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Abstract Undesired oscillations often emerge in numerical solutions, especially in the case of dynamic prob-
lems. These are mainly spurious oscillations which must be eliminated or reduced at least to provide accurate
results. Numerical methods with damping effect are especially useful to achieve this goal. However, the con-
crete shape of the damping characteristics has a great impact on the effectiveness. Dissipative numerical
methods mostly have a specific damping character with very limited alteration possibility. In this article, a
novel numerical method has been introduced where the dissipative effect is exerted via viscous damping. Using
the proposed method, a great variety of damping curves can be defined accurately, straight through the deter-
mination of the algorithmic damping ratio. The newly developed technique is mainly useful for applications
where the shape of the damping characteristics significantly affects the accuracy.

Keywords Viscous damping · Damping ratio · Damping character · Oscillations

1 Introduction

The damping effect of numerical methods has a great importance in many fields of engineering. Undesired
oscillations emerging from different sources can distort the numerical solution making it less accurate or
even unusable. By calculations performed with the use of the Finite Element Method (FEM) [1], the spatial
discretization is themain origin of adverse oscillations.Due to the approximate representation of the continuum,
the highestmodes cannot be considered in the solution [2]. This can be the source ofmajor spurious oscillations,
especially by dynamic problems. Thus, this phenomenon may cause severe distortions in the solution which
must be eliminated to reach an accurate result. To achieve this effect, twomain approaches can be distinguished
which are the subsequent filtering of the undesirable oscillations [3] and the use of a damping effect in the
solution algorithm [4]. The latter option can be divided into two different possibilities. On the one hand, the
damping effect can be exerted by numerical damping which is contained in the algorithm [5]. On the other
hand, it can also be reached through the use of viscous damping in the finite element (FE) model [6].

There are several applications for methods with damping effect in a wide range of engineering. In contact
problems, spurious oscillations are present in the solution which must be eliminated to avoid divergence. As
Hulbert and Chung [7], Kim [8] and Rezaiee-Pajand [9] have proved it, the spurious oscillations can be reduced
substantially with an appropriate damping character. Semblat et al. [10] developed an absorbing layer method
using viscous damping to reduce undesired oscillations. VonNeumann andRichtmeyer [6] applied theirmethod
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for calculations with hydrodynamic shockwaves. Metzger [11] tested his iterative technique successfully on
dynamic relaxation problems.

Numericalmethods can be effectively described using certain accuracymeasures [12]which are the spectral
radius, the relative period error and the algorithmic damping ratio. In this paper, the lastlymentioned indicator is
going to be examined in detail which characterizes the damping effect of the applied method. For that purpose,
the amplitude decay [13] is also used oftentimes. However, using this measure is less advantageous, as it cannot
describe the damping characteristics. In the literature, many articles have been used an approximate scheme
[14,15] for the calculation of the algorithmic damping. Nevertheless, it is beneficial to apply the accurate
scheme [16] of the algorithmic damping ratio in all cases, as it only means a minor additional complexity in
the calculation. It is important to emphasize that there exists a similarly named, but different measure which
is the Physical Damping Ratio (PDR) [17]. This usually characterizes the viscous or material damping in the
model; the difference between algorithmic damping and PDR is thoroughly described in [18].

As it has been mentioned earlier, one possibility to exert a damping effect is the numerical damping which
is contained in the algorithm. In case of transient problems solved with FEM, the time integration is mostly
realized by time stepping methods [19]. There exist both forward and backward increment, single-stage and
multistage schemes, while the damping effect may be alterable with one or more parameters. The shape of the
damping character is also an important aspect; it can be both progressive, degressive and linear. The Newmark
method [5] is a widespread backward increment (implicit) scheme whose damping can be controlled with
one parameter. Due to its simple formulation and unconditional stability, this method is built in many FE
simulation software like Abaqus or Ansys. The HHT-α method [20] is the improved version of Newmark’s
scheme where the degressive damping character can be set with an additional parameter. In contrast with that,
Bathe developed an implicit method [21] whose damping cannot be set by parameters; it only depends on the
actual time step size. The Wilson-Θ method [22] is also a well-known implicit scheme where damping levels
can be set substantially higher compared to similar methods. Another widely applied implicit method is the
generalized-α scheme [23] with alterable, slightly progressive damping character. The formerly mentioned
method from Hulbert and Chung [7] is the forward increment (explicit) modification of the generalized-α
scheme with more possible adjustment in damping. Among explicit techniques, Kim has provided a novel two
stage method [8] with adjustable progressive characteristics. In Chang’s method [14], an interesting approach
is applied, as the control parameter is generated from a finite sum containing material parameters. Thus, the
shape of the damping character can be altered in a wide range, from slightly degressive to heavily progressive.
Besides, there exist methods with decreasing damping character like Heppler and Hansen’s scheme [24] and
even methods with partially negative damping character like Wang and Au’s scheme [25]. However, the shape
of the characteristics and the maximal damping value is very limited by most of the above-mentioned methods.
Thus, it is often difficult to find a scheme that possesses the proper features for the actual application.

Another approach of exerting a damping effect is the application of viscous damping in the FEM model
or the addition of a viscous pressure term to the dynamic equations [26]. A solution of this kind was firstly
described by VonNeumann and Richtmeyer [6] in 1950; therefore, it is mostly known as VonNeumann’s
artificial viscosity or bulk viscosity method. This scheme is based on the Central Difference Method (CDM)
[27] which does not have numerical damping, so the amount of dissipation can be controlled through only one
parameter. The damping characteristics are linear, so the effect is equivalent with a stiffnessmatrix proportional
Rayleigh damping [28]. This technique is built in several industrial software like Abaqus [29] or LS-Dyna [30].
A similar approach has been described by Munjiza et al. [31] who applied a certain kind of Caughey damping
[32]. By using this method, both linear and progressive characteristics can be achieved with remarkably simple
methodology. Metzger has provided a novel adaptive technique [11] for the determination of the damping
matrix combined with CDM. This is an iterative method based on the eigenmodes of the model and is mainly
practical for contact problems and large deformations. Lee elaborated a proportional viscous damping model
[33] based on bell-shaped basis functions. Using this method, the numerical damping character can be fitted
on known data points with a very good approximation. However, all of the above-mentioned methods can only
offer an approximate determination for most damping character shapes.

The proposed method is based on the CDM, so the exerted damping effect can be derived straightly from
the viscous damping term in the FE model. Using the newly developed method, a great variety of shapes are
achievable as damping characteristics. As it has been mentioned above, most of the existing methods are only
able to produce a certain kind of damping character and the available damping levels are also limited. Finding
the appropriate damping curve is critical in many applications what makes the above-mentioned methods
difficult to use in certain cases. The main goal of this paper is to provide a technique for the determination of
the aimed damping character for applications where the shape of the damping curve is especially important.
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In this article, a novel technique is presented to specify the algorithmic damping precisely in a wide range.
The motivation of the research is to introduce a method by which arbitrary damping characteristics can be
exerted accurately in a FE model as viscous damping. To achieve this, the differences between the PDR and
the algorithmic damping ratio must be cleared for viscous damping. Deriving the relationship between these
quantities is especially important to define an aimed damping character accurately. The main improvement
in the research is the exposition of the distortion in the numerical solution when the aimed character of the
viscous damping is given as equivalent PDR compared to when it is defined as equivalent algorithmic damping
ratio.

2 Discretization in space and time

In themain part of the article, the formulation of the equation ofmotion shall be considered as first. The proposed
method is based on the CDM which is responsible for the discretization in time. The spatial discretization
is realized using the FEM. Methods with damping effect are mainly used for dynamic problems that can be
characterized by a semi-discretized equation of motion written as a second-order ordinary differential equation
according to

Müt + Cu̇t + Kut = ft (1)

where M, C and K denote the mass, damping and stiffness matrices, respectively. On the right hand side, ft
means the load vector, ut is the nodal displacement vector, u̇t means the nodal velocity vector while üt denotes
the nodal acceleration vector at time instant t . Besides, the solution of equation (1), requires both boundary
and initial conditions. The former depends on the applied model while the latter can be written as

ut=0 = u0 and u̇t=0 = v0 (2)

where u0 means the initial displacement vector while v0 denotes the initial velocity vector at t = 0.

2.1 The central difference method

The CDM is a forward increment time stepping method with a simple formulation and second-order accuracy.
On the one hand, calculations can be run very fast due to its explicitness and the lack of numerical damping is
also a beneficial feature in our case. On the other hand, the CDM possesses only conditional stability limiting
the available time step size. The formulation of this method can be given by the formula of the velocity and
the acceleration at the current time step t the following way.

üt = ut+�t − 2ut + ut−�t

�t2
(3)

u̇t = ut+�t − ut−�t

2�t
(4)

where �t means the time step size. By substituting (3) and (4) into (1) and reordering it to express ut+�t , the
following linear system of equations can be determined.

(�tC + 2M) ut+�t = 2�t2ft + (
4M − 2�t2K

)
ut + (�tC − 2M) ut−�t (5)

However, there is a serious problem with this formulation, as the inversion of the term �tC + 2M is a
computationally expensive procedure. Hence, it is worthwhile to replace equation (4) with the following
formula to calculate u̇t .

u̇t = ut − ut−�t

�t
(6)

After the substitution of (3) and (6) into (1) and the deduction for ut+�t , the equation below can be obtained.

Mut+�t = �t2ft + (
2M − �tC − �t2K

)
ut + (�tC − M) ut−�t (7)

This formulation ismore advantageous, as it only requires the inversion ofM. If themassmatrix is diagonalized
[34], then the inversion of the resulting lumped mass matrix is computationally cheap. Besides, considering
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equation (3), (6) and (7) leads to the conclusion that the calculation of üt , u̇t and ut+�t only requires displace-
ments at different time moments. This feature is especially important in applications (e.g., contact problems,
simulation of impacts, etc.) where the acceleration has a steep shift in its time evolution.

In order to analyze the accuracy indicators which are presented in the next section, it is practical to write
equation (7) into the following form.

[
ut+�t

ut

]
= ACDM

[
ut

ut−�t

]
+ bCDM (8)

where ACDM means the amplification matrix. For the central difference method, this matrix can be given as

ACDM =
[
2I − �tM−1C − �t2M−1K �tM−1C − I

I 0

]
. (9)

Knowing the inhomogeneous component (bCDM) of equation (8) is not substantial for the later examinations.

3 Accuracy indicators

In order to analyze the accuracy and the stability of the proposed method, three indicators are used which are
the spectral radius, the relative period error and the algorithmic damping ratio. To apply these characteristic
features, equation (1) must be transformed into the frequency domain, so it can be rewritten as a series of
uncoupled Single-Degree-of-Freedom (SDoF) equations.

üi (t) + 2ξiωi u̇i (t) + ω2
i ui (t) = fi (t) (10)

where ωi is the circular eigenfrequency, ξi denotes the PDR and i means the index number whose maximal
value is the Degree of Freedom (DoF) of the FE model. To determine these parameters based on the FEM
model, the M, C and K matrices are transformed into the frequency domain using the transformation matrix
denoted with T which can be composed from the eigenvectors.

TTMT = I (11)

TTKT =

⎡

⎢
⎢
⎣

. . . 0
ω2
i

0
. . .

⎤

⎥
⎥
⎦ (12)

TTCT =

⎡

⎢
⎢
⎣

. . . 0
2ξiωi

0
. . .

⎤

⎥
⎥
⎦ (13)

By this transformation, the parameters ωi and ξi are determined using equations (11)-(13).
Based on the amplification matrix, the spectral radius can be computed according to

ρ
(
ACDM (�t)

) = max (|λ1|, |λ2|) ≤ 1 (14)

where λ1 and λ2 mean the first and second eigenvalues of ACDM. The numerical solution remains stable only
if spectral radius is less than or equals one. Belonging to the maximal permissible value of ρ, a stability limit
can be determined in the time step size denoted with �tc. This critical time step can be computed according
to the following equation.

ρ
(
ACDM (�tc)

) = 1 (15)

The bifurcation point is also an important measure that is frequently used to specify the maximal applicable
damping level. If the stability condition is satisfied, the eigenvalues of ACDM can be written as

λ1,2 = σ ± εi = exp

[
Ω

(
−ξ ± i

√
1 − ξ

2
)]

(16)
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Fig. 1 Spectral radii of the CDM for various ξ values

according to Kolay and Ricles [16] where σ and ε mean the real and the imaginary part of the eigenvalues,
respectively, ξ denotes the algorithmic damping ratio, whileΩ = ω�t whereω means the algorithmic circular
eigenfrequency. The bifurcation point is defined as the time step size value where both λ1 and λ2 become real
values (ε = 0). This particular value of time step is denoted with �tb; the spectral radius associated with this
value is defined by

ρb = ρ
(
ACDM (�tb)

)
. (17)

The spectral radii of the CDM for various numerical damping values are shown in Fig. 1 where the stability
limit and the bifurcation point are also marked on a particular curve.
Knowing λ1,2 given by (16), Ω can be computed as

Ω =
arctan

( ε

σ

)

√
1 − ξ

2
(18)

Using (18), ξ can be given by

ξ = −ln
(
σ 2 + ε2

)

2Ω
. (19)

The ω quantity is the discrete equivalent of the exact circular eigenfrequency (algorithmic circular eigenfre-
quency), while ξ means the algorithmic damping ratio that has a similar connection to the PDR, as it is the
discrete equivalent of ξ . This measure describes the numerical dissipation character of the examined time
stepping method. This characteristics may be both computed as the function of the time step size for a given
circular eigenfrequency and vice versa. Another important indicator by the examination of the accuracy is the
relative period error which characterizes the numerical dispersion of the examined method in the function of
the time step size. This indicator is defined as

T − T

T
= 1 − �

�tω
(20)

where the exact period is T = 2π/ω and the numerically computed period is T = 2π/ω. The relative period
errors of the CDM for various numerical damping values are shown in Fig. 2.
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Fig. 2 Relative period errors of the CDM for various ξ values

4 Determination of the damping characteristics

In the proposedmethod, the damping characteristics are defined by the appropriate specification of the damping
matrix in equation (1). Knowing the values of ξ in equation (10) for every single eigenmode, the C matrix can
be created using the transformation matrix T. However, the connection between ξ and ξ must be examined to
be able to accurately specify the aimed damping character. In order to establish the formula of ξ for the CDM
based on (19), the SDoF version of ACDM must be constituted based on (10)-(13).

ACDM
SDOF =

[
2 − 2�tξω − �t2ω2 2�tξω − 1

1 0

]
(21)

Knowing ACDM
SDOF given by the equation (21), ξ can be calculated using equation (19) based on equation (18)

and (16). As the algorithmic damping ratio traditionally means the fictitious numerical damping introduced
by the numerical method, a different designation must be applied for ξ which includes the contribution from
the physical viscous damping. Hence, the combined effect of the sheer algorithmic and viscous damping shall
be mentioned as Apparent Damping Ratio (ADR). Thus, the ADR of the CDM can be given by the following
two-stage definition.

ξ̂ = ln (1 − 2ξ�tω)

2 atan

(
�tω

√
4 − (�tω + 2ξ)2

(�tω)2 + 2ξ�tω − 2

) (22)

ξ = ξ̂
√
1 + ξ̂2

(23)

Comparing the PDR with the matching ADR at identical parameters, a significant difference occurs between
the resulting damping curves. In Fig. 3 a progressive, a degressive and a linear PDR character is plotted in
the function of circular eigenfrequencies with identical initial tangent. As it can be observed, there appears
a substantial amount of distortion in the ADR compared to the original curves. Thus, the aimed damping
characteristics cannot be given as the PDR in the function of ω; it must be specified by the ADR. Hence, the
corresponding ξ values must be calculated for every given ξ based on equation (22)-(23). As these formulae
cannot be treated analytically, the belonging ξ values can be solved with the use of an appropriate root finding
algorithm.

The proposed method provides a very versatile determination for the damping characteristics. According
to the shape of damping curve, there are no constraints, as the damping values can be specified for each circular
eigenfrequency individually. However, there exists a maximal damping limit for each ω which separates the
convergent region from the divergence. To ascertain these particular damping values, �tc and �tb must be
deducted for the CDM according to (15) and (17), respectively.
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Fig. 3 Distortion between the PDR and the ADR for various damping curves at �t = 0.4�tmax

Applying equation (15), the critical time step size (�tc) for the CDM can be computed as

�tc = 2

ω

(√(
1 + ξ2

) − ξ

)
(24)

for each ω and the belonging PDR. At the bifurcation point, the imaginary part of the eigenvalues becomes
zero (ε = 0). This condition results the following equation as the formula for �tb.

�tb = 2

ω
(1 − ξ) (25)

Considering equation (24) and (25), it can be easily deducted that inequality �tb ≤ �tc is fulfilled for every
ω and ξ . Hence, the maximal applicable parameters are ascertained at the bifurcation point. Below this limit
value, the applicable PDR region can be calculated based on

ξ ≤ 1 − �tω

2
(26)

within the region of 0 ≤ ξ < 1. Examining the ADR at the maximal possible PDR determined by equation
(26), it can be analytically deducted that the left side limit of ξ at this particular value gives the following
result.

lim
ξ→ξ−

max

(
ξ
) = 1 (27)

This limit value is also called critical damping. Thus, the maximal applicable ADR value is independent
from the time step size and the circular eigenfrequency. This result provides a great freedom for the determi-
nation of the damping characteristics, as any value is possible within the region of 0 ≤ ξ < 1 for every ω, by
any �t < �tmax where �tmax is determined for the undamped case as

�tmax = 2

ωmax
. (28)

The distortion between the PDRand theADR is especially significant byω values close toωmax (see Fig. 4). The
applied time step size also affects the amount of distortion substantially as it can be concluded by comparing
Figs. 4 and 5. Thus, it can be inferred that by time steps near �tmax and by frequencies close to ωmax equation
(22) and (23) must be applied to determine the damping characteristics accurately.
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Fig. 4 ADR/PDR ratio for for various ω values at �t = 0.9�tmax

Fig. 5 ADR/PDR ratio for various ω values at �t = 0.2�tmax

Fig. 6 Mechanical model of the wave propagation problem

5 Numerical example

5.1 Model

In order to demonstrate the practical benefits of the proposedmethod, a simple numerical example is considered.
In Fig. 6, the mechanical model of a wave propagation problem is shown. The right side endpoint of the rod
of length l is fixed while a v0 initial velocity is defined for every other point of the rod. Because of the fixed
endpoint, an elastic deformation occurs alongside the x direction which can be described as a propagating
wave. Similar examples are used oftentimes to test experimental numerical methods [2,8,35].

The above presented test example is solved using the FEM with both one-dimensional (1D) and two-
dimensional (2D) models. The FE model and the boundary conditions for the 1D case are shown in Fig. 7.
This model is compiled using 1D truss elements with 1-Degree-of-Freedom (DoF) per node which is the
longitudinal displacement. It contains uniform elements with E = 90MPa and ρ = 7.85 · 10−9 kg/mm3
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Fig. 7 FE model (1D)

Fig. 8 FE model (2D)

material parameters, the initial velocity is v0 = 1000mm/s, while the parameters of themesh are the following:
l = 100mm, n = 100, le = 1mm.

The FE model and the boundary conditions for the 2D case are shown in Fig. 8. This model is compiled
using 2D quadrilateral elements with 2 Degrees of Freedom (DoF) per node which are the longitudinal and the
transversal displacement. It contains uniform elements with the same material parameters and initial velocity
like by the 1D model. The parameters of the mesh are the following: l = 100mm, h = 10mm, n = 100,
m = 10, le = he = 1mm.

5.2 Results

As it is proved in section 4, the definition of an aimed damping character as equivalent PDR results a significant
distortion in the ADR (see Fig. 3). In order to test this effect in the above-mentioned 1D and 2D test examples,
three different characteristics are prescribed according to Fig. 9. The progressive, linear and degressive charac-
ters are given in the form of f (x) = 2x − 1, f (x) = x and f (x) = log2(x + 1), respectively. Considering the
damping curves at �t = 0.4�tmax, the ADR equivalent to the aimed character offers a perfect match to the
aimed character, while the equivalent PDR results a severe distortion in ξ by all of the considered characters.

Considering the curves in Fig. 9, it is easy to recognize that the distortionmainly occurs at the higher circular
eigenfrequencies (which is consistent with Figs. 4 and 5). The amount of distortion shall be quantified using
the relative error between the results of the equivalent PDR and ADR. This can be given in a comprehensive
form according to

Erel(PDR) =

N∑

1=1

∣
∣�PDR

i − �ADR
i

∣
∣

N∑

1=1

∣∣�ADR
i

∣∣
. (29)

where N means the number of time steps, while�PDR
i and�AD

i are the considered quantities at the i th time step
by equivalent PDR and ADR, respectively. The relative error calculated for for ξ shows a growing difference
between the equivalent PDR and ADR as the damping curve turns from progressive to linear and degressive.
This phenomenon emerges because at higher ξ values, the discrepancy between the equivalent PDR and ADR
will also be higher (see Figs. 4 and 5). Thus, in case of equivalent PDR, the shape of the damping curves
remains close to the aimed character at the lower frequency range, but undergoes significant changes at higher
frequencies.

The 1D representation of the considered wave propagation problem has an exact solution that can be
deducted using the wave equation with the corresponding boundary conditions. This feature provides a very
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Fig. 9 Damping characters with ξmax = 0.5 at �t = 0.4�tmax

Fig. 10 Wave front in the 1D model at t = 7.43 · 10−4 [s]

useful reference for the evaluation of the numerical results. Applying the damping characters shown in Fig.
9 for the 1D model, numerical results appear to have a significant difference compared to the exact solution
(see Fig. 10). Comparing the definitions of the damping character as viscous damping using equivalent PDR
and ADR, it can be concluded that the different ξ characters in Fig. 9 induces a noticeable discrepancy in the
resulting velocity functions in Fig. 10. As it has been expected based on Fig. 9, the velocity curves run farther
from the exact solution due to the higher amount of damping when the aimed damping character is defined as
equivalent PDR.

The relative errors computed for the velocity show an increasing tendency as the damping character turns
from progressive to linear and degressive. These results are in accordance with the distortions between the
damping characters in Fig. 9. The higher discrepancy in the damping curves results a higher relative error in
the velocity functions.

The 2D representation of the test example cannot be treated analytically; hence, there is no reference for
the numerical results. However, comparing the two different definitions of damping, a significant distortion
occurs in the resulting velocity functions by equivalent PDR. Besides, the 2D case results the same tendency in
the relative errors as in the 1D case, but with slightly higher values. The latter is reasoned by the more complex
FE model of the 2D case with higher eigenfrequencies (Fig. 11).

In order to verify the accuracy the numerical results, comparative simulations were made in ANSYS
Mechanical APDL software for both the 1D and 2D cases. The FE models were defined using the same
parameters as above. The element type LINK180 was defined in the 1D case, while PLANE182 was applied
for the 2Dmodel. The CDMmethod is not implemented in Mechanical APDL in general, but with module LS-
DYNA, it can be applied. The appropriate damping matrix was pre-composed and imported. The comparative
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Fig. 11 Wave front in the 2D model at t = 7.43 · 10−4 [s]

Fig. 12 Relative error of the velocity (1D model)

results showed a very precise math for both the 1D and 2D models, proving that our own FE code produces
accurate calculations.

5.3 The effect of time step size and element number

In the sections above, the differences between the equivalent PDR andADRwere determined for one particular
time step size and element number. However, Erel(PDR)must be determined for different temporal and spatial
discretizations to examine the effect of the time step size and the element number. In the following, the damping
character is defined in Fig. 9b for both the 1D and 2D cases.

Firstly, the 1D case shall be considered in the function of these two parameters (Fig. 12). The contour plot
shows that the relative error is roughly independent from the time step size. However, the number of elements
has a significant impact on Erel(PDR). It decreases as the spatial discretization becomes finer, but the gradient
of decline also diminishes.

As computations are more resource intensive for the 2D model, the relative errors are examined in the
function of the time step size and the element number separately. In Fig. 13a, the time step size is set as
�t = 8 · 10−7 [s], while in Fig. 13b, n = 640 element number is considered. The results show a similar
connection between the relative error and the number of element and the time step size, respectively. Erel(PDR)
does not improve significantly with the reduction in the time step size. However, increasing the number of
elements reduces the relative error with a diminishing gradient.
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Fig. 13 Relative error of the velocity (2D model)

Fig. 14 Period error of the Newmark method and the CDM with equivalent ADR for various δ values

6 Reproduction of numerical damping

An other possible application of the CDM with viscous damping is the reproduction of the damping effect
of methods using numerical damping. To put this feature to the test, the well-known Newmark method [5] is
considered. The basic formulation of this method is determined by the following two equations.

ut+�t = ut + �t u̇t + �t2

2
((1 − 2β)üt + 2βüt+�t ) (30)

u̇t+�t = u̇t + �t ((1 − γ )üt + γ üt+�t ) (31)

where

β = 1

4
(1 + δ)2 and γ = 1

2
+ δ where δ ≥ 0 (32)

In order to accurately reproduce the numerical results of the Newmark method using the CDM with viscous
damping, the best possible match is aimed in the numerical features of the two methods. Thus, not only a
matching damping characteristics must be defined, but the PE also must be aligned to the Newmark method.
Based on Fig. 14, it can be concluded that a perfect match cannot be achieved, as the PE curves for theNewmark
method run in the positive, while for the CDM in the negative range. However, through the appropriate setting
of the time step size, the PE values can be taken very close to each other, as it is suggested in Fig. 14. Thus, time
step size is set to be �t = 0.05�tmax in this test example , while the control parameter is given as δ = 0.8.

After setting the time step size appropriately, a matching damping characteristics must be defined for the
CDM (Fig. 15). As the applied time step is a very small proportion of �tmax, the definition in PDR does not
result a significant distortion in ξ (see Figs. 4 and 5). Thus, the Newmark method’s damping character can be
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Fig. 15 Reproduction of the Newmark method’s damping character

Fig. 16 Wave front in the 1D model at t = 4.67 · 10−4 [s]

given directly as the PDR for the chosen time step. In contrast, if the time step size is set to be much higher
(�t = 0.3�tmax), then a noticeable distortion occurs between the plotted damping characters.

The accuracy of the Newmark method’s reproduction is tested in both of the considered 1D and 2D
examples. As it is expected based on Fig. 15, the resulting velocity curves (Figs. 16 and 17) run very close to
each other by both models if �t = 0.05�tmax. On the one hand, the results confirm that the direct definition
of PDR is sufficient in this time step range. On the other hand, the reproduction of the Newmark method
proved to be accurate too. However, when �t = 0.3�tmax is chosen, the matching with the Newmark method
deteriorates and a significant difference emerges between the equivalent PDR and ADR. Thus, it can be stated
that the close match of the period error is also required to reproduce numerical damping accurately with the
use of viscous damping.

7 Conclusion

In this paper, a versatile method has been introduced to determine damping characteristics with arbitrary
shape. The proposed technique is based on the central difference method, as it has no numerical damping. The
damping effect is straightly exerted via viscous damping in the FE model. As it has been proved, the proposed
method provides a great accuracy in the composition of the damping matrix, as the damping characteristics
are straightly defined through the ADR. Besides, this approach offers a great variety in the determination of
the aimed damping character. In the shape of the damping curve, there is no limitation, as any value below the
critical damping can be given for the ADR at any eigenfrequency and �t < �tmax. The proposed method was
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Fig. 17 Wave front in the 2D model at t = 4.67 · 10−4 [s]

tested in both 1D and 2D test examples where it has been proved that the damping characteristics at time steps
close to�tmax must be defined as the ADR. Another useful feature of the presented method is the reproduction
of numerical damping with the use of viscous damping. Nevertheless, this can only be fulfilled if a close
match is accessible in the period error compared to the aimed numerical damping method. Further inspections
suggest that the application of the proposed method with specific damping characters can be especially useful
for contact problems.
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