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Abstract Interest in components with detailed structures increased with the progress in advanced manufac-
turing techniques. Parts with lattice elements can provide improved global buckling stability compared to solid
structures of the same weight. However, thin features are prone to local buckling. We present a two-scale opti-
mization approach that simultaneously improves the local and global stability of parametrized graded lattice
structures. Elastic properties and local buckling behavior are upscaled via homogenization based on geometric
exact beam theory. To reduce computational effort, we construct a worst-case model for the homogenized
buckling load factor, which acts as a safeguard against local buckling. We briefly discuss advantages and
limitations by means of numerical examples.

Keywords Two-scale optimization · Numerical homogenization · Beam theory · Buckling

1 Introduction

With the progress in additive manufacturing, there is an increased interest in both homogeneous as well as
graded lattice structures. Such structures are utilized in many applications, e.g., thermal management, energy
absorption, noise reduction, biomedical engineering, etc. [40]. Lattice infill can also increase the global buckling
resistance of a structure [12]. However, the lattice is prone to local buckling [17].
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Two-scale optimization [55] may be used to design such structures without the need to resolve all the
fine details of the full design in a single setting. This type of optimization assumes separation of scales,
i.e., features on the smaller scale, called microscopic scale, are much smaller than features on the large
or macroscopic scale, respectively. To bridge the gap between the two scales, the macroscopic response of
the microstructure with respect to macroscopic stimulation has to be determined. A widely used procedure
to estimate the effective mechanical response of a lattice structure is computational homogenization [19,
34]. There, the effective response of the lattice is obtained by approximating the mechanical behavior of a
microstructure through the properties of a homogeneous material. The lattice may then be considered as a
continuum and its mechanical properties reflect the properties of the underlying microstructure, including
the material and topology of the lattice. The upscaled properties can be used in macroscopic constitutive
equations. Thus, the optimization problem is solved on a rather coarse finite element mesh, where the material
properties at an integration point are given by the homogenized characteristics of a periodic microstructure
with infinitesimal cell size. The design variables usually describe the microstructure’s geometry or topology.

Though there is exhaustive literature on optimal design considering the buckling behavior of trusses using
beam models ( [17] and references therein), few publications for continuum models exist. This might be due
to several challenges when performing buckling optimization based on such a model. Those include, but are
not limited to, multiple eigenvalues [42] and artificial modes in low-density regions [6,15,21].

Models for the buckling of periodic microstructures have been investigated for decades and, lately, stability
requirements have also been employed when tailoring microstructures [2,48]. Within the homogenization
method, a representative volume element (RVE) is introduced. By convention, the RVE is defined as the
smallest repeating unit cell. However, when considering structural instabilities on the micro-scale, special
boundary conditions from Bloch-Floquet theory [37] or multiple repetitions within the RVE are necessary, as
buckling modes usually span over multiple periods of the microstructure [19,24,34].

The aforementioned works only investigate the buckling behavior of a structure on a single scale, either
macroscopic or microscopic. Only recently, works investigating the buckling behavior of two-scale structures
on both scales have been published. Wang et al. [51] deduce local stress constraints from the slenderness ratio
of the lattice rods. Christensen et al. [11] fit a Willam–Warnke failure criterion to homogenized data assuming
isotropic buckling behavior and employ a two-term interpolation scheme to interpolate the buckling strength
as a function of the relative lattice volume. In contrast, our approach directly uses upscaled microscopic
buckling information in macroscopic simulations, and we are able to capture anisotropic buckling behavior of
microstructures. We presented this approach for the first time in a two-dimensional setting [26]. In this article,
we extend the work from [26] in multiple ways: First, instead of asymptotic homogenization based on the finite
element method in [26], here, to upscale the lattice’s properties, we use a numerical homogenization scheme
based on beam theory, which is able to capture also nonlinear effects. On the macroscopic scale however, we
stick with linear theory. Second, we extend our model andmethod to a three-dimensional setting. This requires,
among other things, the capture of the buckling responses of the base cell with respect to applied stresses from
a six-dimensional space.

We want to obtain lattice structures with minimal mechanical compliance and maximal buckling resistance
on both the microscopic and macroscopic scale that can be produced, e.g., by powder-bed based additive
manufacturing. Buckling is treated on each scale individually, i.e., we ignore modes that span over both
scales (cross-modes). In order to determine the homogenized mechanical behavior on the microscopic scale,
we describe a representative lattice structure by geometrically exact rods. This has the advantage of less
complexity compared to a continuum model. Also, this formulation allows for large displacements of a rod’s
center line and for large rotations of each cross-section [14,43,44]. It is therefore used in applications to model
slender structures such as nanowires, cables, and biological tissue [22,23,47]. The use of this theory to capture
homogenized properties of lattices has already been introduced in detail in [18,24,28]. In this contribution,
numerical homogenization is used to evaluate the homogenized stiffness of the lattice and the limit load, which
is the minimal load leading to microstructural buckling. We use a nonlinear model to capture the limit load,
as this approach yields more accurate results than linear buckling analysis [30,38]. The limit load depends
on the design of the microstructure as well as the acting macroscopic stress. Using the homogenized data,
we build a worst-case model for the limit load: We account only for the limit load with the smallest absolute
value with respect to all possible stress situations. As a consequence, our worst-case model only depends on
the microstructure’s layout and the magnitude of the applied stress.

Our microstructure is parametrized by the diameter of the lattice rods. We precompute homogenized data
for different stress scenarios and microstructure parameters, and calculate the worst-case for each design.
Then, we apply an interpolation scheme to obtain the limit loads on the continuous parameter space. The
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principal idea of this method was introduced in the work of [7] and reduces computational effort during design
optimization drastically. The interpolated worst-case model is then used in buckling optimization problems
with the local lattice porosity or rod diameter, respectively, as design variable. To keep things simple, we
employ linear models on the macroscopic scale. However, our approach can also be used in conjunction with
nonlinear theory.

Our motivation for the choice of nonlinear models on the microscopic scale and linear models on the
macroscopic scale is as follows. While we accept an error margin in macroscopic buckling, we want to be
protected against microscopic buckling, which also motivates our worst-case approach. Hence, a lower bound
on themicroscopic critical stress has to be predicted accurately. Computations on themicroscopic scale happen
independent of the actual optimization procedure and higher computation times are acceptable, in particular
because simulations for different parameter sets are independent of each other and can be run in parallel.
During optimization efficiency is important, which is why we employ linear models on the macroscopic scale.

The remainder of this contribution is structured as follows: In Sect. 2, we introduce the state equations
for linear elasticity and buckling analysis. Section3 describes how beam lattices can be modeled based on
geometrically exact rods. Based on this, we present the method of numerical homogenization in Sect. 4.
This section also describes the design of our exemplary lattice microstructure used in numerical examples.
Section5 gives details on the homogenization with respect to buckling instabilities. In particular, we give the
load scenarios that have been used to obtain the worst-case model, which is presented in Sect. 6. In Sect. 7,
we formulate a two-scale sizing optimization problem. Numerical results for three different variations of this
problem are presented in Sect. 8. Finally, we complete with conclusions in Sect. 9.

2 Linear elasticity and buckling analysis

In this section, we briefly recap the state equations for linear elasticity and buckling analysis on an algebraic
level, as given by [48]. For continuous formulations in weak form, interested readers are referred to the work
of Neves [37]. We assume a linear elasticity setting and linear bifurcation buckling condition. This means
that the prebuckling displacement, stresses, and strains vary linearly with the applied load and that the load
factor, which indicates stability, appears linearly in the bifurcation eigenvalue problem.Wewill not investigate a
structural behavior beyond its critical buckling point. Linear buckling analysis of a structure under a given load
consists of two steps: First, we solve the linear elasticity state equation for the structural displacement. Then,
an eigenvalue problem is solved, where the eigenvalues correspond to bifurcation points, and eigenvectors are
interpreted as buckling modes of deflection.

Let us consider a body � ⊂ R
3 and its discretization �� = ⋃M

e=1 �e by M finite elements. Then, the state
equation of linear elasticity for �� is given by [56]:

K(ρ)u = f , (1)

where u is the sought-for vector of displacements, ρ ∈ (0, 1]M is the field of the relative lattice volume, and f
is the applied load vector. In the following, we denote the solution of (1) by u(ρ). The relative lattice volume
can be calculated from the lattice rods’ diameters. The so-called stiffness matrix is given by

K(ρ) =
M∧

e=1

Nip∑

k=1

ce,kB�
e,kC(ρe)Be,k, (2)

with assembly operator denoted by
∧

and number of integration points Nip. C(ρe) is the elasticity tensor,
which depends on the relative lattice volume in element e. Be,k is the strain–displacement matrix of element e
evaluated in the kth integration point and contains derivatives of the finite element’s shape functions [8]. The
factor

ce,k = det(Je)we,k (3)

contains the Jacobian determinant det(Je) of element e and the integration weight we,k associated with the
kth integration point of said element.

The buckling equation is given by the eigenvalue problem
[
K(ρ) − �G(ρ, u(ρ))

]
φ = 0, (4)
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and is solved for pairs of eigenvalues �� and eigenvectors φ�, � ≤ M. Eigenvalues of (4) are also called load
factors and the minimal eigenvalue is denoted as critical load factor or buckling load factor. The critical load
under which buckling occurs can be computed bymultiplying the applied load f with this buckling load factor.
If the critical load factor is less than or equal to one, the structure buckles; otherwise, the structure is stable
with respect to the applied load. The stress stiffness matrix (or geometric stiffness matrix) [36] in (4) is given
by

G(ρ, u(ρ)) =
M∧

e=1

Nip∑

k=1

ce,kB̃e,kσ e(ue(ρ))B̃e,k . (5)

The averaged stress in element e is numerically evaluated as

σ e(ue(ρ)) = 1

Nip

Nip∑

k=1

C(ρe)Be,kue(ρ), (6)

and B̃e,k is the derivative of the matrix of the shape functions [48]. Note that both Be,k and B̃e,k contain
derivatives of the shape functions, but in distinct order. Due to (5) and (6), the stress stiffness matrix depends
on the solution of (1) and thus on the load f .

3 Microstructural modelling

In this contribution, truss lattices are modeled by the theory of geometrically exact nonlinear rods [43,44]. This
formulation is able to capture large deformations of the beams center line r : [0, L] → R

3 and large rotation
of the rod’s cross section and goes back to the Cosserat brothers [14]. Thereby, the rotation is parametrized by
the rotation tensor R : [0, L] → SO(3), where SO(3) denotes the special orthogonal group, whose elements
have the properties R = RT and det (R) = +1. Further, L indicates the length of the rod. Both r and R define
the kinematic unknowns of the presented theory. The rod’s undeformed configuration is given by

X(s, XCS) = s (s) + XCS, (7)

where s (s) = s0 + s D3, s ∈ [0, L] denotes the position along the rod’s undeformed and straight arc by
a starting point s0 and the direction D3. Material points lying in the rod’s cross section are denoted by
XCS = XCSα Dα , with α = 1, 2, where Di build an orthonormal basis. The spatial configuration is given by

x (s, XCS) = r (s) + R (s) XCS. (8)

The derivative of the kinematic unknowns with respect to the rod’s arc length s returns the translational strains

v (s) = r′ (s) := ∂r
∂s (s) and the rotational strains k (s) = ax

(
R′ (s) RT (s)

) := ax
(

∂R
∂s (s) RT (s)

)
, also known

as curvature, where the operator ax (•) extracts the axial first-order tensor corresponding to the skew-symmetric
tensor •.

Ignoring distributed forces and moments, the balances of linear and angular momentum read as

n′ (s) = 0,

m′ (s) + r′ (s) × n (s) = 0,
(9)

where n describes internal forces and m internal moments, the work conjugated quantities to the strains and
curvatures, respectively. Together n and m are named stress resultants [25,32]. Further, we collectively denote
the translational strains v and rotational strains k as strain prescriptors.

In order to model rod lattices, the interaction of two intersecting rods must be properly captured. This is
done by constraining the kinematic unknowns of a slave rod (denoted by subscript S) to the kinematics of a
master rod (denoted by a subscript M). Assume that the slave rod with sS ∈ [0, LS] intersects with the master
rod sM ∈ [0, LM ] at sSI and sMI respectively. Then, the kinematic unknowns of the slave rod are constrained
to the kinematic unknowns of the master rod.

rS
(
sSI

) = rM
(
sMI

)
, RS

(
sSI

) = RM
(
sMI

)
. (10)
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Fig. 1 Visualization of the deformed configuration of two intersecting rods. In the first case, the angle between two intersecting
center lines remains constant. In the second case, due to stiffening of the rods’ properties in the vicinity of the intersection, the
angle between the rods’ contours remains nearly constant. Compared with three-dimensional continuum mechanics, the latter
case yields more accurate results

These constraints ensure that the intersection of the rods remains fixed throughout the deformation. Further,
the angle between intersecting rods remains constant. Instead of constraining the rotations of two intersecting
rods to realize semi-rigid joints, the rods are connected by a rotational spring with stiffness κ . Then, rigid
joints are obtained for κ → ∞, while pinned joints result from κ → 0 [41]. Note, that both limits can
lead to conditioning problems of the resulting stiffness matrix, which requires thoughtful treatment. In this
contribution, we focus on rigid joints.

When considering intersecting rods, one may face the following issue: The theory of geometrically exact
rods assumes the rods to be one-dimensional bodies. The dimension of the cross section is only considered
in the constitutive behavior of the rod [4]. At the intersections, the angle between the intersecting arcs is
constrained and remains constant throughout deformation. In the proximity of the intersection, however, the
angle between both center lines may deviate from the fixed angle. This effect may be neglected for rods with
large aspect ratio L/D, where D denotes the diameter of the rod’s cross section. In the case of small aspect
ratio, the intersection must be stiffened to capture the accumulation of material as shown in Fig.1 [16,53]. To
this end, the rod’s stiffness is increased by scaling the Young’s modulus by a factor of 10 in the proximity of
the intersection. Later in this contribution, we will compare stiffened and flexible intersections.

4 Homogenization

Numerical homogenization represents an establishedmethod to evaluate themechanical properties of amaterial
with a distinct microstructure. Here, themicrostructure is given by a periodic lattice and constitutes thematerial
of a structural part on the macro-scale. Numerical homogenization methods require the separation of scales:
The length-scale of the macroscopic scale (denoted bymac) must be larger bymagnitudes than the length-scale
of the substituting microscopic scale (denoted by mic) [19,20]

lmac 	 lmic. (11)

In the context of structural parts consisting of lattice structures, thismeans that the structural part is significantly
larger than a representative volume element (RVE) of the microstructure. The RVE may be considered as
a material point of the macro-scale. To transfer mechanical properties from the micro- to the macro-scale
we make use of numerical homogenization. This technique approximates the macroscopic properties of the
microstructure by properties of a homogeneous material. Here, we briefly recapture the macro-to-micro and
micro-to-macro transitions but restrict ourselves to the most relevant equations. For further details, we refer to
Herrnböck and Steinmann [24] and other authors [18,52].

The RVEmust always fulfill the Hill–Mandel condition. This condition states that the variation of the work
performed on the macro-scale equals the volume average of the variation of work on the micro-scale

Pmac : δFmac = 1

Vmic

∫

RVE
Pmic : δFmic dV, (12)

where the Piola stress P is work conjugated to the deformation gradient F and Vmic is the volume of the
RVE. Further, a field of fluctuations is superimposed to the deformed configuration of the RVE such that
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Fig. 2 Visualization of the exemplary periodic rod lattice, used in our numerical examples. The unit cell has edge length l and
consists of 14 rods that meet in the cells center

the resulting microscopic deformation gradient Fmic = Fmac + F̃. After some straightforward computations
starting from Eq.12 and replacing continuous quantities with rod specific quantities, one obtains periodic
boundary conditions for the rod’s kinematic unknowns that fulfill the Hill–Mandel condition. In particular,
fluctuations of the kinematic unknowns r and R are equal on periodic boundaries of the RVE (denoted by +
and −).

δr̃+ = δr̃−, δR̃+ = δR̃−. (13)

Here, for sake of general validity, the Hill–Mandel condition is stated for the case of finite deformations [24].
However, the resulting periodic boundary conditions on the RVE boundary are also valid for a prescribed
linearized macroscopic strain field εmac.

Finally, we impose a macroscopic strain field on the RVE by prescribing the deformation of the RVE’s
periodic edges denoted by + and − with

u+ = u− + εmac d±, (14)

where d± denote a periodicity vector, relating the periodic boundaries one to the other [29]. On the boundary
of the RVE, we prescribe periodic boundary conditions on the fluctuations, as displayed in Eq. 13. To compute
the homogenized macroscopic stress response σmac, we use

σmac = 1

Vmic

nr∑

I=1

nI ⊗ s I . (15)

The contact force and the material coordinate of a tip I of a rod, which is on the RVE’s node, are denoted by
nI and s I , respectively. In total, nr nodes build the RVEs edges. For more detailed insights, see Herrnböck and
Steinmann [24].

Figure2 depicts the exemplary lattice structure we focus on in our numerical examples.
Each unit cell consists of 14 intersecting rods with a circular cross section. The diagonal rods are discretized

into 10 elements, whereas the rods aligned with the RVE’s axes are discretized into 9 elements. In both cases,
the kinematic unknowns are approximated with linear shape functions. The diameter of the cross section of
each rod is given by D, the edge length of the unit cell by l. The relative volume ρ can be calculated by

ρ(D) = V (D)

Vmic = V (D)

l3
, (16)

where V (D) is the volume of the lattice, which depends on the rods’ diameter D. Note that in this context, all
rods have the same diameter andwe do not account for individual scaling.Wemodel the joints by increasing the
stiffness of the beam elements, which arewithin a given radius around the intersection of lattice rods. The radius
is determined by the rods’ diameter. The elastic behavior of a rod is obtained by integration of stiffness values
over the rod’s cross section. The formulation was firstly derived by Arora et al [4] and further elaborated by
Herrnböck et al [25,46].We evaluate the homogenized stiffness of the unit cell by approximating the derivative
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Fig. 3 Sketch of a load–displacement curve of a Eulerian buckling beam. After a linear increase in σ an unstable primary path
and a stable secondary path show two possible configurations of the beam

of stress with respect to strain by finite differences [33,34]. The lattice cell presented above results in cubic
symmetric material behavior, which is fully determined by three material parameters: shear modulus μmac,
Young’s modulus Emac, and Poisson’s ratio νmac. For instance, a unit cell with edge length l = 10mm, cross
sectional diameter D = 1mm and isotropic material with the parametersμmic = 80GPa and Emic = 207GPa
[45] returns following macroscopic properties

μmac = 1257MPa, Emac = 2147MPa, νmac = 0.3, (17)

when not stiffening the rods’ intersections and

μmac = 1405MPa, Emac = 2374MPa, νmac = 0.3, (18)

when stiffening the rods’ intersections. These values are sufficient to compute the mechanical behavior of
a structural part in its linear regime. However, nonlinearities in the material behavior may appear due to
buckling of single rods in the microstructure as a result of structural instabilities. To design a micro-buckling-
free structure, the knowledge of limit loads is crucial. Comparing the material parameters in Eq.17 with those
in Eq.18 shows that stiffening the rod’s intersections results in a stiffer macroscopic material behavior. The
homogenization framework is validated with a primitive cubic lattice in Appendix A.

5 Limit loads

In this section, homogenized limit loads for the microstructure are determined. These are defined as loads at
which the microstructure faces instabilities. Instabilities are of a structural nature for lattices. When single or
multiple rods in the lattice buckle, themechanical response shows a distinct nonlinearity [24]. In amathematical
context, structural instabilities occur when one or multiple eigenvalues λi of the problem’s system matrix are
no longer positive. This property is utilized to evaluate the load leading to instability ([24] and citations
therein). The instability point is found by incrementally increasing the load until one eigenvalue approaches
zero. Figure3 sketches a strain–stress curve of an exemplary Eulerian buckling beam. The load σ increases
linearly with the applied axial strain ε. A bifurcation point may be observed (λi = 0), where two possible
paths appear. An unstable primary path (λi < 0) and an energetically favorable secondary path (λi > 0).
The secondary path represents the buckled configuration of the rod, whereas the primary path represents the
straight unbuckled, but unstable configuration of the same rod.

5.1 Considered load cases

The microscopic limit load σ l depends on an applied macroscopic stress σ as well as the microstructure’s
design. For simplicity, in the present article we will describe the design of our exemplary microstructure
shown in Fig. 2 by a single value, namely its volume ρ(D) given by (16). More complex parameterizations and
other lattice structures can be used in our method without major changes. To evaluate σ l , a macroscopic strain
field is applied to the RVE. This field calculates with ε(σ ) = C−1σ , where C denotes the tangent stiffness,
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which is obtained from the homogenized material properties of Sect. 4.1 A linear relation between stress and
strain may be assumed in the pre-buckled configuration, and thus, the stiffness tensor of the RVE is computed
using finite differences for the derivative of stress with respect to strain [44]. The stress field is incrementally
increased until a structural instability is attained and the limit load σ l is computed by Eq.15. We denote the
absolute value of the limit load by

λ(ρ, σ ) = ‖σ l(ρ, σ )‖, (19)

which is also calledmicroscopic buckling load factor. Toprecompute limit loads for all possible stress situations,
we would have to examine all stresses σ = (σ11, σ22, σ33, σ23, σ13, σ12) ∈ R

6. Thankfully, this can be reduced
to the investigation of a subspace of R6 as follows: Due to the linear material behavior up to the bifurcation
point, the homogenized limit load and thus the microscopic buckling load factor can be assumed to depend
linearly on the applied stress:

λ(ρ, σ ) = 1
‖σ‖λ

(
ρ, σ

‖σ‖
)

. (20)

It is thus sufficient to examine stresses on the unit sphere surface S5 ∈ R
6 instead of the whole six-dimensional

stress space.
For the five-dimensional stress sphere, one can choose a specific coordinate system: two coordinates

correspond to the rotation of the stresswith respect to theRVE (or vice versa, respectively) and three coordinates
describe the type of stress. Special types of stresses include inter alia uniaxial, biaxial, and triaxial compression.
To obtain limit loads for different stress scenarios, we choose the following discretization of the stress sphere:
For each of the mentioned three special types of stresses we consider 250 orientations of the RVE equally
distributed on 1/8 of a three-dimensional sphere, making use of the symmetry of our exemplary lattice. For this,
each point X in the material configuration of the RVE is rotated, which results in a transformed configuration
X� by

X� = RE1(ϑ) RE2(ϕ)X. (21)

Here, RE1(ϑ) rotates around axis E1 with angle ϑ and RE1(ϑ) around axis E2 with angle ϕ. For different
orientations of the RVE but fixed σ , different limit loads σ l may result. Note that a rotation of the RVE is
equivalent to an inverse rotation of the stress tensor σ , which could be easier to implement. We only consider
uniaxial, biaxial and triaxial compression for different rotations of the RVE to reduce the large amount of
load cases and orientations to a manageable size. For the case of uniaxial compression, Fig. 4 displays the
microscopic buckling load factor for different orientations of an exemplary RVE. Here, the RVE comprises
one unit cell only and each point defines the limit load for a rotated RVE subject to uniaxial compression. For
our exemplary lattice structure, the minimum limit load is obtained independent of the lattice rods’ diameter,
when the RVE is aligned with the frame directions Ei , i = 1, 2, 3. This is explained by considering the
topology of the lattice from Fig. 2. The longest rods in the RVE are aligned with the space directions. These
rods meet with the rods of adjacent RVEs in such a way, that the actual length of the rods is l, while the diagonal

rods of adjacent RVEs support each other in the corners of an RVE resulting in a length of
√
3
2 l. According to

the Eulerian buckling theory, the more slender a rod is, the lower the buckling load and thus the limit load of
the RVE [31].

With an RVE containing only one unit cell, homogenization with periodic boundary conditions can only
capture buckling modes with a mode length that is smaller than the unit cell’s size. To capture buckling modes
spanning over more than just one cell [19,24], there are in general two approaches. Often Bloch-Floquet
theory is used [37], which uses special complex valued boundary conditions on the RVE. Here, we choose the
cell repetition approach, where multiple unit cells are included in the RVE and ordinary periodic boundary
conditions are applied. In [26, Section 4.3], we have shown, that this is equivalent for a special Bloch-Floquet
discretization. We perform homogenization for RVEs that contain nRVE3 unit cells for nRVE ∈ {1, . . . , 5}. In
total, this results in 3750 homogenizations for one microstructure with a given relative lattice volume or rod
diameter, respectively. This framework is repeated for RVEs of different relative volume.

1 Note that we omit the superscript M from now on for sake of readability.
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Fig. 4 Spatial distribution of the critical load of an RVE under uniaxial compression. The magnitude of the critical load is
color-coded. A minimal buckling load is present in Ei , i = 1, 2, 3 direction. In the plane diagonals, a maximum is visible

0 0.05 0.1 0.15 0.2
0

200

400

600

800

relative volume

σ
l 3

3
in

M
P
a

nRVE = 1, stiffened intersections
nRVE = 2, stiffened intersections
nRVE = 3, stiffened intersections
nRVE = 4, stiffened intersections

Fig. 5 Lowest limit load in terms of orientation of the RVE for the case of uniaxial compression of the RVE. A dependency on
nRVE is visible. The lowest limit loads are observed with nRVE = 2. Note, that we expect smaller or equal σl33 for nRVE = 4 than
for nRVE = 2. For a relative volume of 0.2 this is not seen in the data due to numerical issues

5.2 Limit loads as a function of lattice parameters

As discussed above, both the relative volume and the number of unit cells within the RVE influence the limit
loads. Figures5, 6 and 7 show the minimal limit load for uniaxial, biaxial, and triaxial compression. Here, we
refer to the minimum as the minimal limit load for all considered orientations of the RVE. The plots show that
the limit load increases with increasing relative volume. This is consistent with a stiffness gain of the RVE
for increasing relative volume. Further, a dependency on nRVE is visible. For our exemplary lattice structure,
we observed that for all considered cases (independent of the volume) an RVE with nRVE = 2 results in the
smallest limit loads. In contrast, the RVE with only one repetition of the unit cell yields large limit loads.
This is due to the limitation of homogenization with periodic boundary conditions being only able to capture
buckling modes with a wave length shorter or equal to the RVE’s size as mentioned above. It is notable that
the displayed results show the limit loads for RVEs with stiffened intersections (see Sect. 4). The limit loads
for unstiffened intersections of rods show lower values. A comparison between the stiffened and unstiffened
values is shown in Appendix B. In all figures, one may observe that the limit load increases drastically for high
volumes of the RVE. For the sake of completeness, it should be mentioned that the limit loads for nRVE = 2
and nRVE = 4 are equal, except for marginal differences that have their origin in numerical issues. This was
expected: the values for nRVE = 4 should be smaller or equal than the ones for nRVE = 2, as the buckling
modes of an RVE with nRVE = 2 can also be seen in the analysis of an RVE with nRVE = 4.

6 Worst-case model

Next, based on the idea in [26], we combine all data in a worst-case model. Having evaluated homogenized
buckling load factors for different numbers of cell repetitions nRVE ∈ N and stresses on the unit stress sphere
σ ∈ S5, we select the smallest buckling load factor with respect to all unit stresses and values of nRVE:

λwc(ρ) = min
σ∈S5,nRVE∈N

λ(ρ, σ , nRVE) (22)
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Fig. 6 Lowest limit load in terms of orientation of the RVE for the case of biaxial compression of the RVE. A dependency on
nRVE is visible. The lowest limit loads are observed with nRVE = 2. The discrepancy between the results from nRVE = 1 and
nRVE ≥ 2 is observed
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Fig. 7 Lowest limit load in terms of orientation of the RVE for the case of triaxial compression of the RVE. A dependency on
nRVE is visible. The lowest limit loads are observed with nRVE = 2. Limit loads for volumes ≥ 0.1 and nRVE = 3, 4 are missing
due to numerical issues

This worst-case model depends only on the local volume fraction. In practice, the unit sphere S5 is discretized
and the number of cell repetitions is bounded from above. The worst case is thus only a worst case with respect
to the discretization resolution andmaximal number of cell repetitions. In our case, the discretization of the unit
stress sphere is done by choosing special types of stresses (uni-, bi-, and triaxial) and 250 different rotations
of the RVE with respect to the applied stress (see Sect. 5.1). Note that this model can be used in arbitrary
macroscopic settings. It describes the smallest buckling load factor for our chosen lattice with respect to all
possible stress situations.

During optimization on the discretized macroscopic domain �� = ⋃M
e=1 �e, the microscopic buckling

load factor has to be determined for all �e. We parametrize the unit cell by its relative volume ρ, which can
be computed from the lattice rods diameters by (16). Note that in this context, inside each unit cell there
are only rods with the same diameter. This parametrization allows us to precompute the worst-case buckling
load factor for some volumes and then apply an interpolation scheme to obtain load factors on the continuous
parameter space [7]. This greatly reduces the computational effort during structural optimization: Using the
parameterization-and-interpolation approach the expensive solution of a homogenization problem for each
finite element �e and each design update is replaced by a cheap evaluation of the interpolation model. The
microscopic buckling load factor is then given by

λI (ρ, σ ) = 1
‖σ‖λI

wc(ρ), (23)

where λI
wc is the interpolated version of (22). For the interpolation, we opt for a piecewise cubic Hermite

approach [9] that results in a continuously differentiable model, which allows us to conduct gradient-based
optimization later.

The worst-case approach additionally reduces computational effort during the construction of the inter-
polation model, as we only have to perform one-dimensional interpolation. However, it comes at the cost of
possible underestimation of the actual load factor, which in turn may lead to oversized lattice rods in the opti-
mized design. This can be overcome by replacing the worst-case approach with other interpolation models,
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e.g., a C1-Interpolation in the six-dimensional parameter space (ρ, σ ) ∈ (0, 1] × S5. However, due to the
curse of dimensionality, this requires sophisticated interpolation schemes, e.g., the differentiable sparse grid
approach from [49].

7 Optimization problem formulation

We formulate different two-scale sizing problems. In contrast to topology optimization, where usually a
solid/void design is of interest, we vary the diameter D of the lattice rods from 0.5mm to 1.8mm for a unit
lattice cell with edge length of l = 10mm. This corresponds to a scaling of the lattice volume fraction between
1.8% and 20%, i.e., our admissible set for the lattice volume ρ is given by

Uad = [0.01841, 0.2022]M. (24)

The lower bound on the lattice rods ensures manufacturability in powder-bed-based additive manufacturing.
The chosen upper bound guarantees a sufficient length-to-diameter ratio of the truss lattice, such that our beam
model is valid.

We want to achieve structures with minimal mechanical compliance and good buckling stability. We treat
this multi-objective problem [13] with the ε constraint method [35]. For this, we choose the compliance as
objective and transform the macro- and microscopic stability into inequality constraints with a lower bound v.
The microscopic buckling load factor λI

e for each finite element e is obtained via the worst-case model (23).
The macroscopic load factors are given as solutions of the buckling state equation (4). For better numerical
stability, we include not only the critical, i.e., smallest, load factor �1 in the problem, but the six smallest
macroscopic load factors. In summary, the optimization problem reads as follows:

min
ρ∈Uad

f�u(ρ), (25)

s.t. �k(ρ) ≥ v, k = 1, . . . , 6 (26)

λI
e (ρe, σ e(ρ)) ≥ v, e = 1, . . . ,M (27)

As the microscopic buckling load factor depends on the local stress σ e, which in turn depends on the total
design ρ, the derivatives of (27) are computationally expensive. For each of the constraints an adjoint problem
of the same size as the state equation, (1) has to be solved [54]. To circumvent this, we globalize all local
constraints by aggregating them into the following function:

g(ρ) = 1

M

M∑

e=1

max
(
v − λI

e (ρe, σ e(ρ)), 0
)2

(28)

This function is the normalized sum of the squared violations of (27), motivated by the method of least squares
in regression analysis. Only load factors that are below the given threshold v contribute to the function value.
The derivative of this function is computed using only a single adjoint equation in which the right-hand side is
a sum of the adjoint right-hand sides of the local constraints. Thus, only one adjoint problem has to be solved,
which reduces the computational effort drastically. We replace the local constraints by this globalized version,
add a volume constraint, and get the final version of our optimization problem as follows:

min
ρ∈Uad

f�u(ρ), (29)

s.t. �k(ρ) ≥ v, k = 1, . . . , 6 (30)

g(ρ) ≤ ε, (31)
M∑

e=1

ρe ≤ V0. (32)

Note, that (31) is relaxed by a small ε > 0 to increase numerical stability.
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Fig. 8 The design domain is a cuboid with edge length ratio 1:1:6. In a central region of the bottom (red), all degrees of freedom
are fixed, while at the remaining bottom face (blue) only movement in vertical direction is prevented. A distributed force acts on
the entire top face

8 Numerical results

We investigate three different variations of the problem formulated in the previous section:

(A) We minimize the compliance under a macroscopic buckling constraint, but ignore microscopic buckling.
In other words, we drop Eq.31.

(B) We drop Eq.30 and minimize the compliance with constraints on the microscopic buckling load factors
while ignoring macroscopic buckling.

(C) We investigate the problem as given, i.e., weminimize the compliancewhile constraining bothmacroscopic
and microscopic buckling.

For the volume constraint, we choose an upper bound of 5% of the design domain’s volume, i.e., V0 =
0.05 |��|.

We perform optimization with a column-shaped design domain with square cross section and a side-to-
height ratio of 1:6 as depicted in Fig. 8. The design domain is discretized by 10 × 10 × 60 trilinear finite
elements. At the top, we apply a distributed force of 1N. Thus, the macroscopic load factor directly represents
the critical load. We fix all degrees of freedom for nodes in a central region of the bottom face, while all other
nodes at the bottom are only fixed in vertical direction. These boundary conditions are chosen to prevent stress
peaks in the corners of the bottom face.

Additionally, we regularize the design through a density filter (see [10]) with a radius of 1.9 times the edge
length of a finite element, which results in an average neighborhood of 22 elements.

8.1 Pure macroscopic buckling constraint

Goodmacroscopic buckling resistance is achieved by structureswith a large second areamoment perpendicular
to the loading direction. Thus, we expect a design similar to a square tube if we require a large macroscopic
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Fig. 9 Optimized design for a pure compliance minimization. Thick lattice (black) at the vertical edges supports lattice with
intermediate rod diameter at the top. Inside the structure, there is nearly solely lattice with minimal rod diameter (white)

critical load. The optimized design of a pure compliance minimization is already similar to a square tube (see
Fig. 9); there is thick lattice at the design domain’s vertical edges. Due to the volume constraint, however, it
is not possible for the optimization algorithm to also put thick lattice at the domain’s sides. Nevertheless, this
design already exhibits a relatively large buckling resistance of 2.53N. At the top, there is intermediate design
to support the entire loaded face. Between the regions of thicker lattice, the diameter of the lattice rods is at
the lower bound of 0.5mm. This is an indicator that designs with better compliance could be achieved if the
lattice rods were allowed to get thinner or, at the end, even vanish.

Figure10 shows that this can be increased by 19% up to a macroscopic critical load of 3.00N. At the same
time, the compliance gets worse by 22% from 0.130Nm to 0.159Nm.

The optimized design corresponding to the rightmost data point, i.e., with highest buckling load factor and
worst compliance, is shown in Fig. 11. At first glance, it looks like the one from pure compliance minimization,
but there are key differences. There is more lattice with thick rods at the vertical edges. The additional material
required for this is made available by making the lattice in the top region thinner and thus results in a worse
compliance. Again, the diameter of the lattice rods in the middle of the structure is at the lower bound.

8.2 Pure microscopic buckling constraint

As the pure compliance minimization does not account for microscopic buckling, the obtained design exhibits
poor resistance against lattice buckling. According to Fig. 12, this can be greatly improved by 125% from
1.26N up to 2.84N in terms of the microscopic load factor. The compliance is only worsened by 5% from
0.130Nm to 0.137Nm.

The optimized design for the rightmost data point is shown in Fig. 13 and is again quite similar to the
compliance design. This time, however, between the thick lattice at the vertical edges, there is lattice with at
least a relative volume of 3.3%, i.e., a rod diameter of 0.68mm. In other words, the lower bound for our design



D. Hübner et al.

0.13 0.132 0.134 0.136 0.138
1

1.5

2

2.5

3

3.5

compliance in Nm

(m
ac

ro
sc

op
ic

)
bu

ck
lin

g
lo

ad
fa

ct
or

global

Fig. 10 Optimized function values of compliance minimization with constraints on the macroscopic buckling load factor Eq.30
and volume Eq.32. A gain of 20% in the load factor comes at the cost of 20% in the compliance. The design of the data marked
by a green circle is shown in Fig. 11
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Fig. 11 Optimized design for the marked data in Fig. 10. Compared to the design from pure compliance minimization (Fig. 9),
there is a larger amount of thick lattice at the vertical edges to increase macroscopic stability. In return, the lattice at the top is
thinner, which results in a larger compliance

variable is not active. This is necessary to account for the present stress in the structure and achieve a good
local buckling resistance.
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Fig. 12 Optimized function values for compliance minimization subject to microscopic buckling Eq. 31 and volume Eq.32
constraint. A large improvement is possible with only slight loss in the compliance. The design of the data marked by a green
circle is shown in Fig. 13
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Fig. 13 Optimized design for the marked data in Fig. 12. To increase microscopic stability, the optimized design shows lattice
with increased rod diameter

8.3 Macro- and microscopic buckling constraint

Finally, we investigate the optimized designs for compliance minimization with constraints on both macro-
and microscopic buckling. The obtained values can be seen in Fig. 14. From left to right, first the microscopic
load factor increases. This comes with a decrease in the macroscopic buckling load factor, which is inactive
anyways. For a required stability threshold of 2.21N the two curves meet, i.e., the microscopic limit load
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Fig. 14 Optimized function values for compliance minimization under a volume Eq.32 constraint and constraints on both the
macroscopic Eq.30 and microscopic Eq.31 buckling load factor (BLF). For reference we included the curves from Fig. 10,12.
The design of the data marked by a green circle is shown in Fig. 15
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Fig. 15 Optimized design for the marked data in Fig. 14. Macroscopic stability is maintained by thick lattice at the vertical edges,
while microscopic stability is achieved by a graded lattice structure. The design at the central vertical line (blue) is examined in
Fig. 16

is equal to the macroscopic critical load. Requiring higher buckling loads comes at the cost of mechanical
compliance. The largest achievable critical load is 2.51N; for larger values the problem becomes infeasible.

We look closer at the optimized design for this data with a compliance of 0.137Nm and buckling load of
2.51N (see Fig. 15). It is similar to the design from pure compliance minimization in that there is some thick
lattice at the vertical edges. In contrast to the compliance result, we do not obtain a tree shape in the upper
region.

Instead, the optimized design exhibits a graded lattice structure, especially in the center of the domain, as
can be seen in Fig. 16. This is due to a gradation in the stress field: As the stress increases from bottom to
top, the lattice is getting thicker to achieve a nearly homogeneous buckling load factor. The minimal lattice
rod diameter for the volume given in Fig. 16 is 0.6mm, while at the top it is 0.76mm. Though this might
seem small, it is an increase by more than 50% with respect to relative lattice volume. This clearly shows the
advantage of a homogenization based model for the load factor: Choosing instead a larger lower bound for the
relative lattice volume to meet stability requirements everywhere can lead to a waste of material in regions of
low stress.
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Fig. 16 Norm of stress, design, and microscopic buckling load factor at the central vertical line of the design shown in Fig. 15.
The gradation of the stress leads to a graded lattice design to achieve a nearly homogeneous microscopic buckling load factor

9 Conclusion

We presented a method to include microstructural buckling on the macroscopic level in two-scale optimiza-
tion. We used numerical homogenization as the upscaling technique. Due to the geometry of our exemplary
three-dimensional lattice unit cell, we modeled the lattice struts as geometrically exact nonlinear rods. We
parametrized the unit cell by its relative volume or lattice rod diameter, respectively. We obtained mechanical
properties like Young’s Modulus, Poisson’s ratio, and buckling limit loads for different volumes and stress
scenarios. From this data, we built a worst-case model with respect to the acting stress, which we used to
obtain structures that are buckling resistant on only one or both scales.

We observed that limit loads for our exemplary truss lattice depend strongly on the direction of the applied
macroscopic stress. We also showed that it is necessary to enclose multiple unit cells in an RVE. Otherwise, not
all buckling modes can be captured and the smallest microscopic buckling load factor might not be detected.
Especially for lattices with a relatively large diameter to rod length ratio, a stiffening of the region where rods
intersect can lead to significant differences in the resulting limit load. It is expected (but still to be shown), that
a stiffened intersection leads to more realistic results.

The optimized truss lattice structures showed that the gain in macroscopic buckling resistance compared
to a pure compliance minimization result is not very large. However, the microscopic resistance was increased
drastically with only a small loss in the mechanical compliance by increasing the relative lattice volume. The
optimization with respect to bothmacroscopic andmicroscopic buckling revealed that a graded lattice structure
can yield a homogeneous microscopic lattice factor due to a gradation of the stress field. This shows that a
model for the microscopic buckling load factor based on homogenization is superior to just increasing the
lower bound for the lattice rods’ diameter.

Further research includes dehomogenization and validation of the optimized designs.
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Appendix A: Validation of homogenization framework

We validate the multiscale homogenization framework and the evaluation of buckling loads on the case of a
compressed primitive cubic lattice [5]. For this case an analytic solution in terms of Eulerian buckling beams is
known. The edge length of the unit cell is l = 10mm and the rod’s radius is r = 0.25mm. The homogenization
results in the macroscopic properties EM = 1617MPa, μM = 1.5MPa ≈ 0MPa and νM = 0. As expected,
the structure shows negligible stiffness against shear but noteworthy stiffness against tension and compression.
The tensile stiffness coincides with the number of rods (4 in loading direction), their circumferential area
(r2 π), and their Young’s modulus. The macroscopic Young’s modulus EM may be calculated by

EM = 4 r2 π
Em

l2
= 1617MPa, (33)

given that Em = 206 000MPa and l2 = 100mm2, representing the area of an RVE’s face perpendicular
to the loading direction. Finally, the simulation returns a buckling load of σI33 = 10.986MPa for uniaxial
compression. This is approximately four times the buckling load of a single Eulerian buckling beam with
equivalent boundary conditions. For details, the reader is referred to [39]. Finally, we state that both the
stiffness and the buckling load from the simulation fit the analytic solution.

Appendix B: Comparing limit loads for stiffened and unstiffened lattices

With the beam model in Sect. 3, lattice rods are only connected in a single point and overlapping of rods
cannot be captured. To model this as well, we used an artificial stiffening parameter in the region next to
the intersection. We increased the stiffness of the beam elements, which are within a given radius around the
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Fig. 17 Spatially lowest limit load for the case of uniaxial compression of the RVE. We compare the limit load when stiffening
and not stiffening the intersections in the lattice. Stiffened intersections lead to higher values
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Fig. 18 Spatially lowest limit load for the case of biaxial compression of the RVE. We compare the limit load when stiffening
and not stiffening the intersections in the lattice. Stiffened intersections lead to higher values
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Fig. 19 Spatially lowest limit load for the case of triaxial compression of the RVE. We compare the limit load when stiffening
and not stiffening the intersections in the lattice. Stiffened intersections lead to higher values

intersection of lattice rods, where the radius is determined by the rods’ diameter. Figures17, 18 and 19 show
homogenized limit loads for stiffened and unstiffened intersections for uni-, bi-, and triaxial compression and
nRVE = 1, 2, 3. Asmight be expected, lattice with stiffened intersections results in larger limit loads compared
to unstiffened intersections. We believe, that a stiffened intersection can capture a more natural behavior of
the lattice.
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