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Abstract Aortic dissection (AD) has a high mortality rate. About 40% of the people with type B AD do not
live for more than a month. The prognosis of AD is quite challenging. Hence, we present a triphasic model for
the formation and growth of thrombi using the theory of porous media (TPM). The whole aggregate is divided
into solid, liquid and nutrient constituents. The constituents are assumed to be materially incompressible and
isothermal, and the whole aggregate is assumed to be fully saturated. Darcy’s law describes the flow of fluid
in the porous media. The regions with thrombi formation are determined using the solid volume fraction. The
velocity- and nutrient concentration-induced mass exchange is defined between the nutrient and solid phases.
We introduce the set of equations and a numerical example for thrombosis in type B AD. Here we study the
effects of different material parameters and boundary conditions. We choose the values that give meaningful
results and present the model’s features in agreement with the Virchow triad. The simulations show that the
thrombus grows in the low-velocity regions of the blood. We use a realistic 2-d geometry of the false lumen
and present the model’s usefulness in actual cases. The proposed model provides a reasonable approach for
the numerical simulation of thrombosis.

Keywords Thrombus formation · Growth · Theory of porous media · Multiphase

1 Introduction

The aorta is one of the essential arteries in the body. The heart pumps the blood from the left ventricle into the
aorta via the aortic valve, which opens and closes with each heartbeat to allow a one-way blood flow. Aortic
dissection (AD) beginswhen a tear occurs in the inner layer (intima) of the aorticwall. This tear allows the blood
to flow between the inner andmiddle layers causing them to separate (dissect). This second blood-filled channel
is called a false lumen, where thrombosis (blood clotting) occurs, cf. Fig. 1. Blood clotting or coagulation is
the process which prevents excessive bleeding by forming a spatial structure called a thrombus. A thrombus
consists of small blood cells (platelets) and fibrous protein (fibrin) that stop the bleeding at the injury site. There
are two types of AD depending on the location of the dissection. In type A AD, the dissection happens in the
ascending part of the aorta, where the expansion of the false lumen can push other aorta branches and reduce
blood flow. In contrast, the dissection occurs in the descending part of the aorta in type B AD, which may
extend into the abdomen. The formation of a thrombus involves a complex sequence of biochemical reactions
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Fig. 1 Illustrations of the true and false lumen in type B AD with entry and exit tears (left), and the initial formation of false
lumen (without a thrombus) and formation of a thrombus in false lumen (right) [32]

[1,2]. AD can occur due to high blood pressure leading to increased stress on the aortic wall, weakening of the
wall, pre-existing aneurysm or defects in the aortic valve, to name a few factors. Approximately 75% of type B
AD patients have hypertension [3,4]. Furthermore, Virchow’s triad describes three physiological factors that
can result in thrombosis. These factors are endothelial injury, hypercoagulability of blood and stasis of blood
flow [5,6].

AD is a highly fatal disease. The estimated occurrence is 5–30 cases per million people annually. Among
these, the acute cases are 2-−3.5 cases per 100,000 people per year, accounting for 6000 to 10,000 cases per
year in the USA alone. To understand the gravity of AD, approximately 75% of patients with a ruptured aortic
aneurysm make it to the emergency department alive. However, 40% of AD patients die immediately. The
mortality rate for aortic dissection is high, especially in acute cases. The mortality rate is excessive in the first
seven days after type B AD due to severe complications, such as malperfusion or rupture in the aorta. In the
case of such difficulties, a typical open surgery involves a 14–67% risk of irreversible damage to the spinal cord
or, worse, mortality. Looking at the long-term prognosis, the survival rate of patients is 50–80% for five years
and 30–60% for ten years [7–10]. The short-term and long-term diagnosis for AD remains unclear, leading
to an interest in computational methods to help with the decision-making process for the treatment. We focus
here on the formation and growth of a thrombus.

For modelling a thrombus, one has to consider its multiphasic structure and the associated characteristics
of the constituents. A highly complicated microscopic model would prevent us from establishing a usable
computational model. Therefore, we use a macroscopic continuum mechanical approach of the theory of
porous media (TPM). TPM provides an excellent framework to describe the multiphasic microstructure of a
thrombus [11,12]. It allows to describe macroscopically the complicated microstructure of biological tissues
which is almost impossible to determine quantitatively. TPM was developed by combining the theory of
mixtures, which was developed using the framework of general thermodynamical considerations, with the
concept of volume fractions [13–17]. It was continuously improved and developed to the current understanding
of the TPM by de Boer & Ehlers [18], and Ehlers [11,19]. De Boer has presented an excellent insight into
the historical development of TPM in his book [12]. Numerous models based on TPM have been presented to
describe the behaviour, growth and remodelling of the soft tissues, brain tissue, liver perfusion, intervertebral
disc, bone remodelling and tumour growth [20–28]. The recent works using TPM for modelling biological
growth motivate the use of this approach in the presented work.

Chemical, mechanical and metabolic factors drive the growth process of the thrombus. Because of the
multiphasic nature of the thrombus, we present a triphasic model consisting of solid, liquid and nutrient phases.
Due to the need for more detailed knowledge and parameters to quantify the influence of different factors,
the model description is quite challenging. However, the effects of the blood velocity and the nutrients on the
growth of thrombi are well researched [29–31]. Therefore, we present a velocity- and nutrient concentration-
induced growth model based on the theory of porous media. We treat the highly coupled set of differential
equations within the framework of the standard Galerkin procedure and implement the weak forms in the
nonlinear finite element solver PANDAS.
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Fig. 2 Illustration of the microstructure of the porous false lumen (left), macro-model obtained by volumetric homogenisation
process (centre) and superimposed continua (right)

2 Theory of porous media

The theory of porous media provides an excellent framework to macroscopically describe the complicated
microstructure of the thrombus without knowing its detailed geometry. Therefore, a representative elementary
volume (REV) is locally defined, where the individual constituents are considered to be in a state of ideal
disarrangement. Using the real or virtual averaging processes over the REV, the microscale information of the
overall aggregate and its constituents is homogenised to macro-scale quantities. For the investigated porous
body, the immiscible parts lead to a triphasic aggregate ϕ consisting of solid ϕS , which is saturated by fluid
ϕF . The fluid itself consists of liquid ϕL and nutrients ϕN , cf. Figure 2.

The volume fractions nα of the constituents ϕα , where α ∈ {S, L , N }, are defined as the local ratios of the
respective partial volume elements d vα with respect to the bulk volume element d v of the overall aggregate
ϕ as [12]

nα(x, t) = d vα

d v
,

∑

α

nα(x, t) =
∑

α

ρα

ραR
= 1, (1)

where x is the position vector in the current configuration at time t . The volume fractions nα need to permanently
fulfil the saturation constraint (1)2. In the case of injury (aortic dissection), the nutrients are available in
large quantities close to the injury site (false lumen). Therefore, in the presented monograph, the nutrients
are described by their volume fractions nα . For small concentrations of nutrients, the approach of molar
concentrations should be used [11,28]. Moreover, the partial density ρα = dmα/ d v of a constituent ϕα can
be related to its real density ραR = dmα/ d vα via its volume fraction nα (1)2. Due to the volume fraction
concept, all geometric and physical quantities, such as motion, deformation and stress, are defined in the total
control space. Hence, they can be interpreted as the statistical average values of the real quantities. The overall
aggregate body B is defined as the connected manifold of material points Pα . At any time t , material points
Pα of all the constituents ϕα simultaneously occupy each spatial point x of the current configuration. These
particles proceed from different reference positions Xα at time t = to, which leads to individual motion,
velocity and acceleration fields for each constituent

x = χχχα(Xα, t), x′
α = dχχχα(Xα, t)

d t
, x′′

α = d2χχχα(Xα, t)

d t2
. (2)

Moreover, a unique inverse motion function χχχ−1
α needs to exist for the motion function χχχα to be unique. The

necessary and sufficient condition for this is the existence of non-singular Jacobian Jα

Xα = χχχ−1
α (x, t), if Jα := det

∂χχχα

∂Xα

�= 0, (3)

where det(·) denotes the determinant operator. Following the equations (2)1 and (3)1, any physical quantity
can be represented as either Lagrangean (material) or Eulerian (spatial) description. Moreover, the material



4110 I. Gupta, M. Schanz

deformation gradient Fα and its inverse F−1
α are defined as

Fα = Gradα x =: ∂χχχα(Xα, t)

∂Xα

, and F−1
α = grad Xα =: ∂χχχ−1

α (x, t)
∂x

, (4)

During deformation, the Jacobian Jα is restricted to Jα = det Fα > 0. For scalar field functions�, the material
time derivative is defined as

�α
′(x, t) = ∂�

∂t
+ grad� · x′

α. (5)

Furthermore, the balance equations for porous media are taken from the balance equations of the constituents
ϕα in mixture theory. The local balance equations of mass for the constituents ϕα read as

(ρα)′α + ρα div x′
α = ρ̂α, (6)

which gives volume balance using (1) as

(nα)′α + nα div x′
α = ρ̂α

ρ̂αR
. (7)

The local balance of momentum is given by

ραx′′
α = div Tα + ραbα + p̂α, (8)

and the local balance of moment of momentum excluding additional supply term is

Tα = (Tα)T . (9)

In Eqs. (6) and (8), div(·) denotes the spatial divergence operator, Tα is the partial Cauchy stress tensor and
b is the external volume force per unit mass. ρ̂α represents the total mass production accounting for mass
exchange or phase transitions between the constituents ϕα . Total momentum production ŝα = p̂α + ρ̂αx′

α
contains the direct momentum exchange p̂α resulting from the interaction force between the constituents ϕα

as well as indirect parts resulting from the mass exchange ρ̂α . The total production terms are restricted by

ρ̂S + ρ̂L + ρ̂N = 0, ŝS + ŝL + ŝN = 0. (10)

Assumptions

The system is investigated under the condition that all the constitutes ϕα are materially incompressible, i.e.

(ρSR)′S = 0, (ρLR)′L = 0, (ρN R)′N = 0. (11)

This leads to the conclusion that volumetric deformations are only a result of a change in volume fractions
nα . Moreover, the nutrient and the liquid phases are assumed to be in the fluid phase. For simplification, both
phases are assigned the same velocity

x′
N = x′

L = x′
F . (12)

We assume that the liquid phase is not involved in the mass exchange. Using this assumption and Eq. (10)1,
we get

ρ̂L = 0 −→ ρ̂S = −ρ̂N . (13)

Furthermore, only isothermal processes are considered, energy transfer due to chemical reactions is neglected,
accelerations are excluded, and the internal structure of the thrombus is considered to be isotropic.

Along with the assumptions, the Clausius–Planck inequality is written as

∑

α

[
Tα : dα − ρα(ψα)′α − p̂α · x′

α − ρ̂α

(
ψα + 1

2
x′
α · x′

α

)]
≥ 0, (14)

where dα is the symmetric part of spatial velocity gradient. This equation is essential for developing a ther-
modynamically consistent model.
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3 Constitutive modelling

The dependencies of the Helmholtz free energy for the solid, liquid and nutrient phases are considered as

ψ S = ψ S{nS, CS}, ψ L = ψ L{nL}, ψN = ψN {nN }, (15)

where CS = FT
S FS is the right Cauchy–Green tensor related to solid. Furthermore, the universal dissipation

principle must be satisfied by the constitutive relations. Therefore, we evaluate the Clausius–Planck inequality
by following the procedure of Coleman and Noll [33]. For more information regarding the evaluation of the
entropy principle, the reader is referred to Bowen [34] and Ehlers [11].

At first, we evaluate ρα(ψα)′α for all the constituents ϕα knowing the Helmholtz free energy dependence
following Eq. (15).

ρS(ψ S)′S = 2nSρSRFS
∂ψ S

∂CS
FT
S : dS + nSρSR ∂ψ S

∂nS
(nS)′S,

ρL(ψ S)′L = nLρLR ∂ψ L

∂nL
(nL)′L ,

ρN (ψ S)′N = nNρN R ∂ψN

∂nN
(nN )′N .

(16)

Initially, an additional saturation constraint (1)2 is added to the entropy inequality to ensure the fully saturated
condition in the overall aggregate at any given time. This is done by introducing a Lagrangean multiplier p as
a weight to the saturation condition as [12]

p(nS + nL + nN︸ ︷︷ ︸
nF

)′S = p(grad nF · wFS − (nS)′S − (nL)′L − (nN )′N ). (17)

Moreover, we multiply the volume balance of the individual constituent ϕα with the respective Lagrangean
multipliers pα and make use of the relation lllα : I = dα : I = div x′

α [35]

pα
[
(nα)′α + nα(dα : I) − ρ̂α

ραR

]
= 0. (18)

Now using the relations (16)–(18), (12) and the summation assumption (10)1,2, we can evaluate the inequality
(14), following the methodology from Ricken and Bluhm [35].

dS :
{
TS − 2nSρSRFS

∂ψ S

∂CS
FT
S + pSnSI

}
+ dL :

{
TL + pLnLI

}

+dN :
{
TN + pNnN I

}
− (nS)′S

{
p − pS + nSρSR ∂ψ S

∂nS

}

− (nL)′L
{
p − pL + nLρLR ∂ψ L

∂nL

}
− (nN )′N

{
p − pN + nNρN R ∂ψN

∂nN

}

− ρ̂L
{
(ψ L − 1

2
x′
L · x′

L + 1

ρLR
pL) − (ψ S − 1

2
x′
S · x′

S + 1

ρSR
pS)

}

− ρ̂N
{
(ψN − 1

2
x′
N · x′

N + 1

ρN R
pN ) − (ψ S − 1

2
x′
S · x′

S + 1

ρSR
pS)

}

−wFS ·
{
p̂F − p grad nF + ρ̂Sx′

S

}
≥ 0, (19)

which must hold for fixed values of the process variables and arbitrary values of freely available quantities
dα, (nα)′α [35]. Therefore, we obtain the following structure of the entropy inequality

dS : {
...

}
︸︷︷︸
=0

+dL : {
...

}
︸︷︷︸
=0

+dN : {
...

}
︸︷︷︸
=0

−(nS)′S
{
...

}
︸︷︷︸
=0

− (nL)′L
{
...

}
︸︷︷︸
=0

−(nN )′N
{
...

}
︸︷︷︸
=0

+ Dis︸︷︷︸
≥0

≥ 0. (20)
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In this context, we obtain the necessary and sufficient thermodynamic restrictions. The parts concerning (nα)′α
give

pα = p + nαραR ∂ψα

∂nα
. (21)

Furthermore, we obtain the relations for the partial Cauchy stresses using (19) and (21)

TS = −nS pI − (nS)2ρSR ∂ψ S

∂nS
I + TS

E , TS
E = 2ρSFS

∂ψ S

∂CS
FT
S ,

TL = −nL pI − (nL)2ρLR ∂ψ L

∂nL
I,

TN = −nN pI − (nN )2ρN R ∂ψN

∂nN
I. (22)

We can now introduce the chemical potentials �
α
using (19) and (21) as

�
α = ψα − 1

2
x′
α · xα + nα ∂ψα

∂nα
+ 1

ραR
p. (23)

For more information on chemical potentials, the reader is referred to Bowen [34]. Furthermore, we make use
of the assumption ρ̂L = 0 which gives us the dissipative part as

Dis = −ρ̂N
{
(ψN − 1

2
x′
N · x′

N + 1

ρN R
pN ) − (ψ S − 1

2
x′
S · x′

S + 1

ρSR
pS)

}

︸ ︷︷ ︸
�

N−�
S

−wFS ·
{
p̂F − p grad nF + ρ̂Sx′

S

}

︸ ︷︷ ︸
p̂FE

≥ 0, (24)

where p̂F
E is called the extra momentum production [36]. Moreover, this gives the restrictions for the solid

mass production ρ̂S and momentum production p̂F as postulated by Ricken and Bluhm [35]

ρ̂S = δNS(�
N − �

S
), where δNS ≥ 0,

p̂F = p grad nF − ρ̂Sx′
S − SFwFS, (25)

where SF is the permeability tensor between the solid and fluid phases. These restrictions give us the possibility
to further formulate stresses, mass production and interaction forces.

3.1 Stress

The stress relations can be introduced following the restrictions from the entropy inequality (22) and neglecting
the effective or frictional fluid stress, i.e. TF

E ≈ 0. It is assumed that the fluid extra stress is much smaller
in comparison with p̂F

E also known as the effective drag force. Therefore, assuming ∂ψ F/∂nF = 0 where
ϕF = ϕL + ϕN yields [11,35]

TS = −nS pI − (nS)2ρSR ∂ψ S

∂nS
I + TS

E , where TS
E = 2ρSFS

∂ψ S

∂CS
FT
S

TF = TL + TN = −(nL + nN )pI = −nF pI, (26)

where I is the second-order identity tensor. This also leads to pN = pL = p using (21). Furthermore, p is
identified as the unspecified pore pressure. The total stress is defined as the sum of partial stresses and using
Eq. (1)2 yields:

T = TS + TF = TS
E − (nS)2ρSR ∂ψ S

∂nS
I − pI. (27)
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According to the principle ofmaterial objectivity, the constitutive equations should not depend on the observer’s
position. Thus, themathematical interpretation of such an objectivity condition states that constitutive equations
must be invariant under rigid body rotations of the actual configuration [37,38]. Therefore, the free energy
functions will be formulated with a dependence on the principal invariants I1, I2 and I3 of CS using [39]

I1 := trCS, I2 := 1

2
[(trCS)

2 − tr(CS · CS)], I3 := det(CS), (28)

where tr(·) denotes the trace operator. Thereon, the Helmholtz free energy function can be written as follows

ψ S = ψ
S
(nS, I1, I2, I3). (29)

The structure of the equation satisfies the invariance and polyconvexity conditions, which also implies quasi-
convexity. That would ensure the existence of minimisers of the related variational principles in finite elasticity.
For a detailed discussion on convexity conditions, the reader is referred to Dacorogna [40].

Now the Helmholtz free energy function can be constructed in the following way

ψ S =
(

nS

nSOS

)n
1

ρS
OS

{μS

2
(I1 − 3) − μS ln JS + λS 1

2
(ln JS)

2
}

︸ ︷︷ ︸
ψ S
neo

, (30)

where the term in the front with nutrient volume fraction nS represents the change in solid rigidity with respect
to the initial volume fraction nSOS . Here (·)OS represents the initial value of (·) with respect to the referential
configuration of the solid. This term in the front with solid volume fraction nS accounts for the change in solid
rigidity with respect to the initial volume fraction nSOS . The material parameter n helps to define the extent of
dependence on change in porosity. Carter and Hayes [41] identified material parameter n = 3, and it has been
used in multiple porous media growth applications [24–26,35]. The rest of the part ψ S

neo is the Neo–Hookean
material law. μS and λS are the macroscopic Lamé constants.

From (30) and (26), the effective solid Cauchy stress can be obtained

TS
E =

(
nS

nSOS

)(n+1) {
μS(BS − I) + λS(ln JS)I

}
, (31)

where BS is the left Cauchy–Green tensor BS = FSFT
S . With equations (26), (30) and (31), total solid Cauchy

stress can be written as

TS = −nS pI − n

(
nS

nSOS

)n+1 {μS

2
(I1 − 3) − μS ln JS + λS 1

2
(ln JS)

2
}
I

+
(

nS

nSOS

)(n+1) {
μS(BS − I) + λS(ln JS)I

}
. (32)

The effective solid Kirchhoff stress and total solid Kirchhoff stress then read as

τττ S
E = JS TS

E = JS

(
nS

nSOS

)(n+1) {
μS(BS − I) + λS(ln JS)I

}
,

τττ S = −JS n
S pI − JS n

(
nS

nSOS

)n+1 {μS

2
(I1 − 3) − μS ln JS + λS 1

2
(ln JS)

2
}
I

+ JS

(
nS

nSOS

)(n+1) {
μS(BS − I) + λS(ln JS)I

}
. (33)
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3.2 Filter Velocity

The seepage velocity wFS = x′
F − x′

S determines the motion of the fluid in relation to the solid. The relation
p̂F = p̂L + p̂N is considered. From the evaluation of entropy inequality (25)2, we obtain the following relation
as postulated by Ricken and Bluhm [35]

p̂F = p grad nF − SFwFS − ρ̂Sx′
S. (34)

Using (34), (8), SF = αFS I for an isotropic material and rearranging the equation, we get [35]

nFwFS = (nF )2

αFS

(
− grad p + ρFRb − ρ̂S

nF
x′
S

)
. (35)

The material parameter αFS can be described either by using initial Darcy’s permeability of fluid kFOS [m/s]
and effective fluid weight γ FR [N/m3] or by using initial intrinsic permeability of solid K S

OS [m2] and dynamic
fluid viscosity μFR [Ns/m2]

(nF )2

αFS
=

(
nF

nFOS

)m
kFOS

γ FR
=

(
nF

nFOS

)m
K S

OS

μFR
, (36)

where m is a dimensionless parameter which accounts for the change of permeability [12,26]. Here,
(nF/nF0 S)

mK S
0 S = K S

E is referred to as effective permeability, which takes into consideration the change
in volume fractions. Eipper [42] proposed this porosity-dependent effective permeability where m ≥ 0. With
Eqs. (13), (36) and (35), we finally get the following relation for seepage velocity

nFwFS = −
(

nF

nFOS

)m
K S

OS

μFR

(
grad p − ρFRb + ρ̂S

nF
x′
S

)
. (37)

3.3 Mass exchange

According to (13), the mass exchange occurs between the solid and nutrient phases ρ̂S = −ρ̂N . Following
the evaluation of the entropy inequality (25)1, we have ρ̂S ≥ 0. Furthermore, making use of the postulations
proposed by Ricken et al. [25,26], and due to no expert knowledge available for the formulation of free energy
functions of liquid and nutrient phases, the mass production for the solid phase is formulated. The effects of the
blood velocity and the nutrients on the thrombus growth are well researched [29–31]. Therefore, ρ̂S[kg/m3 s]
is postulated as a function of wFS and nN

ρ̂S = ρ̂S(wFS, n
N ) = C ρ̂S

wFS
(wFS) ρ̂S

nN (nN ),

ρ̂S
wFS

(wFS) = exp
{−‖wFS‖2/β1

}
,

ρ̂S
nN (nN ) = − exp

{−(nN )2β2
} + 1, (38)

where C represents the maximum mass exchange, and β1 and β2 are the material parameters reflecting the
dependence of mass exchange on the seepage velocity and nutrient volume fraction, respectively, cf. Fig. 3.

4 Numerical treatment

Considering the assumptions, balance equations and constitutive relations from the preceding sections, we
have a set of six independent variables

U = U(x, t) = {
uS,wFS, n

S, nN , nL , p
}
, (39)

where uS is the displacement of the solid phase. Using Darcy’s formulation for the seepage velocitywFS (35),
the set of unknowns could be decreased to five. Furthermore, the saturation condition (1)2 (nL = 1−nS −nN )
reduces the set of unknowns to four

U = U(x, t) = {
uS, nS, nN , p

}
. (40)
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Fig. 3 Mass productions ρ̂S
wFS

and ρ̂S
nN

dependence on the seepage velocity wFS and nutrient volume fraction nN , respectively

Once this is concluded, the weak formulation for the governing equations is formulated in the framework of
the standard Galerkin procedure (Bubnov–Galerkin). This is achieved by multiplying the momentum balance
of the mixture, volume balance of the mixture, solid and nutrients with the test functions δuS , δp, δnS and
δnN , respectively. As a result, the weak formulation of the triphasic model reads

• Momentum balance of mixture:

GuS =
∫

�

(T) : grad δuS d v −
∫

�

(ρS + ρF )b · δuS d v

−
∫

�

ρ̂SwFS · δuS d v −
∫

�t

t̄ · δuS d a = 0, (41)

• Volume balance of mixture:

Gp =
∫

�

div x′
S δp d v −

∫

�

nFwFS · grad δp d v

+
∫

�

ρ̂S(
1

ρN R
− 1

ρSR
) δp d v +

∫

�q

nFwFS · n︸ ︷︷ ︸
:=q

δp d a = 0, (42)

• Volume balance of solid:

GnS =
∫

�

(nS)′S δnS d v +
∫

�

nS div x′
S δnS d v −

∫

�

ρ̂S

ρSR
δnS d v = 0, (43)

• Volume balance of nutrients:

GnN =
∫

�

(
(nN )′S + nN div x′

S − ρ̂N

ρN R

)
δnN d v +

∫

�

grad nN · grad δnN d v

︸ ︷︷ ︸
:=r

−
∫

�

nNwFS · grad δnN d v +
∫

�υ

nNwFS · n δnN d a = 0. (44)

In the weak formulation, from (41) to (44), t̄ is the external load vector acting on the Neumann boundary�t,
nFwFS ·n is the fluid mass efflux on the Neumann boundary �q and nNwFS · n is the nutrient mass efflux
on the Neumann boundary �υ , where n is the outward oriented unit surface normal. Also, the transport
equation for nutrients consists of the general structure of an advection equation. It is known that using
the given approach for formulating weak forms, equation (44) generates large oscillations if not properly
stabilised or if the mesh size is not excessively small. Therefore, an artificial diffusion term (r ) is added
only to the volume balance of nutrients (44) to stabilise the transport equation. For more information on
the mass transport equation and the stabilisation schemes, the reader is referred to Santos et al. [43] and
the references therein.
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Fig. 4 3-d model of the aorta with a true and false lumen (left) [44]. Cutting plane and the resulting 2-d cross section of the
lumens (right)

5 Numerical example

In this section, we present a numerical example of the formation and growth of a thrombus in type B aortic
dissection using a realistic two-dimensional geometry of false lumen. The constitutive equations for the solid
stress TS , the mass production term ρ̂S and the seepage velocity wFS provide the thrombus-specific material
laws. In addition, the coupled set of governing equations presents the capabilities of the model. We implement
the weak forms of balance equations in the FE package PANDAS, where time and space adaptive methods are
widely applied. However, modelling the growth of living tissues has its challenges. In the case of thrombosis,
it is not straightforward to obtain the data and perform experiments on living tissues. Therefore, the parameters
are chosen that give reasonable results for specific cases.

In the numerical example, we want to use a 2-d cross section of a realistic geometry of the false lumen
to model thrombosis. To obtain the cross section, we use a 3-d model of an aorta consisting of a true and
false lumen [44], cf. Fig. 4 (left). We cut this model in the x − y plane represented as the cutting plane in
Fig. 4 (top right). This gives us the 2-d geometry in the x − y plane, cf. Fig. 4 (bottom right). However,
because we are modelling thrombosis in the false lumen, the geometry of the false lumen is of interest to us.
Therefore, we create and discretise the false lumen’s geometry using CUBIT, consisting of 1063 elements, cf.
Fig. 5. The geometry consists of a solid matrix saturated with fluid, consisting of liquid and nutrient phases.
Furthermore, we arbitrarily choose the entry and exit tears position. The boundary conditions at the entry tear
include nS = 0.4 and q = 0.1m/s. The bottom exit tear (dotted line) is the drained surface with p = 0.0 N/m2.
The rest of the boundaries are undrained surfaces, cf. Fig. 5. Also, the right side of the false lumen is fixed
in both the x and y directions. We use the Taylor Hood elements for spatial discretisation, where quadratic
approximation is used for the solid displacements uS and linear approximation for the pressure p, solid volume
fraction nS and nutrient volume fraction nN . The simulation is performed using the parameters given in Table
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Entry tear
nN = 0.4
q = 0.1m/s

Exit tear
p = 0.0

0.0455 m

0.155 m

Fig. 5 Discretisation and boundary conditions of the false lumen geometry

Table 1 Parameters for thrombi growth

Parameter Value Unit Parameter Value Unit

λS 0.0 N/m2 ρSR 2 × 103 kg/m3

μS 1 × 105 N/m2 ρFR 1 × 103 kg/m3

μFR 1 × 10−3 Ns/m2 ρN R 2 × 103 kg/m3

kFOS 1 × 10−6 m/s nSOS 0.2 –
C 5 × 10−2 kg/sm3 nNOS 0.4 –
β1 0.05 – β2 5.0 –
m 3.0 –

1 and with a time step size of 100s. Here, we assume zero Poisson’s ration (λS = 0) for the solid skeleton.
This is done for simplicity and lack of material data [35,45–47].

We can now discuss the results while drawing an analogy with the process of thrombosis. At time t = 0
hours, the initial solid volume fraction nS is 0.2 because of the presence of subendothelial collagen, wall cells
and activated platelets on the formation of the false lumen. As the fluid enters via the entry tear, it creates high-
and low-velocity regions, cf. Fig. 6. Because of different velocity profiles and the availability of nutrients, the
process of thrombosis begins, and the solid volume fractions start increasing, cf. Fig. 7. This can be compared
to primary haemostasis, where the platelets accumulate at the injury site and form a platelet plug. The solid
volume fraction nS increases further due to the mass exchange rate (38)3 dependence on seepage velocity
wFS and nutrient volume fraction nN , which can be compared to secondary haemostasis. During secondary
haemostasis, the clotting factors interact in a complicated series of chemical reactions leading to the formation
of fibrin fibre. The platelets and the fibrin fibre form a mesh leading to the development of a stable plug. This
process continues further to form a permanent solid plug called a thrombus. Furthermore, Fig. 8 shows that
the permeability in the false lumen decreases with an increase in the solid volume fraction. This means that as
the thrombus grows and there is more solid, the ability of the fluid to move through porous media decreases.
Moreover, we observe a singularity at the exit tear due to the sharp edges, which is a numerical artefact [48,49].

Further, we can explore the features of the model. We can vary the material parameters and the boundary
conditions to adapt the model for specific cases.

Influence of material parameters in mass exchange

The material parameters, β1 and β2, in Eq. (38) can be varied to change the dependence of mass exchange rate
on the seepage velocity and nutrient volume fraction. In the above example, the default values of 0.05 and 5.0
are used for β1 and β2, respectively. To begin with, we vary the material parameter β1 leading to a change in
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‖wFS‖[m/s]

(a) t = 0 hours (b) t = 41 hours (c) t = 83 hours

Fig. 6 Norm of the seepage velocity ‖wFS‖ at different stages in time

nS

(a) t = 0 hours (b) t = 41 hours (c) t = 83 hours

Fig. 7 Change in solid volume fractions nS at different stages in time

seepage velocity influence. From this, we can see that as we increase the value of β1, forming a thrombus is
easier due to growth happening for the wider range of seepage velocities, cf. Fig. 9.

Furthermore, we vary the values of the material parameter β2 and change the influence of nutrient volume
fraction on growth. As the value of β2 increases, we allow the thrombus growth for a more extensive range
of nutrient volume fraction nN , leading to higher growth because of the increased availability of nutrients, cf.
Fig. 10.

Change in Neumann boundary condition

Moreover, we can see the effects due to variation in the fluid mass influx q on the Neumann boundary �q .
An increase in the fluid mass influx q at the entry tear results in higher seepage velocity. Because of the mass
exchange dependence on the seepage velocity, forming a thrombus in the false lumen, especially in the middle
section, is difficult, cf. Fig. 11. This also fits well with the physiological understanding of thrombosis and the
Virchow triad, where it is difficult to form blood clots when the blood velocity is high [5].

The above analysis shows that the triphasic model accommodates the well-known Virchow triad, which
describes three physiological factors that can result in thrombosis. The first one, endothelial injury, is included



Modelling growth and formation of thrombi… 4119

nS
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Fig. 8 Effective permeability K S
E at different stages in time

nS

(a) β1 = 0.01 (a) β1 = 0.05 (a) β1 = 0.1

Fig. 9 Change in solid volume fractions nS for different values of β1 at t = 83hr

in the form of the presence of a false lumen. On the formation of a false lumen, the endothelium is damaged,
which lines the inner layer of the blood vessels. The endothelial injury stimulates the platelets and coagulation
process. The second factor is hypercoagulability, which is an increased tendency of coagulation in the body
due to inherited or acquired disorders. The material parameter β2 and C can be used to adapt the model for such
a scenario. Also, the material parameter β2 can be used to include this increased tendency of coagulation. The
third factor, the stasis of blood, is present in the form of mass exchange dependency on the seepage velocity
[5,50]. Here, the material parameter β1 can be used to adapt the model for the specific case. Finally, the fluid
mass efflux q boundary condition can be used to incorporate the factor of high blood pressure, which is known
to be the major cause of aortic dissection.

6 Conclusions

A triphasicmodel has been developed for the thrombus’s growth, capable of describing its growth and nonlinear
behaviour. The theory of porous media (TPM) provides an excellent framework to consider the multiphasic
nature of a thrombus. Therefore, we used TPM to develop a thermodynamically consistent model using a
smeared model of solid and nutrient-rich liquid phases. The constitutive relations are proposed based on the
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nS

(a) β2 = 1.0 (a) β2 = 5.0 (a) β2 = 10.0

Fig. 10 Change in solid volume fractions nS for different values of β2 at t = 83hr

nS

(a) q = 0.05 (b) q = 0.1 (c) q = 0.5

Fig. 11 Change in solid volume fractions nS for different values of q at t = 83hr

restrictions obtained by evaluating the entropy inequality. The mass exchange between the solid and nutrient
phases is formulated, which depends on the nutrient concentration and the seepage velocity. The simulations
show the growth of the thrombus in low-blood-velocity regions. Here, we see that the material parameters
play an important role in incorporating the physiological factors that can result in thrombosis, according to
the Virchow triad. We have an additional parameter to incorporate the factor of inherited or acquired disorders
leading to hypercoagulability. The stasis of blood and endothelial injury, along with hypertension, are also
incorporated into themodel. Moreover, the triphasic model gives the advantage of including themass exchange
between the nutrient and solid phaseswithout altering the amount of liquidwhichfitswellwith the physiological
understanding of thrombosis. The model also proves its usefulness in actual cases.

However, biological modelling is challenging. There is a need to quantify the different factors responsible
for thrombi growth and determine the material parameters from additional experiments. This would also give
us more accurate boundary conditions and possibilities to guide the growth process in a much more accurate
way. This would also lead to the potential splitting of the mass production formulation into two approaches:
primary and secondary haemostasis. These two processes consist of the major part of the thrombus formation.
Moreover, the non-Newtonian behaviour of blood should be considered in the model. Also, there is a lack of
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availability of enough medical data. With enough medical data (CT/MRI scans) taken at different stages of
thrombosis, it would be possible to validate the model with further improvements.

Moreover, the model can be extended to different cases of AD, such as type A AD or false lumen with
multiple tears. A larger set of medical and experimental data can aid in developing, validating and training
such models and performing patient-focused simulations. Additionally, because the short-term and long-term
diagnosis of AD, especially type B AD, is unclear, all the models for different AD cases can be combined
to develop a numerical laboratory and help in decision-making. Furthermore, the model of thrombosis could
be extended to conditions where the formation of the blood clot is critical, such as deep venous thrombosis,
hypercoagulability disorders and disseminated intravascular coagulation (DIC). Understanding the mechanics
of growth in such chronic conditions can open new directions in medical device design, personalised medicine,
prognosis and controlling disease progression [51].
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