
shown by using Eqs. (1) and (22) obtained by using the same crack length and the same element size between
the reference problem (a∗, W ∗, e∗) and the unknown problems (a, W , e) as a∗ � a and e∗ � e.

Instead, at the middle part in Table 6, the results of the new method are shown obtained from and a single
reference solution model under a∗ �� a and e∗ �� e. To confirm the validity of Eq. (23), the crack length is
changed as a=10~0.1 [mm], and the minimum element size e is changed as e∗/e � 0.1, 3, 10, 100 under a
fixed reference element size e∗ � 1.3856×10–4 [mm] and a fixed plate width W � 100 [mm]. Regarding
the orthotropic interface crack, the difference in F1 is about 0.3% and the difference in F2 is about 10%. The
difference in F2 is larger because the absolute value F2 is small. Compared with the result of the conventional
method when e∗/e � 1, the difference tends to increase with deviating from e∗/e � 1.

At the lower part of Table 6, the results of the new proportional method based on Eq. (24) are shown. The
ratio of the element size to the crack length is fixed for the reference and the unknown models as e∗/a∗ � e/a.
Although the ratio e/a=const. in the FEM model, the element size "e" also differs when the crack length "a"
differs, so the SIF is calculated using the relationship in Eq. (24). These results are in good agreement to more
than four digits with the results of the conventional method where a∗ � a and e∗ � e are applied. From the
above, when using the proportional method, if the FEMmodel is created so that the ratio e/a is equal between
the reference problem and the unknown problem as e∗/a∗� e/a, the element size dependence can be almost
eliminated, and high accuracy can be achieved. To use the same ratio of the element size to the crack length
for the reference and the unknown models as e∗/a∗ � e/a is recommended since the same accuracy of the
conventional method can be expected although a single reference solution can be applied to different crack
length efficiently.

Table 7 shows an example of material constants and composite parameters of orthotropic bimaterial plate
in Fig. 10 for bad pair AB [34]. Table 8 shows the dimensionless SIFs of an edge interface crack in orthotropic
bimaterial plate for the bad pair AB in the range a/W � 10−2 ∼ 10−7. As shown in Table 8, when a/W → 0,
the absolute values of F1 and F2 become infinity due to the influence of the interface edge singular field. On
the other hand, C1 and C2 values are finite and constant when a/W → 0 as clearly indicated in Table 8. In this
study, it is found that the values of C1 and C2 of a short edge crack in orthotropic bimaterial plate also become
constant in the same way of the short edge crack in isotropic bimaterial (see Table 3). It is also confirmed
that the recommended new proportional method is useful and efficient to analyze the SIF of extremely short
interface cracks.

The interfacial crack in the orthotropic/isotropic bimaterial is also considered. Table 9 shows an example
of the material constants and the values of the composite parameters in this analysis. For isotropic material B,
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Table 7 Material constants and combination parameters of orthotropic bimaterial plate in Fig. 10 for bad pair AB [34]

Bad pair AB E1 [GPa] E2[GPa] G12[GPa] ν12 � j ρ j H11 H22 α β

Material A 10 40 7.143 0.075 4.00 1.25 3.150 6.075 0.9512 0.3789
Material B 1 0.25 0.1786 0.3 0.25 1.25

Table 8 SIF an edge interface crack in orthotropic biomaterial plate in Fig. 10b for bad pair AB in Table 7 where α � 0.9512,
β � 0.3789, �A � 4.00, ρA � 1.25, �B � 0.25, ρB � 1.25, λ � 0.8580

a/W F1 F2 C1 C2

→ 0 → ∞ → −∞ 0.766 − 0.335
10−7 7.55 − 3.31 0.766 − 0.335
10−6 5.44 − 2.38 0.766 − 0.335
10−5 3.93 − 1.719 0.766 − 0.335
10−4 2.83 − 1.240 0.766 − 0.335
10−3 2.04 − 0.895 0.766 − 0.336
10−2 1.49 − 0651 0.775 − 0.338

Table 9 Material constants and combination parameters for the orthotropic/isotropic bimaterial plate in Fig. 10

Bad pair E1 [GPa] E2 [GPa] G12 [GPa] ν12 � j ρ j H11 H22 α β

Material A
(orthotropic)

10 40 7.143 0.075 4.00 1.25 0.7869 0.7119 0.7286 0.2113

Material B
(isotropic)

3.14 3.14 1.146 0.37 1.00 1.00

Table 10 SIF an edge interface crack for the orthotropic/isotropic bimaterial plate in Fig. 10b for bad pair AB in Table 9 where
α � 0.7286, β � 0.2113, �A � 4.00, ρA � 1.25, �B � 1.00, ρB � 1.00, λ � 0.8486

a/W F1 F2 C1 C2

→ 0 → ∞ → −∞ 0.786 − 0.197
10−7 9.03 − 2.26 0.786 − 0.197
10−6 6.37 − 1.594 0.786 − 0.197
10−5 4.50 − 1.125 0.786 − 0.197
10−4 3.17 − 0.794 0.786 − 0.197
10−3 2.24 − 0.561 0.786 − 0.197
10−2 1.582 − 0.398 0.788 − 0.198

material parameters �B � ρB � 1. Table 10 shows the dimensionless SIFs, F1, F2 defined in Eq. (12), and
C1, C2 in Eq. (13), respectively. As in Table 10, the absolute values F1, F2 become infinity but C1, C2 are a
finite value when a/W → 0. From Tables 8 and 10, it can be concluded that the recommended proportional
method proposed in this study can be also applied to the problem of small interface edge crack in orthotropic
bimaterial, and very accurate results can be obtained.

5 Conclusions

Since failures of dissimilar materials often occur near/at the interface, the analysis of interface cracks is
important to evaluate the strength. In this study, therefore, a useful analysis method was proposed for the
stress intensity factors (SIFs) of interface cracks efficiently by using a proportional stress field of a single
reference solution. To analyze an unknown SIF of a given problem, this proportional method uses the FEM
results obtained for a reference problem, which is chosen to have the same singular stress field with the exact
SIF is available. In the previous studies, the same crack length and the same element size were applied to both
reference and unknown problems so that the same FEM error can be produced. Then, by adjusting the external
loading so that the same FEM values were obtained, the same SIFs can be expected for the reference and
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unknown problems. In this approach, therefore, if several number of different crack lengths must be obtained
in the unknown problem, the same number of different crack lengths also must be analyzed by the FEM
for the reference problem by applying the same mesh pattern. Therefore, this paper studied how to reduce
the labor and effort of creating FEM models using the conventional proportional method. As a result, a new
proportional method was produced where from the modeling of one reference solution having a crack length
with a minimum mesh size, a lot of unknown problems having different crack length can be analyzed. The
conclusions can be summarized as follows.

(1) A useful analysis method was proposed for calculating interface stress intensity factors efficiently by
using a proportional stress field of a single reference solution whose crack length and whose element
size are different from the ones of the unknown problem. In the conventional method, it was necessary to
analyze the reference problem having the same crack length and the same element size of the unknown
problem, and therefore, when analyzing many unknown problems, it was necessary to analyze the same
number of reference problems.

(2) To analyze many unknown problems by using a single reference solution model, the SIF relation (16)
between unknown and reference problems in an orthotropic bimaterial was derived when the crack length
and the element size are different but the same FEM stress values appear at the interface crack tip.
Equation (23) is quite general since it includes the isotropic bimaterial condition (9) and homogeneous
plate condition (6).

(3) To analyze many unknown problems accurately by using a single reference solution model, the effect of
the element dimension of the reference model was investigated. It was found that the FEM model of the
reference problem should be created to satisfy e∗/a∗ � e/a since the SIF is almost mesh-independent
and most accurate. Here, e∗/a∗ is the ratio of the mesh dimension to the crack length of the reference
model, and e/a is the one of the unknown models. Under the condition e∗/a∗ � e/a, the relation
(23) is reduced to the relation (24) where the SIF ratio is equal to the root of the ratio of the element
dimension as K1/K ∗

1 =K2/K ∗
2 � √

e/e∗. Equation (24) for orthotropic bimaterial coincides with Eq. (10)
for the isotropic bimaterial and Eq. (6) for homogeneous material, and therefore, Eq. (24) can be used
conveniently to create FEMmeshes effectivelywhen analyzing various stress intensity factors by applying
the proportional method.

(4) Usefulness of the proposed method was verified by analyzing an edge crack in orthotropic bimaterial
confirming that the interface stress intensity factors can be calculated efficiently by using a single reference
FEM solution. It was shown that the analysis can be performed by the same procedure of the conventional
method from the FEM stress to determine the remote stress applied to the reference solution.

(5) It was confirmed that the reference solution of the interface crack of the orthotropic bimaterial is quite
general because the solution includes the cases of the isotropic bimaterial and of the isotropic homoge-
neous material. The proposed method with the single reference solution model can be applied to cracks
in orthotropic bimaterials, isotropic bimaterials, and even isotropic homogeneous materials. A general
analysis method was proposed for the stress intensity factors (SIFs) of interface cracks efficiently by using
a proportional stress field of a single reference solution.
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