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Abstract In this article, we study the dynamics of multiple pendulum systems under translation and tilt. The
main application considered for such systems is inertial sensing for high-precision instrumentation. To emulate
the translating multiple pendulum system, we attach the pivot point of the pendulum to a cart that is free to
move in the horizontal plane. Similarly, the pivot point of the tilting pendulum system is attached to a platform
that rotates, enabling tiltingmotion for the system. First, we approach the problem from a Lagrangian dynamics
perspective for a double-pendulum system under translation and tilt and then extend the solutions to a system
of n pendulums, each hanging one below the other. Then, the natural frequencies of the systems are derived.
The behavior of the systems under translation and tilt is studied and compared with that of fixed pivot point
multiple pendulum systems, using eigenvalue analysis to understand how the natural frequency fluctuates with
changes in degrees of freedom, mass, length and stiffness.

Keywords Lagrangian dynamics ·Natural frequency ·N-pendulum system · Translating pivot · Tilting pivot

List of symbols

n Number of pendulums
m0 Mass of cart
mn Mass of nth pendulum
ln Length of nth pendulum
θ0 Displacement of the cart from origin
θn Angular displacement of nth pendulum from vertical axis
α Angle of tilt
θ ′
n Angular displacement after tilt

θ̇0 Velocity of cart
θ̇n Angular velocity of nth pendulum
θ̇n

′
Angular velocity of nth pendulum after tilt

θ̈n Angular acceleration of nth pendulum
K .Ecart Kinetic energy of the cart
P.Ecart Potential energy of the cart
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K .En Kinetic energy of nth pendulum
P.En Potential energy of nth pendulum
g Acceleration due to gravity
δ Kronecker delta
M Mass matrix
K Stiffness matrix
ωn Angular frequency of nth pendulum
kr Equivalent spiral spring stiffness of rod

1 Introduction

Mechanical pendulums have been extensively studied in the literature through the years, from simple linear
pendulums to complicated nonlinear multiple pendulum and inverted pendulum systems [1,2]. While these
studies, which focus on stationary pivots, are very important for the understanding, they are insufficient
for most real-world applications which require a deep understanding of much more complicated dynamical
models. This paper gives an in-depth analysis of most of the characteristics of multi-pendulum systems with
translating/tilting pivots. The main reference application of such systems considered in this paper is as inertial
sensors for high-precision instrumentation such as gravitational wave detectors [3] and vibration isolation
systems [4,5] .

1.1 Background

In recent times, there has been an increase in using pendulous dynamical systems for various purposes including
Segways, gantry cranes, robotic manipulators, and mobility of humanoid robots, etc., all of which can be
modeled as dynamic pendulum systems that are not fixed pivots [6–9]. Simple pendulum system under tilt,
in particular, has been studied and applied in various fields ranging from tilting systems for railway cars to
tilt-meters to measure earth strain [10–12]. Also, a very less explored application is inertial sensing for high-
precision instrumentation where pendulous architecture can be used as inertial sensing units immune to tilt
horizontal coupling [5]. Multiple pendulum systems with fixed pivots have been extensively studied in the
literature, and various synchronization and control strategies have been proposed for these systems [13–15].
The dynamics of tilting systems can be more complex than those with fixed pivots because the pivots are no
longer fixed points in space. Multiple pendulum systems with fixed pivots exhibit periodic, quasi-periodic, or
chaotic motion, depending on the initial conditions and system parameters. In contrast, multiple pendulum
systems with translating/tilting pivots can exhibit rich and complex motion, including bifurcations, chaos, and
synchronization, due to the additional degrees of freedom and nonlinearities introduced by the pivots. Also,
the control of multiple pendulum systems with fixed pivots and translating/tilting pivots presents different
challenges due to the increased complexity and nonlinearity of the system [16]. A similar study was conducted
by [13], but it only focuses on fixed pivot systems.

1.2 Problem statement

The mathematical derivation of dynamics of single and multiple pendulum systems with a fixed pivot is widely
reported in the literature [1,17–22]. But a proper derivation of the same with higher degrees of freedom ( pivot
undergoing translation/tilt) is not documented well. In this paper, the authors give a deep mathematical insight
into the underlying dynamics pertaining to multi-pendulum system considering Euler–Lagrangian equations
of motion. The following notations are used throughout the paper. For the pendulum system under translation,
the upper end of the top pendulum is fixed to a freely movable pivot point attached to a cart at point O, while the
lower end of the pendulum is connected to the pendulum below. Moreover, m0, m1, m2 . . .mn are the masses
of the cart, top and second and nth pendulums, respectively. The length of each link of the pendulum is given
by l1, l2 . . . ln , and the displacement of the cart measured from the origin is given by θ0. Further, the angular
displacement of the pendulums which is measured from the axes vertical down is represented by θ1, θ2 . . . θn .

Figure 1 shows a double-pendulum system with masses of bobs m1 and m2 and lengths l1 and l2 for the
top and bottom pendulums, respectively. The angles made by the top pendulum and the bottom pendulum with
the vertical axis are θ1 and θ2, respectively. This double-pendulum system has a pivot point to a cart that has a
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Fig. 1 Double-pendulum system under translation. m1 and m2 are the masses of the bobs, and l1 and l2 are the link lengths. The
angles made by the top pendulum and the bottom pendulum with the vertical axis are θ1 and θ2, respectively. The initial position
of the pivot point attached to the cart is given by θ0

mass of “m0” and can freely move in the horizontal direction. The initial position of the pivot point attached
to the cart is given by θ0.

For the pendulum system under tilt (Fig. 2), the upper end of the top pendulum is attached to a platform
that is able to rotate. m1,m2 . . .mn are the masses of the pendulums, and l1, l2 . . . ln are the length of the
pendulum links. The angles of the pendulum system before tilting are measured from the axes vertical down
as θ1, θ2 . . . θn . When the platform undergoes a tilt of angle α, the angles change to θ ′

1, θ
′
2 . . . θ ′

n , respectively.
Figure 2 shows a double-pendulum system with masses m1 and m2 and lengths l1 and l2. The angle of tilt

is as α, and the resulting angles of the system are θ ′
1 and θ ′

2.

1.3 Related literature

In [23], the authors investigate the chaotic behavior of a spring pendulum system moving in a circular path
subjected to an external harmonic excitation. The authors analyze the pendulum’s motion using numerical
simulations and examine the bifurcation behavior of the system. Similarly, [24] examines the motion of a
spring pendulum moving in an elliptic path under harmonic excitation. The authors employ numerical and
analytical methods to study the pendulum’s motion near resonances, which are critical points where the
system exhibits large-amplitude oscillations. In both [23] and [24], the pivot moves in a predetermined path
(a circle or an ellipse) due to an external force or input. Our work investigates a system where the pivot is
not externally controlled and is free to move in the horizontal plane (translating) or through tilting motion.
In such a system, the behavior of the system affects the motion of the pivot as well, which in turn affects
the system again. This distinction allows us to explore the unforced dynamics of multiple pendulum systems
and analyze how the pivot’s motion affects the overall system behavior without the influence of external
inputs. Also, [23] and [24] focus on spring pendulum systems, where the pendulum is attached to a spring.
We examine normal pendulums without springs, which have different dynamic characteristics than spring
pendulums. This distinction enables us to expand the understanding of pendulum systems by investigating
the dynamics of multiple regular pendulums under translating and tilting pivots, providing additional insights
into the behavior of these systems. In the article [25], the authors examine the planar motion of a 2DOF auto-
parametric pendulum connected to a damped system. They derive the equations of motion using Lagrange’s
equations and obtain approximate solutions using the method of multiple scales (MMS). By analyzing primary
external and internal resonance cases, the study explores the stability and instability zones of the system.
The findings reveal the system’s stable performance for certain variables and have practical applications in
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Fig. 2 Double-pendulum system under tilt. The upper end of the top pendulum is attached to a platform that is able to rotate. m1
and m2 are the masses of the pendulums, and l1 and l2 are the length of the pendulum links. The angles of the pendulum system
before tilting are measured from the axes vertical down as θ1 and θ2. When the platform undergoes a tilt of angle α, the new
angles are represented by θ ′

1 and θ ′
2, respectively

vibration damping across various mechanical fields, both linear and angular. In [26], the authors investigate the
motion of a 3DOF automatic parametric pendulum connected to a damped system. They derive the kinematics
equations using Lagrange’s equations and employ the method of multiple scales (MMS) to obtain third-order
approximate solutions. The nonlinear stability approach is used to analyze the system’s stability across various
parameters. The study identifies different zones of stability and instability and demonstrates that the system’s
behavior is stable for numerous values of its variables. The findings have practical applications in various
domains such as ship motion, transportation equipment, swaying buildings, and rotor dynamics. In terms of
the mathematical approach in [23–26], the authors employ the method of multiple scales (MS) to reduce the
complex nonlinear systems into reduced-order systems. This technique helps to obtain approximate solutions
for the nonlinear equations of motion. Our work uses small-angle approximations to linearize the system.
This simplification allows us to focus on the essential aspects of the system’s behavior, such as the natural
frequencies and the impact of various parameters on the pendulum dynamics. While our approach may not
capture the full complexity of the nonlinear systems, it provides valuable insights into the behavior of multiple
pendulum systems under translating and tilting pivots and serves as a foundation for further investigations of
more complex nonlinear effects. In [27], the authors investigate a 3 DOF dynamical system linked to an energy
harvesting device, consisting of a nonlinear Duffing oscillator and a nonlinear damping spring pendulum.
They utilize Lagrange’s equations and the approach of multiple scales to analyze the motion of the system
and its stability. The study highlights the impact of varying parameters such as damping coefficient, excitation
amplitude, and load resistance on the output power and current of the electromagnetic device.

A lot of research further extends on the study of such dynamical systems by investigating the motion,
resonance cases, solvability conditions, and performing stability analysis of different systems [28–32]. These
studies highlight the influence of various parameters on the system’s behavior and emphasize their applications
in engineering fields such as swaying structures and rotor dynamics. However, the stability analysis and
solvability conditions are considered out of scope for our paper due to the specific focus and objectives of our
study. While stability analysis and solvability conditions are important aspects in the analysis of dynamical
systems, our study primarily aims to investigate the dynamics and natural frequencies of multiple pendulum
systems under translation and tilt for inertial sensing applications. We seek to understand how parameters such
as degrees of freedom, mass, length, and stiffness impact the behavior of the system.
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Fig. 3 Single pendulum system under translation

1.4 Importance of this study

This paper aims to answer questions like—how would the frequency of a multiple pendulum system changes
when it is free to move or tilt and what are the parameters that affect the natural frequency of such a systems.
The translating pendulum system is emulated by attaching the pivot to a freely moving cart, and the tilting
is emulated by attaching the pivot to a rotating platform. The Euler–Lagrange equations are used to derive
the equations of motions of the double-pendulum systems under tilt and translation, which is then extended
to multiple pendulum system with “n” pendulums [33–36]. While we have mainly discussed the behavior of
the pendulum system under translation and tilt, we also compared the system performance with an equivalent
pendulum system with a fixed pivot point. Additionally, we discussed on how parameters like length and mass
of the pendulums affect the natural frequency of the system. The paper gives an in-depth analysis on the effect
of various parameters on the natural frequency of the multiple pendulum systems and an explanation for the
same. This paper can be a good reference for researchers working in the area of dynamics and control of
pendulous structures and systems.

1.5 Organization of the paper

The rest of the paper is organized as follows. A detailed analysis of the dynamics of multiple pendulum systems
under translation is given in Sect. 2. The section starts with a single pendulum system and extends up to n-
pendulum system. The derivation of the natural frequency of the above system is given in Sect. 3. Section 4
explains the dynamics of multiple pendulum systems under tilt starting from the double-pendulum system and
extending up to the N-pendulum system followed by the derivation of its natural frequencies in Sect. 5. Results
and discussion is given in Sect. 6. Various factors affecting the natural frequency are analyzed from simulation
results. Section7 concludes the paper followed by funding details in final section.

2 Dynamics of multiple pendulum system under translation

In this section, the dynamics equations governing the behavior of pendulum systems under translation of the
pivot are presented. A single pendulum is considered initially which is extended to a double-pendulum case
and is further extended to a N-pendulum system. The governing equations are derived based on Lagrangian
dynamics (Fig. 3).
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2.1 Single pendulum system

For a single pendulum system (3),
Kinetic energy of the cart:

K .Ecart = m0 θ̇20

2
(1)

Kinetic energy of the bob

K .E1 =
m1

((
θ̇0 + l1 θ̇1 cos (θ1)

)2 + l12 θ̇21 sin (θ1)
2
)

2
(2)

Total kinetic energy of the system is

K .Etotal = 1

2
m0θ̇

2
0 + 1

2
m1θ̇

2
0 + 1

2
m1l

2
1 θ̇

2
1 + m1l1θ̇0θ̇1 cos θ1 (3)

Potential energy of cart

P.Ecart = m0gl0 = 0 (4)

Potential energy of bob

P.E1 = −m1gl1 cos θ1 (5)

The total potential energy of the system

PEtotal = −m1gl1 cos θ1 (6)

The Lagrangian is given by

L = K .Etotal − P.Etotal

L = 1

2
m0θ̇

2
0 + 1

2
m1θ̇

2
0 + 1

2
m1l

2
1 θ̇

2
1 + m1l1θ̇0θ̇1 cos θ1 + m1gl1 cos θ1 (7)

The differential equation can be obtained using the Euler–Lagrange equations of the second kind.

d

dt

(
∂L

∂θ̇i

)
− ∂L

∂θi
= 0, i = 0, 1. (8)

For i = 0, we get

d

dt

(
∂L

∂θ̇0

)
− ∂L

∂θ0
⇒ m0θ̈0 + m1θ̈0 + m1l1θ̈1 cos θ1 − m1l1θ̇

2
1 sin θ1 = 0 (9)

Similarly for i = 1,

d

dt

(
∂L

∂θ̇1

)
− ∂L

∂θ1
⇒ m1l

2
1 θ̈1 + m1l1θ̈0 cos θ1 + m1gl1 sin θ1 = 0 (10)

In Eqs. 9 and 10, assuming that θ1 is very small such that sin(θi ) ≈ θi and cos(θi ) ≈ 1 and neglecting
higher-order terms, we can rewrite the Eqs. 9 and 10 as

m0θ̈0 + m1θ̈0 + m1l1θ̈1 = 0 (11)

m1l
2
1 θ̈1 + m1l1θ̈0 + m1gl1θ1 = 0 (12)
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2.2 Double-pendulum system

Following similar procedure as that for a single pendulum system, the Lagrangian of the double-pendulum
system can be derived as.

L =m1
(
l12 θ̇21 + 2 cos (θ1) l1 θ̇0 θ̇1 + θ̇20

)

2

+
m2

((
l1 θ̇1 sin (θ1) + l2 θ̇2 sin (θ2)

)2 + (
θ̇0 + l1 θ̇1 cos (θ1) + l2 θ̇2 cos (θ2)

)2)

2

+ m0 θ̇20

2
+ g m2 (l1 cos (θ1) + l2 cos (θ2)) + g l1m1 cos (θ1)

(13)

Euler–Lagrange equations using

d

dt

(
∂L

∂θ̇i

)
− ∂L

∂θi
= 0, i = 0, 1, 2. (14)

For i=0, d
dt

(
∂L
∂θ̇0

)
− ∂L

∂θ0
= 0

0 = − l2 m2 sin (θ2) θ̇22 + θ̈1 (l1m1 cos (θ1) + l1m2 cos (θ1))

− θ̇1
(
l1m1 θ̇1 sin (θ1) + l1m2 θ̇1 sin (θ1)

) + θ̈0 (m1 + m2 + m0)

+ l2 m2 θ̈2 cos (θ2)

(15)

For i=1, d
dt

(
∂L
∂θ̇1

)
− ∂L

∂θ1
= 0

0 =l1
(
l2 m2 sin (θ1 − θ2) θ̇22 + m1 θ̈0 cos (θ1) + m2 θ̈0 cos (θ1) + g m1 sin (θ1)

)

+ l1
(
g m2 sin (θ1) + l1m1 θ̈1 + l1m2 θ̈1 + l2 m2 θ̈2 cos (θ1 − θ2)

) (16)

For i=2, d
dt

(
∂L
∂θ̇2

)
− ∂L

∂θ2
= 0

0 = l2 m2
(−l1 sin (θ1 − θ2) θ̇21 + l2 θ̈2 + θ̈0 cos (θ2) + g sin (θ2) + l1 θ̈1 cos (θ1 − θ2)

)
(17)

Assuming that θ1 and θ2 are very small such that sin(θi ) ≈ θi and cos(θi ) ≈ 1 and neglecting higher-order
terms, we can rewrite Eqs. 15, 16 and 17 as

0 = θ̈0 (m1 + m2 + m0) + θ̈1 (l1m1 + l1m2) + l2 m2 θ̈2 (18)

0 = l1
(
m1 θ̈0 + m2 θ̈0 + g m1 θ1 + g m2 θ1 + l1m1 θ̈1 + l1m2 θ̈1 + l2 m2 θ̈2

)
(19)

0 = l2 m2
(
θ̈0 + g θ2 + l1 θ̈1 + l2 θ̈2

)
(20)

2.3 N-pendulum system

For a N-pendulum system as given in 4
The Cartesian position of each bob is given by

xi = θ0 +
i∑

j=1

l j sin(θ j )

yi = −
i∑

j=1

l j cos(θ j )

(21)
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Fig. 4 N-pendulum system under translation

The velocity of the i th bob is

ẋi = θ̇0 +
i∑

j=1

l j θ̇ j cos(θ j

ẏ j =
i∑

j=1

l j θ̇ j sin(θ j )

(22)

Kinetic energy of the system is given by

K .ETotal = 1

2

n∑
i=0

miv
2
i

K .ETotal = 1

2

n∑
i=0

mi

⎛
⎜⎝

⎛
⎝θ̇0 +

i∑
j=1

l j θ̇ j cos(θ j )

⎞
⎠

2

+
⎛
⎝

i∑
j=1

l j θ̇ j sin(θ j )

⎞
⎠

2
⎞
⎟⎠

(23)

Potential energy in the system is

P.ETotal = −g
n∑

i=0

mi yi

P.ETotal = −g
n∑

i=0

i∑
j=1

mili cos(θ j )

(24)
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Lagrangian L

L = K .Etotal − P.Etotal

L = 1

2

n∑
i=0

mi

⎛
⎜⎝

⎛
⎝θ̇0 +

i∑
j=1

l j θ̇ j cos(θ j )

⎞
⎠

2

+
⎛
⎝

i∑
j=1

l j θ̇ j sin(θ j )

⎞
⎠

2
⎞
⎟⎠ + g

n∑
i=1

i∑
j=1

m jl j cos(θ j ) (25)

Assume θi << 1 so that

cos(θi ) ≈ 1 − θ2i

2
sin(θi ) ≈ θi (26)

Then, the Lagrangian can be modified to

L = 1

2

n∑
i=0

mi

⎛
⎜⎝

⎛
⎝θ̇0 +

i∑
j=1

l j θ̇ j

(
1 − θ2i

2

)⎞
⎠

2

+
⎛
⎝

i∑
j=1

l j θ̇ jθ j

⎞
⎠

2
⎞
⎟⎠ + g

n∑
i=1

i∑
j=1

m jl j (1 − θ2j

2
)) (27)

Neglecting higher-order terms and rearranging the terms, we get

L =
n∑

i=0

1

2
mi

⎛
⎜⎝θ̇20 + 2θ̇0

i∑
j=1

l j θ̇ j

(
1 − θ2j

2

)
+

⎛
⎝

i∑
j=1

l j θ̇ j

⎞
⎠

2

+ 2g
i∑

j=1

l j

(
1 − θ2j

2

)⎞
⎟⎠ (28)

To compute the kth for the Lagrangian in Eq. (28), we have to find the partial derivatives of the Lagrangian
with respect to θk and θ̇k

∂L

∂θk
= −1

2

n∑
i=0

mi θ̇0

i∑
j=1

l j θ̇ j
∂(θ2j )

∂θk
− 1

2

n∑
i=0

mig
i∑

j=1

l j
∂(θ2j )

∂θk
(29)

which can be simplified to

∂L

∂θk
= −

n∑
i=0

mi θ̇0

i∑
j=1

lk θ̇kθkδ jk −
n∑

i=0

mig
i∑

j=1

lkθkδ jk (30)

where δ jk is the Kronecker delta, defined by

δi j =
{
1 i = j
0 i �= j

which has the effect of relabeling the summations, yielding

∂L

∂θk
= −lkθk

(
θ̇0θ̇k + g

) n∑
i=k

mi (31)

The partial derivative with respect to θ̇k

∂L

∂θ̇k
= θ̇0δ0k

n∑
i=0

mi +
n∑

i=0

miδ0k

i∑
j=1

l j θ̇ j

(
1 − θ2j

2

)

+
n∑

i=0

mi θ̇0

i∑
j=1

l jδ jk

(
1 − θ2j

2

)
+

n∑
i=0

mi

i∑
j=1

l j θ̇ j

i∑
p=1

l pδpk

(32)
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On relabeling the summations,

∂L

∂θ̇k
= θ̇0δ0k

n∑
i=0

mi + δ0k

n∑
i=0

mi

i∑
j=1

l j θ̇ j

(
1 − θ2j

2

)
n∑

i=k

mi θ̇0lk

(
1 − θ2k

2

)

+
n∑

i=k

mi lk

i∑
j=1

l j θ̇ j

(33)

Differentiating equation (33) with respect to time

d

dt

(
∂L

∂θ̇k

)
= θ̈0δ0k

n∑
i=0

mi + δ0k

n∑
i=0

mi

i∑
j=1

l j θ̈ j

(
1 − θ2j

2

)
− δ0k

n∑
i−0

mi

i∑
j=1

l j θ̇
2
j θ j

+
n∑

i=k

mi θ̈0lk

(
1 − θ2k

2

)
−

n∑
i=k

mi θ̇0lkθk θ̇k +
n∑

i=k

mi lk

i∑
j=1

l j θ̈ j

(34)

From Eqs. (34) and (31), the equations of motion is

0 = θ̈0δ0k

n∑
i=0

mi + δ0k

n∑
i=0

mi

i∑
j=1

l j θ̈ j

(
1 − θ2j

2

)
− δ0k

n∑
i−0

mi

i∑
j=1

l j θ̇
2
j θ j

+
n∑

i=k

mi θ̈0lk

(
1 − θ2k

2

)
+

n∑
i=k

mi lk

i∑
j=1

l j θ̈ j + lkθkg
n∑

i=k

mi

(35)

For θi << 1 and neglecting higher-order terms,

θ̈0δ0k

n∑
i=0

mi + δ0k

n∑
i=0

mi

i∑
j=1

l j θ̈ j +
n∑

i=k

mi θ̈0lk +
n∑

i=k

mi lk

i∑
j=1

l j θ̈ j + lkθkg
n∑

i=k

mi = 0 (36)

Substituting n = 1 we get 2 equations, one for k = 0 and one for k = 1

0 = m0θ̈0 + m1θ̈0 + m1l1θ̈1 (37)

0 = m1l
2
1 θ̈1 + m1l1θ̈0 + m1gl1θ1 (38)

3 Natural frequencies of multiple pendulum system under translation

The natural frequencies of multiple pendulum systems under translation are derived under free condition, i.e.,
no external force applied on the system.

3.1 Double-pendulum system

For a double-pendulum system under translation, the linearized equations of motion can be represented in the
form

[
M

] {θ̈} + [
K

] {θ} = 0 (39)

where
[
M

]
is the linearized mass matrix and

[
K

]
is the linearized stiffness matrix.
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For a double-pendulum system under translation

[
M

] =
⎡
⎣
m0 + m1 + m2 l1m1 + l1m2 l2 m2
l1 (m1 + m2) l1 (l1m1 + l1m2) l1 l2 m2

l2 m2 l1 l2 m2 l22 m2

⎤
⎦

[
K

] =
⎡
⎣
0 0 0
0 l1 (g m1 + g m2) 0
0 0 g l2 m2

⎤
⎦

(40)

Angular frequencies ωn can then be evaluated using the characteristic equation

det
∣∣[K ] − ω2

n

[
M

]∣∣ = 0

Solving for ωn using
[
M

]
and

[
K

]
in Eq. (40) and substituting m0 = m1 = m2 = 1, l1 = l2 = 1 and

g = 9.81,

ωn =
⎡
⎣

0
3.527
6.813

⎤
⎦ (41)

3.2 N-pendulum system

The natural angular frequency is given by

det
∣∣[K ] − ω2

n

[
M

]∣∣ = 0

Here, the stiffness matrix
[
K

]
can be expressed as

K(μ+1)(ν+1) = ∂2(P.ETotal)

∂qμ∂qν
(42)

and mass matrix
[
M

]
as

M(μ+1)(ν+1) = ∂2(K .ETotal)

∂q̇μ∂q̇ν
(43)

Substituting values from Eqs. (23) and (24) for K .ETotal and P.ETotal, respectively, in Eqs. (42) and (43)

K(μ+1)(ν+1) = glμδμν

n∑
i=μ

mi (44)

M(μ+1)(ν+1) =
n∑

i=0

miδ0νδ0μ +
n∑

i=μ

milμδ0ν +
n∑

i=ν

milνδ0μ

+lμlν

n∑
i=max(μ,ν)

mi (45)

The natural frequency ωn of “N”-pendulum system can be derived as,

det

⎛
⎝glμδμν

n∑
i=μ

mi − ω2
n

⎛
⎝

n∑
i=0

miδ0νδ0μ +
n∑

i=μ

milμδ0ν +
n∑

i=ν

milνδ0μ + lμlν

n∑
i=max(μ,ν)

mi

⎞
⎠

⎞
⎠ = 0

(46)
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Fig. 5 Double-pendulum system under tilt

4 Multiple pendulum system under tilt

In this section, the dynamics equations governing the behavior of pendulum systems under tilt of the pivot is
presented. A single pendulum is considered initially which is extended to double-pendulum case and is further
extended to a N-pendulum system. The governing equations are derived based on Lagrangian dynamics.

4.1 Double-pendulum system

For the double-pendulum system under tilt as shown in Fig. 5, the angles after tilt are θ ′
1 and θ ′

2 where

θ ′
1 = θ1 + α (47)

The kinetic energy of the top pendulum is

K .E1 = l12 m1
(
α̇ + θ̇1

)2
2

(48)

Kinetic energy of bottom pendulum

K .E2 =1

2
m2

(
l2 θ̇ ′

2 cos
(
θ ′
2

) + l1 cos (α + θ1)
(
α̇ + θ̇1

))2

+ 1

2
m2

(
l2 θ̇ ′

2 sin
(
θ ′
2

) + l1 sin (α + θ1)
(
α̇ + θ̇1

))2 (49)

Total kinetic energy

K .ETotal =1

2
m2

(
l2 θ̇ ′

2 cos
(
θ ′
2

) + l1 cos (α + θ1)
(
α̇ + θ̇1

))2

+ 1

2
m2

(
l2 θ̇ ′

2 sin
(
θ ′
2

) + l1 sin (α + θ1)
(
α̇ + θ̇1

))2 + l12 m1
(
α̇ + θ̇1

)2
2

(50)
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Potential energy due to bending of first pendulum link due to tilting pivot can be given as

P.Eb1 = kr1 θ1
2

2
(51)

Similarly for the bottom link,

P.Eb1 = kr1 θ1
2

2
(52)

Potential energy in top link due to gravity is

P.Et1 = −g l1m1 cos (α + θ1) (53)

Potential energy in bottom link due to gravity is

P.Et2 − g l1m2 cos (α + θ1) − g l2 m2 cos
(
θ ′
2

)
(54)

Total potential energy is

P.ETotal = P.Eb1 + P.Eb2 + P.Et1 + P.Et2

P.Etotal = kr2
(
α + θ1 − θ ′

2

)2
2

+ kr1 θ1
2

2
−g l1m1 cos (α + θ1) − g l1m2 cos (α + θ1) − g l2 m2 cos

(
θ ′
2

)
(55)

The Lagrangian of the system is

L = K .Etotal − P.Etotal

L = 1

2
m2

(
l2 θ̇ ′

2 cos
(
θ ′
2

) + l1 cos (α + θ1)
(
α̇ + θ̇1

))2

+1

2
m2

(
l2 θ̇ ′

2 sin
(
θ ′
2

) + l1 sin (α + θ1)
(
α̇ + θ̇1

))2 − kr2
(
α + θ1 − θ ′

2

)2
2

−kr1 θ1
2

2
+ l12 m1

(
α̇ + θ̇1

)2
2

+ g l1m1 cos (α + θ1)

+g l1m2 cos (α + θ1) + g l2 m2 cos
(
θ ′
2

)
(56)

Euler–Lagrange equations are given by

d

dt

(
∂L

∂θ̇i

)
− ∂L

∂θi
= 0, i = 1, 2

for i = 1 we get

0 = kr2 α + kr1 θ1 + kr2 θ1 − kr2 θ ′
2 + l1

2 m1 θ̈1 + l1
2 m2 θ̈1 + α̈ l1

2 m1 + α̈ l1
2 m2

+ g l1m1 sin (α + θ1) + g l1m2 sin (α + θ1) + l1 l2 m2 θ̈ ′
2 cos

(
α + θ1 − θ ′

2

)

+ l1 l2 m2 θ̇ ′2
2 sin

(
α + θ1 − θ ′

2

) (57)

for i = 2

0 = kr2 θ ′
2 − kr2 θ1 − kr2 α + l2

2 m2 θ̈ ′
2 + g l2 m2 sin

(
θ ′
2

)

+ α̈ l1 l2 m2 cos
(
α + θ1 − θ ′

2

) + l1 l2 m2 θ̈1 cos
(
α + θ1 − θ ′

2

)

− α̇2 l1 l2 m2 sin
(
α + θ1 − θ ′

2

) − l1 l2 m2 θ̇21 sin
(
α + θ1 − θ ′

2

)

− 2 α̇ l1 l2 m2 θ̇1 sin
(
α + θ1 − θ ′

2

)
(58)
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4.2 N-pendulum system

For a N-pendulum system under tilt, if the angles made by each of the pendulum in the system before tilt is
given by θ = θ1, θ2, θ3, θ4, . . . , θn , then the angles made by the same pendulums after tilting the platform are
given by θ = θ ′

1, θ
′
2, θ

′
3, θ

′
4, . . . θ

′
n

where

θ ′
1 = θ1 + α (59)

After tilting, the coordinates of each bob of the pendulum system can be written as

xi =
i∑

j=1

l j sin θ ′
j

yi = −
i∑

j=1

l j cos θ ′
j

(60)

Then, the velocity term squared is

v2i = ẋ2i + ẏ2i =
⎛
⎝

i∑
j=1

l j cos θ ′
j θ̇

′
j

⎞
⎠

2

+
⎛
⎝

i∑
j=1

l j sin θ ′
j θ̇

′
j

⎞
⎠

2

(61)

Kinetic energy of the system is

K .ETotal = 1

2

n∑
i=1

miv
2
i

K .ETotal = 1

2

n∑
i=1

mi

⎛
⎜⎝

⎛
⎝

i∑
j=1

l j cos θ ′
j θ̇

′
j

⎞
⎠

2

+
⎛
⎝

i∑
j=1

l j sin θ ′
j θ̇

′
j

⎞
⎠

2
⎞
⎟⎠

(62)

The potential energy is associated with bending of the rod. When the platform undergoes a very slow tilt
of angle α, the junction between the top pendulum (n = 1) and the platform moves accordingly. We consider
this junction to be a flexible hinge, due to which a slight bending appears on the pendulum link. A restoring
moment caused by the stiffness of the link appears on the hinge and tends to compensate the bending moment.
The resulting potential energy associated with the bending of the link is

P.Eb = 1

2
krθ

2 (63)

For the top link (n = 1):

P.Eb1 = 1

2
kr1θ

2
1 (64)

and the potential energy associated with the bending of the rest of the pendulum links in the system is

P.Ebi = 1

2
kr1θ

2
1 +

n∑
i=2

1

2
kri

(
θ ′
i − θ ′

(i−1)

)2
(65)

Potential energy associated with gravity is

P.Egi = −g
n∑

i=1

mi yi = −g
n∑

i=1

i∑
j=1

mil j cos θ ′
j (66)
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The total potential energy is

P.ETotal = −g
n∑

i=1

i∑
j=1

mil j cos θ ′
j + 1

2
kr1θ

2
1 +

n∑
i=2

1

2
kri

(
θ ′
i − θ ′

(i−1)

)2
(67)

The Lagrangian L

L = K .ETotal − P.ETotal

L = 1

2

n∑
i=1

mi

⎛
⎜⎝

⎛
⎝

i∑
j=1

l j cos θ ′
j θ̇

′
j

⎞
⎠

2

+
⎛
⎝

i∑
j=1

l j sin θ ′
j θ̇

′
j

⎞
⎠

2
⎞
⎟⎠

+ g
n∑

i=1

i∑
j=1

mil j cos θ ′
j − 1

2
kr1θ

2
1 −

n∑
i=2

1

2
kri

(
θ ′
i − θ ′

(i−1)

)2
(68)

Assume θi << 1 so that

cos(θi ) ≈ 1 − θ2i

2
sin(θi ) ≈ θi (69)

Then neglecting higher-order terms and rearranging, we get

L =
n∑

i=1

1

2
mi

⎛
⎝

i∑
j=1

l j θ̇
′
j

⎞
⎠

2

+ g
n∑

i=1

i∑
j=1

mil j

(
1 − θ ′2

j

2

)

− 1

2
kr1θ

2
1 −

n∑
j=2

1

2
kr j

(
θ ′
j − θ ′

( j−1)

)2
(70)

Computing partial derivatives of Lagrangian with respect to θ ′
k and θ̇ ′

k

∂L

∂θ ′
k

= −g
n∑

i=1

i∑
j=1

mil jθ
′
jδ jk − kr1θ1δ1k

−
n∑
j=2

kr j (θ
′
j − θ ′

( j−1))(δ jk − δ( j−1)k) (71)

∂L

∂θ̇ ′
k

=
n∑

i=1

mi

⎛
⎝

i∑
j=1

l j θ̇
′
j

⎞
⎠

i∑
p=1

l pδpk (72)

∂L

∂θ̇ ′
k

=
n∑

i=1

mi

⎛
⎝

i∑
j=1

l j θ̇
′
j

⎞
⎠

i∑
p=1

l pδpk (73)

Euler–Lagrange equations are given by

d

dt

(
∂L

∂θ̇k

)
− ∂L

∂θk
= 0

0 =
n∑

i=1

mi

i∑
j=1

l j θ̈
′
j

i∑
p=1

l pδpk + g
n∑

i=1

i∑
j=1

mil jθ
′
jδ jk + kr1θ1δ1k

+
n∑
j=2

kr j (θ
′
j − θ ′

( j−1))(δ jk − δ( j−1)k)

(74)
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5 Natural frequencies of N-pendulum system under tilt

The natural angular frequency is given by

det
∣∣[K ] − ω2

n

[
M

]∣∣ = 0

For N-pendulum system under tilt, the stiffness matrix [K ] where

K(μ)(ν) = ∂2(P.ETotal)

∂qμ∂qν
(75)

and mass matrix
[
M

]
as

M(μ)(ν) = ∂2(K .ETotal)

∂q̇μ∂q̇ν
, (76)

we get

Kμν = glμδμν

n∑
i=μ

mi + kr1δ1μδ1ν

+
n∑

i=2

kri (δiμ − δ(i−1μ))(δiν − δ(i−1)ν)

(77)

and

Mμν = lμlν

n∑
i=max(μ,ν)

mi (78)

From Eqs. (77) and (76), the angular frequency ωn can be solved using the equation

0 =
det

(
glμδμν

n∑
i=μ

mi + kr1δ1μδ1ν

+
n∑

i=2

kri (δiμ − δ(i−1μ))(δiν − δ(i−1)ν) − ω2
nlμlν

n∑
i=max(μ,ν)

mi

) (79)

6 Results and discussion

For the analysis, the natural frequency of the pendulum systems and their behavior due to changes in various
parameters is presented. These results are also compared with that of other multiple pendulum systems that
are not under tilt or translation. The masses of the pendulums and the cart are assumed to be equal(1kg),
and the length of each of the pendulums is taken to be 1m. With this initial setup, the values of each of the
parameters are tweaked individually to examine the effect of each of them. The results show that the frequency
is dependent on the ratio of masses and not on the absolute value. The masses of the cart and the individual
pendulums in the initial setup are considered to be 1kg but can be of any absolute value as long as the ratio
is the same. For the multiple pendulum system under tilt, the spiral spring stiffness is taken as 1Nm−1 unless
specified, in the initial setup for studying the pendulum systems under tilt.
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Fig. 6 Adding pendulums above

6.1 Effect of pendulum parameters on the natural frequency of pendulum system with translating pivot

The effect on varying parameters of pendulum systems on natural frequency is discussed in this section.

6.1.1 Number of pendulum links

For the double-pendulum system considered here, under translation, the natural frequency of the bottom
pendulum is 6.813Hz. The results indicate that if another pendulum link is added to this system, shown in
Fig. 7, then the natural frequency of the selected pendulum decreases as the number of pendulums increases.
For example, the natural frequency for the second pendulum in triple- and quadruple-pendulum systems is
5.694Hz and 5.0227Hz. This is generalized to a N -pendulum system, where the natural frequency of the
selected kth pendulum decreases as more pendulums are added to the system.

Interestingly, when the pendulums are added “above” the selected pendulum, as shown in 6, then the
frequency of the selected pendulums increases with an increase in the number of pendulum links added. The
frequency of the bottom pendulum of the double-pendulum system is 6.813Hz. If 3 pendulums are added
above the bottom pendulum, resulting in a quintuple-pendulum system, then the natural frequency increases to
11.83Hz as shown in Fig. 8. In Fig. 9 for a 5-pendulum system, adding 20 additional pendulums to the bottom-
most pendulum converts the system to a 25-pendulum system where the “selected” pendulum to which the
pendulums were added becomes the 5th pendulum with a reduced frequency compared to its initial frequency
as a part of a 5-pendulum system. Here, the natural frequency of the 5th pendulum in the system starts off at
11.827Hz for the 5-pendulum system and ends with 5.080Hz for a 25-pendulum system.

Thenatural frequencyof a pendulum is proportional to the square root of its effective length,which considers
the length of the pendulum and the distance between the pivot point and the center of mass of the pendulum. By
adding additional links to the pendulum, both the length and mass of the pendulum system increase, resulting
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Fig. 7 Adding pendulums below

Fig. 8 Increase in the angular frequency of the bottom pendulum as number of pendulums increases
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Fig. 9 For an N-pendulum system where n = 5, adding 20 pendulums below the bottom pendulum increasing 1 pendulum per
iteration

in a decrease in the natural frequency of the system. This effect can be seen in simple pendulum clocks, which
have a pendulum with a long length and a low natural frequency. By contrast, a shorter pendulum has a higher
natural frequency, which makes it more suitable for use in high-precision clocks. Overall, the addition of more
links below the pendulum bob will result in a longer pendulum with a lower natural frequency. But adding
more links above the bob of a pendulum will decrease its effective length, which will result in an increase
in the natural frequency of the pendulum. When more links are added above the bob, the distance between
the pivot point and the center of mass of the pendulum decreases, which effectively shortens the length of
the pendulum and increases its natural frequency. This effect can be seen in some types of clock pendulums,
which have an adjustable screw near the top of the pendulum that can be used to adjust its length and natural
frequency. Overall, the addition of more links above the pendulum bob will result in a shorter effective length
and a higher natural frequency.

6.1.2 Mass of the system

To study the effect of mass of the cart or the pendulums in the system on the frequency, we modify each of the
masses individually while keeping the rest constant. The case where the masses are changed while keeping
the ratio between them constant is also studied. It is observed that the ratio between the masses in the system
along with the relative position (top, middle, bottom) of these masses with each other contributes to the change
in the frequency of the system. For a double-pendulum system (where all masses are equal to 1kg and lengths
are 1m), the angular frequencies of the top and bottom pendulum are 3.527 and 6.813, respectively. If the mass
of the cart is M and the mass of each of the pendulums is m, then from Fig. 10 the angular frequencies of the
pendulums remain constant even when themasses of the cart or the pendulums are changed, as long as the mass
ratio M

m remains constant. The angular frequency of a simple pendulum is given by the formula ω = √g/L
where ω is the angular frequency, g is the acceleration due to gravity, and L is the length of the pendulum.
When the pendulum is attached to a cart with mass M, the angular frequency of the pendulum-cart system is
modified to the form ω = √[(m + M)g/(M + m)L] Since the mass ratio M/m appears in the denominator
of the expression, as long as the mass ratio remains constant, the angular frequency of the system will also
remain constant, regardless of the specific values of M and m.

The angular frequencies of the double-pendulum system under translation remain to be 3.527 and 6.813
for the top and bottom pendulums, respectively, when the mass of the cart and the mass of the pendulums are
10kg.

(M
m = 1

)
. This is also true for a general “N”-pendulum system and can be seen in Fig. 11 which is the

plot for a 13-pendulum system. Here, some of the frequencies of the top pendulum is 1.605Hz, 5th pendulum
is 6.999Hz, 10th pendulum is 14.447Hz and the bottom pendulum is 20.426Hz and remains to be same when
the mass ratio remains constant.
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Fig. 10 Angular frequencies of double-pendulum system having constant mass ratios

Fig. 11 Angular frequencies for a 13-pendulum system with constant mass ratio

Now, the effect of varying the mass of the cart is studied and presented. The initial setup assumes that
the mass of the cart is equal to the mass of the pendulums. This setup for a double-pendulum system under
translation gives the angular frequencies of 3.527 and 6.813 of the top and bottom pendulums as discussed
previously. The results show that as the mass of the cart increases, while keeping the mass of the pendulums
constant, the angular frequencies of the pendulums decrease. This reduction is quite rapid for the initial increase
in the mass of the cart but becomes gradual as the mass increases. Similarly, for an N-pendulum system, the n
angular frequencies, all decrease for an increase in the mass of the cart.

A very interesting finding is that as the mass of cart increases, the frequencies of the system are more
similar to that of a pendulum system without the translation. In the case of the double-pendulum given in Fig.
12, the initial frequencies of the top and bottom pendulums are 3.527 Hz and 6.813 Hz, respectively. However,
when the mass of the cart is increased to 20 kg, the frequencies decrease to 2.40 Hz and 5.78 Hz for the top
and bottom pendulums, respectively. This frequency is the same as the frequency of the double pendulum that
has a fixed pivot. This phenomenon also holds true for N-pendulum systems. In Fig. 13, the change in angular
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Fig. 12 Angular frequencies of double-pendulum system under translation for an increase in the mass of cart

Fig. 13 Angular frequencies of a 10-pendulum system under translation for an increase in the mass of cart

frequencies of a 10-pendulum system decreases with an increase in the mass of the cart. However, this change
is significantly smaller than that in the double-pendulum system. The angular frequency of the top and the
bottom pendulum decreases from 1.8115 to 1.331Hz and 17.629 to 17.1471Hz This is because as the mass of
the cart increases, the effect of the pendulums on the cart becomes increasingly negligible as the resistance to
movement increases.

The top pendulum is the pendulum attached directly to the cart of the system. The results show that for
an increase in the mass of the top pendulum, m1, the natural frequency of the nth pendulum (ωn) has a slight
initial dip after which the frequency increases rapidly. But the natural frequency of top pendulum itself (ω1)
gradually decreases. The frequencies of the pendulums between the top pendulum attached to cart and the
bottom pendulum (ω2, ω3 · · ·ωn−1) either increase or decrease very slightly for the initial increase in massm1
and then remain fairly constant for further increase in m1.

But as the number of pendulums increases, the initial dip spreads over an increased range of mass m1.
Additionally, when n ≥ 7, the dip in the of the bottom pendulum seems to be “passed on” to the next n − 1th
pendulum, i.e., the dip starts with decreasing the angular frequency of the nth pendulum for a certain range of
m1 after which it stagnates until the upward curve of the dip comes back from the n − 1th pendulum, while
the n − 1th pendulum continues the dip. As n increases, the dip gets “passed on” to and also increases. In
Fig. 14, the angular frequencies of a triple-pendulum system are plotted against the mass of the top pendulum.
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Fig. 14 Angular frequencies for increase in the mass of top pendulum

Fig. 15 Angular frequencies of a 9-pendulum system under translation for an increase in the mass of top pendulum m1

The angular frequency of the bottom pendulum represented by the yellow curve has the “initial dip” explained
previously specifically when the mass of the top pendulum is around 2 units, after which the frequency of the
bottom pendulum increases steadily. The frequencies of the top and middle pendulums, however, show little
deviation as the mass of the top pendulum increases.

In Fig. 15, the bottom pendulum angular frequency, shown in red, decreases initially, after which the 8th
pendulum represented by the blue line shows the curve of the dip which then continues back to the bottom
pendulum after a certain mass. This can also be observed in Fig. 16, the 20 pendulum system, where the initial
dip in the frequency is seen affecting all pendulums whose n ≥ 14.

All the pendulums that are not top and bottom pendulums are considered middle pendulums. Increasing
the mass of kth pendulum results in an initial dip similar to the one observed during the increase in mass of
top pendulum which upon further increase in mass of kth pendulum increases the angular frequency of all
pendulums from n − kth pendulum to nth pendulum.

In Fig. 17, the angular frequency of the last 2 pendulums in the system increases for an increase in the
mass m2. And for the same system, when the mass m4 is increased as in Fig. 18, we see an increase in angular
frequency of the last 4 pendulums (all pendulums except for the top pendulum in this system). Congruent with
the effect of the increase in mass of the middle pendulums, where an increase in the mass of kth pendulum
increases the frequency of the bottom-most k pendulums, an increase in the mass of the bottom pendulum
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Fig. 16 Angular frequencies of a 20-pendulum system under translation for an increase in the mass of top pendulum m1

Fig. 17 Angular frequencies of a 5-pendulum system under translation for an increase in the mass m5

causes an increase in the frequency of all the pendulums in the system. This increase in the angular frequency
is highest for the bottom pendulum and lowest for the top pendulum, with the rate of change increasing as k
increases.

In Fig. 19, the increase in the mass of the bottom pendulum k = 6 in a 6-pendulum system shows an
increase in the angular frequency of all the pendulums involved. The increase in the angular frequency is
highest for the 6th pendulum and lowest for the top pendulum. Now, let us compare the results discussed above
with a standard non-translating pendulum system. The immediate difference observed between the pendulum
system under translation and the pendulum system without translation is the addition of the cart. The addition
of the cart of mass causes a direct increase in the angular frequencies of the system. The angular frequency of
the double-pendulum system with a fixed pivot is 2.40 and 5.78, and this increases to 3.527 and 6.81 for the
top and bottom pendulums, respectively, with the addition of the translating element (Fig. 20).

As discussed in the previous sections, an increase in themass of the top pendulum in a translating pendulum
system increases the frequency of the nth pendulumwith a slight decrease in the frequency of the top pendulum.
When the mass of the top pendulum is increased for a fixed pivot pendulum system, we see the exact opposite
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Fig. 18 Angular frequencies of a 5-pendulum system under translation for an increase in the mass m4

Fig. 19 Angular frequencies of a 6-pendulum system under translation for an increase in the mass of bottom pendulum m6

phenomenon, where the angular frequencies of the bottom decrease rapidly, while the bottom pendulum
frequency increases gradually. The effect of increasing the mass of the top pendulum on the frequency of the
nth pendulum is not a simple or predictable relationship and depends on the distribution of the mass in the top
pendulum and the geometry of the system. In a translating pendulum system, where a series of pendulums are
connected by links and are free to move in a horizontal plane, the frequency of each pendulum depends on the
length of its link and the effective gravitational acceleration felt by the mass. When the top pendulum is given
a small horizontal displacement, it sets the system into motion, and each pendulum begins to swing back and
forth with a certain frequency. If the mass of the top pendulum is increased while keeping the length of its string
constant, the frequency of the top pendulum will decrease slightly, as the effective gravitational acceleration
decreases due to the increased mass. However, the effect on the frequency of the nth pendulum depends on
how the mass of the top pendulum is distributed. If the mass is concentrated at the bottom of the pendulum, the
effective length of the link connecting the nth pendulum to the top pendulum will decrease slightly, which will
increase the frequency of the nth pendulum. On the other hand, if the mass is distributed more evenly along the
length of the pendulum, the effective length of the string may not change significantly, and the frequency of
the nth pendulum may not be affected much. Figures21 and 24 represent the same, where angular frequency
of the bottom pendulum (in yellow) decreases for non-translating system and increases for the translating
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Fig. 20 Angular frequencies of a triple-pendulum system under translation for an increase in the mass of top pendulum m1

Fig. 21 Angular frequencies of a triple-pendulum system without translation for an increase in the mass of top pendulum m1

system for the same increase in mass m1. This implies that at higher values of mass of top pendulum, adding
a translating element to the fixed pivot pendulum system can increase the frequency of the bottom pendulum
drastically. In Figs. 22 and 23, we see that an increase in the mass of the middle pendulum, in both translating
and fixed pendulum systems, results in a similar increase in the angular frequency of the bottom pendulum.
But the frequency of the middle pendulum itself decreases with an increase in its mass for a fixed pendulum
system, and it increases in the pendulum system with translating element. Similarly, an increase in the mass
of the bottom pendulum causes an increase in the angular frequency of all pendulums with the exception
of the top pendulum for the fixed pendulum system, where the frequency decreases gradually. In general,
increasing the mass of the bottom pendulum in a multi-pendulum system can affect the behavior of the other
pendulums. Specifically, if the system is designed so that the pendulums are coupled (i.e., connected by rigid or
flexible links), then an increase in the mass of one pendulum can lead to changes in the motion and frequency
of the other pendulums. For example, if the multi-pendulum system is designed so that the pendulums are
connected by flexible strings or rods, then an increase in the mass of the bottom pendulum can cause changes
in the tension and deformation of the strings or rods, which can affect the motion of the other pendulums.
In this case, the effect on the angular frequency of the pendulums will depend on the specific geometry and
stiffness of the links connecting the pendulums. However, if the multi-pendulum system is designed so that
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Fig. 22 Angular frequencies of a triple-pendulum system under translation for an increase in the mass of pendulum m2

Fig. 23 Angular frequencies of a triple-pendulum system without translation for an increase in the mass of pendulum m2

the pendulums are completely independent (i.e., not connected by any links), then an increase in the mass of
one pendulum should not affect the motion or frequency of the other pendulums, since each pendulum is free
to move independently. Therefore, while the statement that increasing the mass of the bottom pendulum can
increase the angular frequency of all pendulums in a multi-pendulum system may be true in some specific
cases, it is not a universal truth and depends on the specific geometry and parameters of the system (Fig. 25).

6.1.3 Length of the pendulum links

An increase in the length of any of the pendulums in the system causes a decrease in the angular frequency
of the system. The rate of decrease in angular frequency is highest for the bottom pendulum. The change in
the frequency is studied for changing lengths of each pendulum individually with the position of change(top,
middle, bottom) also taken into consideration.

When the length l1 of the top pendulum in the translating pendulum system increases from 0.1m to 3m,
the frequencies of the system decrease from 3.8113 to 2.7746Hz for the top pendulum and from 19.937 to
5.00Hz. The rate of reduction is highest for the bottom pendulum. A unique observation is that the decrease
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Fig. 24 Angular frequencies of a triple-pendulum system under translation for an increase in the mass of pendulum m3

Fig. 25 Angular frequencies of a triple-pendulum system without translation for an increase in the mass of pendulum m3

in the angular frequency of the bottom pendulum seems to slow down right as it approaches the value of the
angular frequency of the penultimate pendulum (n − 1).

Figure26 shows the decrease in the angular frequencies of the pendulums in a double-pendulum system.
The angular frequency of the bottom pendulum has a steep initial reduction that becomes gradual with a further
increase in length l1, creating the “L”-shaped curve. Similar behavior is shown in Fig. 27, a 12-pendulum system
where angular frequencies decrease with the increasing length of the top pendulum.

The increase in the length of the middle pendulums in a translating pendulum system has a similar effect
on the frequency of the pendulum when the length of the top pendulum is increased. This similarity has a
divergence when the selected kth pendulum whose length is being increased has k ≥ n

2 where n is the number
of pendulums in the system. In this case, the rate of decrease in the angular frequency of the bottom pendulum
does not slow down, rather gets “passed on” to the penultimate pendulum, after which the bottom pendulum
either stagnates or shows a minimal decrease in its angular frequency. This phenomenon is where the rate of
decrease in angular frequency getting passed on to the next pendulum increases as k approaches the number
of pendulums n. When the length of the middle pendulum is increased, the position of the center of mass
of the pendulum system is shifted upward, which can lead to changes in the motion and frequency of the
other pendulums. In particular, an increase in the length of the middle pendulum will cause a decrease in the
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Fig. 26 Angular frequencies of a double-pendulum system under translation for increase in the length of top pendulum l1

Fig. 27 Angular frequencies of a 12-pendulum system without translation for an increase in the mass of top pendulum l1

angular frequency of the bottom pendulum, as the gravitational potential energy of the system is increased.
However, in a multi-pendulum system, the motion and frequency of each pendulum depends not only on its
own properties but also on the motion and properties of the other pendulums in the system. When the angular
frequency of the bottom pendulum decreases, this decrease can be transmitted to the penultimate pendulum
through the links connecting them. This transfer of frequency from the bottom pendulum to the penultimate
pendulum occurs because the energy of the system is conserved, and any decrease in the kinetic energy of the
bottom pendulummust be compensated by an increase in the kinetic energy of the penultimate pendulum. As a
result, after the penultimate pendulum receives the frequency decrease from the bottom pendulum, the angular
frequency of the bottom pendulum either stagnates or shows a minimal decrease. This is because the kinetic
energy transferred to the penultimate pendulum is not sufficient to cause a further decrease in the frequency
of the bottom pendulum.

In Fig. 28, the angular frequencies of an 8- pendulum system are shown. For an increase in length l3 (where
k = 4), the graph is similar to 27 with an “L”-shaped curve with maximum reduction in the angular frequency
of the bottom pendulum. But when k ≥ n

2 as seen in 29 and 30 where k = 7 and k = 8, respectively, the
decrease in angular frequency can be seen being “passed on” to the next penultimate pendulum.
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Fig. 28 Angular frequencies of an 8-pendulum system under translation for an increase in the length of l3, (k = 4)

Fig. 29 Angular frequencies of a 8-pendulum system under translation for an increase in the length of l7, (k = 7)

Figures 31, 32, 33 and 34 show that the effect of changing lengths of the pendulums in an N-pendulum
system is similar with or without translation. Even though the plots of angular frequencies are similar, it should
be noted that the actual magnitudes of the respective plots are different for systems under translation and with a
fixed pivot. For the 5-pendulum system, with translation, the angular frequency of the bottom pendulum drops
from 31.652Hz when l1 is 0.1m to 10.5898Hz when l1 is 3m. Without translation, the angular frequency
drops from 23.088Hz when l1 is 0.1m to 10.55Hz when l1 is 3m. When l4 is increased as shown in Fig. 33,
the angular frequency of the bottom pendulum starts at 20.34Hz when l4 is 0.1m, becomes stagnant around
l4 = 0.65m with 11.2075Hz and gradually decreases to 11.09Hz when l4 is 3m.

6.2 Effect of pendulum parameters on the natural frequency of pendulum system with tilting pivot

The effect of varying parameters of pendulum systems on natural frequency is discussed in this section.
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Fig. 30 Angular frequencies of an 8-pendulum system under translation for an increase in the length of l8, (k = 8)

Fig. 31 Angular frequencies of a 5-pendulum system without translation for an increase in the length of l1, (k = 1)

6.2.1 Number of pendulum links

When extra pendulum links are added to the bottom-most pendulum link, the angular frequency decreases as
the number of pendulums increases. So as the number of pendulum links increases for a pendulum system
undergoing tilting, the frequency of the system decreases. Conversely, when extra pendulums are added above
the bottom-most pendulum in a N -pendulum system, the frequency of the pendulum increases with the increase
in the number of pendulums. This behavior is very similar to that of an N -pendulum system undergoing
translation as seen in section 6.1.1. Figure36 shows the decreasing angular frequency of the bottom pendulum
of a double-pendulum system against the number of pendulums being added “below” the pendulum. Similarly,
Fig. 36 shows the same for pendulums being added “above” the selected pendulum.

As shown in Fig. 35, the angular frequency of the bottom pendulum of a double-pendulum system with a
tilting pivot is 6.27071Hz and decreases to 1.82474Hz when 20 pendulums are added below it.

6.2.2 Mass of the system

The effect of the mass of the pendulums on the natural frequency of a tilting pendulum system is studied by
individually changing the mass of each pendulum and observing the changes to the frequencies in the system.
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Fig. 32 Angular frequencies of a 5-pendulum system under translation for an increase in the length of l1, (k = 1)

Fig. 33 Angular frequencies of a 5-pendulum system without translation for an increase in the length of l4, (k = 4)

The angular frequencies are observed to decrease for an increase in the mass of the top pendulum, increase for
an increase in the mass of the bottom pendulum, and either increase or decrease for an increase in the mass of
the middle pendulums. The top pendulum is directly attached to the tilting platform of the system. The results
indicate that for an increase in the mass of the top pendulumm1 in a N -pendulum system under tilt, the angular
frequencies of all the pendulums except the top pendulum decreases, while the angular frequency of the top
pendulum itself increases with the increase in mass m1. The magnitude of change in angular frequency is high
for the bottom pendulum and low for the top pendulum in the system.

Figure37 shows the angular frequencies of a triple-pendulum system for an increase in mass of top pen-
dulum m1. The angular frequencies of the bottom pendulum and middle pendulum (shown in yellow and red,
respectively) decrease with an increase in massm1. The angular frequency of the bottom pendulum andmiddle
pendulum decreases from 8.4508 and 4.9738Hz when m1 is 1kg to 6.4165Hz and 3.6505Hz, respectively,
when m1 is 10kg. At the same time, the angular frequency of the top pendulum (shown in blue) increases
gradually with an increase in mass m1.

The results show that for an increase in mass of kth pendulum in a N -pendulum system, where k �= 1 and
k �= n, the angular frequencies of the bottom-most k − 1 pendulums ((n − (k − 2)) to n pendulums) increases
along with the increase in the angular frequency of the top pendulum, whereas the angular frequencies of the
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Fig. 34 Angular frequencies of a 5-pendulum system under translation for an increase in the length of l4, (k = 4)

Fig. 35 Angular frequencies of the bottom pendulum (n = 2) of a double-pendulum system, adding 20 pendulums below the
bottom pendulum increasing 1 pendulum per iteration

remaining pendulums decrease. An exception to this phenomenon is when k = n − 1 for n > 4, in which case
the frequency of the top pendulum decreases.

In the 5-pendulum systemdepicted in Figure 38,when themass of a selected pendulum (k = 2) is increased,
it results in an increase in the angular frequency of only the bottom-most pendulum (n − (k − 2) = n).
Simultaneously, the frequency of the top pendulum also increases. Similarly, for the same system when the
mass (m4) of the fourth pendulum (k = 4) is increased, the angular frequency of the three pendulums below
it (k − 1 = 3) increases, as illustrated in Figure 39.

Increasing the mass of the bottom pendulum in a N -pendulum system under tilt increases the angular
frequency of all pendulums except the angular frequency of the top pendulumwhich decreases with an increase
in mass mn

In Figs. 40 and 41, the angular frequencies of all the pendulums except the top pendulum are seen increasing
for an increase in mass of the bottom pendulum. The angular frequency of the bottom and middle pendulums
in a triple-pendulum system in 40 increases from 8.4508 to 18.3069Hz and 4.9738 to 10.6767Hz, respectively,
and the angular frequency of the top pendulum, on the other hand, decreases from 2.033 to 1.8473Hz. It also
shows that the magnitude of the increase is highest for the bottom pendulum.
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Fig. 36 Angular frequencies of the bottom pendulum in a double-pendulum system when adding 20 pendulums above the bottom
pendulum increasing 1 pendulum per iteration

Fig. 37 Angular frequencies of a triple-pendulum system for increase in mass of top pendulum m1

6.2.3 Length of the pendulum links

The effect of the lengths of the pendulums on the frequency of a tilting pendulum system is studied by
individually changing the length of each pendulum link. The change in frequency is similar to that in translating
and fixed pivot systems with similar decrease and increase in the frequencies. The change and the values of
the frequencies themselves are not equal, though similar.

When the length l1 of the top pendulum in the tilting pendulum system increases, the frequencies of the
system decrease. Figure42 shows the angular frequency of a triple-pendulum system against the length of the
top pendulum l1, and the frequency of the bottom pendulum (in yellow) has the highest magnitude of decrease
in angular frequency. Middle and top pendulums (in red and blue, respectively) show gradual decrease in
the frequency for increasing length of the top pendulum. The angular frequency of the bottom pendulum is
23.1957Hz when l1 is 0.1m and decreases to 7.6285Hz when l1 increases to 3m. The angular frequencies
of the middle and the top pendulum decrease gradually from 6.1211 and 2.3774Hz to 4.1238 and 1.5355Hz,
respectively.

The increase in the length of these pendulums causes a decrease in the angular frequency of all pendulums
in the system with the rate of decrease being “passed on” when the selected pendulum k has k ≥ n

2 .
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Fig. 38 Angular frequencies of a 5-pendulum system for an increase in mass m2, (k = 2)

Fig. 39 Angular frequencies of a 5-pendulum system for an increase in mass m4, (k = 4)

Figures 43 and 44 show the angular frequencies of a triple-pendulum system for an increase in the length of
the middle pendulum and bottom pendulum, respectively. It is observed that the middle pendulum’s frequency
(shown in red) starts off with a slightly higher frequency in 44 and has a higher deviation when compared
with 43. In Fig. 45, we observe the rate of decrease in the frequency being “passed on” to the next penultimate
pendulum for an increase in length of 7th pendulum.

6.2.4 Effect of stiffness

As described in Sect. 4.2, potential energy associated with the bending of the rod is P.Eb = 1
2krθ

2, where
kr is the equivalent spiral spring stiffness of the rod. This change in potential energy directly affects the
angular frequency of the system. The effect of changing stiffness of the pendulums on the frequency of a tilting
pendulum system is studied by individually changing the stiffness of each pendulums. When the stiffness of
the top pendulum kr1 is increased in a tilting pendulum system, the angular frequency of all the pendulums in
the system increases.

An interesting observation is that the rate of increase in the angular frequency decreases as the number of
pendulums is increased, for the same increase in stiffness. In Fig. 46, the increase in the angular frequency for
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Fig. 40 Angular frequencies of a triple-pendulum system for an increase in mass of bottom pendulum mn

Fig. 41 Angular frequencies of a 7-pendulum system for an increase in mass m7

a triple-pendulum system is more drastic when compared to the increase in angular frequency in a 5-pendulum
system under tilt in Fig. 47 for the same increase in stiffness of top pendulum. The angular frequencies for
the top, middle and bottom pendulums in the triple-pendulum system when the stiffness kr = 1 are 2.033Hz,
4.9738Hz and 8.4508Hz and increase to 2.1134Hz, 5.1196Hz and 8.8198Hz, respectively. This observation
is plausible and can be explained by considering the dynamics of the multi-pendulum system. When a force is
applied to the top pendulum of a multi-pendulum system, the resulting motion of the pendulums is influenced
by the stiffness andmass of each pendulum, aswell as the coupling between the pendulums. For a given increase
in stiffness of the top pendulum, the resulting increase in the angular frequency of the multi-pendulum system
will depend on the number of pendulums in the system. Specifically, as the number of pendulums increases,
the coupling between the pendulums becomes more complex, and the dynamics of the system become more
sensitive to changes in the parameters. In particular, as the number of pendulums increases, the effective
stiffness of the system decreases, which means that the rate of increase in the angular frequency of the system
will also decrease. This can explain why the increase in the angular frequency of a triple-pendulum system
is more drastic than the increase in the angular frequency of a 5-pendulum system under tilt, for the same
increase in stiffness of the top pendulum. In a triple-pendulum system, the coupling between the pendulums
is relatively simple, which means that the effective stiffness of the system is higher, leading to a more drastic



3734 A. Bondada, V. G. Nair

Fig. 42 Angular frequencies of a triple-pendulum system for increase in length of top pendulum l1

Fig. 43 Angular frequencies of a triple-pendulum system for an increase in length of middle pendulum l2

increase in the angular frequency for a given increase in stiffness. On the other hand, in a 5-pendulum system,
the coupling between the pendulums is more complex, which means that the effective stiffness of the system
is lower, leading to a less drastic increase in the angular frequency for the same increase in stiffness of the top
pendulum.

When the stiffness of any of the pendulums is increased, the angular frequencies of the system increase. The
results shows a slight increase in angular frequencies when the considered pendulum for which the stiffness
is increased has k closer to n, where k is the selected pendulum and n is the number of pendulums in the
system. For a 5-pendulum system, as shown in Figs. 48 and 49, the angular frequency increases with increase
in stiffness of the middle pendulums. The magnitude of angular frequencies is slightly higher for 49 than 48
since (k = 4) is closer to n. For the stiffness of the bottom pendulum, Fig. 50 shows the increase in the angular
frequencies for an increase in the stiffness of the bottom pendulum.

6.3 Summary of contributions

The present research offers substantial contributions that differentiate it from previous studies. While prior
investigations extensively covered pendulum systems with stationary pivots, this study concentrates specifi-
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Fig. 44 Angular frequencies of a triple-pendulum system for an increase in length of bottom pendulum l3

Fig. 45 Angular frequencies of a 9-pendulum system for an increase in length of pendulum l7

cally on the dynamics of pendulum systems with moving and tilting pivots. By examining the behavior of these
systems during translation and tilt, the research introduces additional degrees of freedom and nonlinearities
compared to systems with fixed pivots. Consequently, this inquiry yields novel insights into the dynamics
of pendulum systems under various types of motion. A significant focus of this research lies in the practical
implementation of multiple pendulum systems as inertial sensing elements in high-precision equipment. By
investigating the dynamics of these systems and their implications for high-precision instrumentation, the study
addresses a pragmatic aspect that holds relevance for researchers and engineers in the field. This emphasis
on the real-world application of pendulum systems enhances the value and significance of the research. To
deepen our comprehension of the dynamics of pendulum systems, this research undertakes a comprehensive
parametric analysis. The study systematically varies parameters such as mass, length, and stiffness of the
pendulums within the system. This analysis includes detailed plots and explanations to visually illustrate the
impact of the above mentioned parameters on the natural frequency of the pendulum systems. The plots pro-
vide a clear visualization of how variations in parameters affect the behavior of the pendulums, allowing for a
comprehensive understanding of the frequency changes. This meticulous exploration of the parametric space
enhances our understanding of the relationships between system parameters and dynamics, thereby offering
valuable insights for system design and optimization. Furthermore, this research compares the dynamics of
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Fig. 46 Angular frequencies of a triple-pendulum system for an increase in stiffness of top pendulum kr1

Fig. 47 Angular frequencies of a 5-pendulum system for an increase in stiffness of top pendulum kr1

pendulum systems with moving and tilting pivots to those with fixed pivots. By highlighting the similarities
and differences between these system types, the study contributes to a deeper comprehension of the effects
of translation and tilt on the behavior of multiple pendulum systems. This comparative analysis serves as a
foundation for further exploration and development of control strategies tailored specifically for pendulum
systems with moving and tilting pivots. In conclusion, the present research provides several noteworthy con-
tributions to the existing literature. Its focus on pendulum systems with moving and tilting pivots yields new
insights into the dynamics of such systems when compared to systems with fixed pivots. Additionally, by
emphasizing the practical implementation of pendulum systems in high-precision instrumentation, the study
addresses a relevant aspect for researchers and engineers in the field. The detailed parametric analysis enhances
our understanding of the relationships between system parameters and dynamics, while the comparison with
fixed pivot systems contributes to a deeper comprehension of the effects of translation and tilt.
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Fig. 48 Angular frequencies of a 5-pendulum system for an increase in stiffness of second pendulum kr2

Fig. 49 Angular frequencies of a 5-pendulum system for an increase in stiffness of fourth pendulum kr4

7 Conclusion

This paper studies the dynamics of multiple pendulum systems that have a pivot under translation or tilt. The
system for translation is considered by attaching the pivot to a movable cart. Similarly, the system for tilting
is considered by connecting the pivot to a rotatable platform.

By applying the Lagrangian dynamics approach, we derived the equations of motion and the angular
frequencies of the systems. Furthermore, the second derivatives of the kinetic and potential energies are used
to obtain the mass matrix and the stiffness matrix, which are then used to get the angular frequency of each
pendulum in the system. The equations ofmotion and the angular frequency of the double-pendulum system are
derived first and then extended to an “n”-pendulum system. Our analysis focused on the effects of translation
and tilt on the behavior of the pendulums, as well as the influences of parameters such as mass, length, and
stiffness on the natural frequencies of the systems. The initial/ideal system is considered with masses of
pendulums as 1kg, lengths as 1m and gravitational acceleration as 9.81 m

s2
. Additionally, for the translating

system, the mass of the cart is 1kg and the stiffness of all the pendulums in the tilting pendulum is 1Nm−1. To
study the dynamics of the systems and how each parameter affects the system, the initial system is analyzed
by varying a single parameter while keeping the rest constant.
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Fig. 50 Angular frequencies of a 5-pendulum system for an increase in stiffness of bottom pendulum kr5

From the results, it is inferred that translating or tilting a multiple pendulum system increases the angular
frequency of the pendulums involved. Moreover, adding pendulums below a selected pendulum decreases the
angular frequency of the pendulum, and adding pendulums above a selected pendulum increases the angular
frequency of that particular pendulum. This behavior is consistent for both translating and tilting systems. The
effect of mass on the natural frequency of the systems, however, is quite different for both systems. Depending
on the pendulum whose mass is being varied, the behaviors of the system also change. For the translating
pendulum system, when the mass of the top pendulum increases, the frequency of the bottom pendulum
increases rapidly after a slight dip, while the frequency of the top pendulum itself gradually decreases. For
changes in the mass of middle pendulums, we see an increase in the frequency of several pendulums depending
on which pendulums mass is being varied. The increase in the mass of the bottom pendulum increases the
frequency of all the pendulums in the system. Additionally, as the mass of the cart increases, the behavior of the
system ismore similar to that of a fixed pivot system. For tiltingmultiple pendulum systems, the increase inmass
of the top pendulum results in a decrease in the angular frequency of all pendulums except the top pendulum
itself. This behavior is completely opposite to the translating pendulum system, where the frequency of all the
pendulums except the top pendulum increases. The increase in mass of the middle and bottom pendulums,
however, results in an increase in the angular frequencies similar to the translating pendulum system. An
increase in the lengths of the pendulums in either of the systems, translating or tilting, decreases the angular
frequencies of the pendulums in the system. Moreover, when the stiffness of the pendulums is increased in the
tilting pendulum system, the angular frequencies of the pendulums increase.

While our study provides valuable insights into the dynamics of multiple pendulum systems with moving
and tilting pivots, there are several potential avenues for future research. Investigating the impact of damping
on the system dynamics would be valuable, as damping is an important factor in real-world applications. Addi-
tionally, studying the stability of the pendulum systems under differentmotion conditions and exploring control
strategies for stabilization would contribute to practical implementation. For translating/tilting pivots, control
techniques such as model predictive control, adaptive control, and sliding mode control have been developed
to stabilize the motion and achieve desired trajectories. However, control of translating/tilting pendulums is
more challenging due to the increased complexity and nonlinearity of the system. Furthermore, extending the
analysis to consider more complex pendulum arrangements and exploring the effects of nonlinearities in the
system would provide a deeper understanding of the dynamics. Finally, examining the influence of external
forces or disturbances on the systembehavior could uncover important insights relevant to real-world scenarios.
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