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Abstract The stability behaviour of unsymmetrical laminated structures made of fibre-reinforced plastics is
significantly influenced by bending–extension coupling and the comparatively low transverse shear stiffnesses.
The aim of this work is to improve the analytical stability analysis of unsymmetrically laminated structures.
With the discrete plate theory, the stability of laminated structures can be reduced to single laminated plates.
The structure is divided into individual segments, and the surrounding structure ismodelled by rotational elastic
restraints. The governing equations for single plates under specific boundary conditions can be solved exactly
with Lévy-type solutions. In this study, Lévy-type solutions for the mentioned boundary conditions under
biaxial compressive load is described for the classical laminated plate theory, the first-order shear deformation
theory and the third-order shear deformation theory (TSDT). In addition to transverse shear, bending–extension
couplings of unsymmetrical cross-ply and antisymmetrical angle-ply laminates are considered. For the imple-
mentation of boundary conditions for the rotational restraints in the context of TSDT, a new set of conditions is
formulated. The investigation shows very good agreement of the buckling load with comparative finite element
analyses for different layups.

Keywords Buckling · Shear deformations · Lévy-type solution · Unsymmetrical laminated plates

1 Introduction

Several theories are available to describe the mechanical behaviour of composite laminates. These laminated
plate theories reflect the anisotropy of laminated plates and consider the transverse shear deformations in
different ways. The classical laminated plate theory (CLPT) neglects the transverse shear deformations, i.e.
the cross section remains flat and perpendicular to the mid-plane, see [1]. The neglect of shear compliance is
appropriate in a good approximation for thin laminates. A constant shear deflection is assumed by the first-
order shear deformation theory (FSDT) and gives more realistic results even for thicker laminates, see [2–4].
From a physical point of view, the shear stresses at the top and bottom surface of the plate have to disappear,
but this is not reflected in the FSDT due to the resultant constant shear strains. In order to keep this error as
small as possible on average, the shear correction factor K is introduced, which is in the present investigation
assumed with the ‘classical’ value 5/6. The third-order shear deformation theory (TSDT) describes a cubic
cross-sectional deformation, which represents a clearly more realistic representation and thus does not require
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the introduction of the shear correction factor, see [5,6]. Therefore, the TSDT is also suitable for very thick
laminates or laminates with pronounced shear compliance.

In addition to the very well-known approximation methods for determining the stability behaviour of fibre-
reinforced plastic composites, such as mesh-based methods (finite element method (FEM), finite strip method
(FSM), boundary element method), semi-analytical methods (most prominently Ritz and Galerkin method)
and closed-form analytical methods (explicit solution for the critical load by means of energetic methods),
there are also exact solutions for stability problems of laminates. For this purpose, the Navier and Lévy-type
solutions are available, which allow an exact solution for certain boundary conditions.

The Navier solution provides an exact solution in the context of the buckling problem for an all-sided
simply supported laminate that is subjected to a simple or biaxial constant compressive load. This solution is
generated using trigonometric shape functions that satisfy all boundary conditions and differential equations
at the same time. This provides an explicit equation of the critical load. The Navier solution is in principle
accessible for all orthotropic laminates and includes not only symmetric cross-ply but also unsymmetric cross-
ply and antisymmetric angle-ply laminates. In the framework of the CLPT, the Navier solutions that consider
bending–extension couplings can be found in [7–10]. In the context of FSDT, these solutions are published in
[3,11], which refer to the frequency analysis of unsymmetric laminates. The slightly modified procedure for
buckling analysis is described in [12]. For the TSDT the publications [12–14] are to be mentioned. The main
disadvantage of the Navier solution is the limitation to simply supported boundary conditions.

The Lévy-type solutions can be derived for a much wider range of boundary conditions. Two opposite
edges are arbitrary in their supports, the remaining two are simply supported. Load case and laminate properties
are taken from the Navier solution (constant biaxial compressive load, orthotropic laminates). The Lévy-type
solutionmakes the same approach as theNavier solution in one coordinate direction. This approach satisfies the
boundary conditions of the simple support and thus simultaneously reduces the partial differential equations
into ordinary differential equations. This solution method is used in many studies for different boundary
conditions, laminate types and laminated plate theories. If symmetrical laminates are considered, all bending–
extension couplings disappear, and the in-plane displacements do not have to be considered in the scope of
the buckling analysis. In the context of the CLPT, the problem reduces to one differential equation and will
be addressed in the following. For the investigation of flange buckling of composite I-beams, a Lévy-type
solution for SFSR laminates is presented in [15]. The abbreviations mean: simple support (S), free edge (F),
rotational restraint (R). The rotational restraint is determined by the material properties of the web. A detailed
consideration of the restraint stiffness of SFSR laminates can be found in [16]. Flange buckling of composite
I- and box-beams is studied in [17] using Lévy-type solutions. Herein, SFSR and SRSR plates are considered.
The Lévy-type solution used here for the SRSR plate is applied to an omega-stringer-stiffened panel in [18]. A
detailed consideration of the Lévy-type solution in relation to SFSR and SRSR laminates can be found in [19].
A solution for the SRSR plate under biaxial compression is published in [20]. For various combinations of free,
simply supported and clamped unloaded edges, the solutions for a constant compressive load are described
in [21]. In order to solve the so-called Windenburg problem of orthotropic composite plates with one free
reinforced unloaded edge, a beam is coupled with a plate edge in [22] and solved exactly using a Lévy-type
solution. For the description of the local buckling of composite beams under non-constant compressive load
or bending, a Lévy-type solution is presented in [23], which allows to assemble the beam of several individual
plates. For each plate, a Lévy-type approach ismade, and the corresponding boundary and continuity conditions
are formulated. The result is a transcendental equation for the critical load of the entire beam. In [24] a Lévy-
type solution is presented that describes the critical compressive load of an omega-stringer-stiffened panel. All
the individual segments, including the omega-stringer, are also modelled here. This detailed description of the
system leads to a very precise prediction of the local buckling behaviour.

In the framework of the FSDT and TSDT, three coupled differential equations are available for the buckling
problem of symmetrical laminates, which are discussed in the following publications. In [25] a Lévy-type
solution for the boundary conditions of simply supported, clamped and free edges is described in the framework
of TSDT. The differential equation system is converted into a first-order system and then solved as part of
the space state approach. This solution assumes linear strains and is also studied in [26]. In [27], however, a
nonlinear correlation of the strains is given for the external potential. In addition to the previously described
space state approach, solutions are also proposed in [28,29] which do not carry out a reduction in the order but
give special solutions and their different cases. Solutions for CLPT, FSDT and TSDT are considered here. The
comparison of the theories shows a good agreementwith theTSDT for the FSDTwith the shear correction factor
5/6. The CLPT, on the other hand, clearly overestimates the critical buckling load for small relative widths. For
transversely isotropic materials, a Lévy-type solution is presented in [30]. In this, the differential equations are
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again decoupled and a connection between the cross-sectional rotations is established. In [31], besides Navier
solutions, Lévy-type solutions for orthotropic symmetric laminates are developed in the framework of TSDT.
The in-plane displacements are considered, but the bending–extension couplings of unsymmetric laminates
are neglected. The method is modular with respect to the strain measures and can reproduce von Kármán
and Green–Lagrange strain measures. The Lévy-type solution is applied to different plate assemblies, such as
stiffened plates.

In the linear buckling analysis of unsymmetric laminates, the pre-buckling state is neglected. This applies
to methods that take into account bending–extension couplings in a direct way as well as in a indirect way, such
as the reduced bending stiffness method, which can be found, for example, in [32,33]. However, unsymmetric
laminates can exhibit lateral deflections as a result of in-plane loading. Therefore, Leissa [34] developed
conditions for the unsymmetrical plates to remain flat under in-plane loading. These are investigated in [35]
with respect to different boundary conditions. In [36] similar conditions are formulated by extending the
concept of bifurcation. The author concludes that the eigenvalue analysis provides a useful limit value for the
buckling load as long as the bending deformations in the pre-buckling state are small. This is confirmed in
[37] by means of nonlinear post-buckling analyses. In contrast to the previously shown studies, Diaconu and
Weaver [38] investigates long rectangular plates and shows that the deformations in the pre-buckling region are
small in the centre of the plate and occur significantly near the loaded edges. Furthermore, it is found there is a
particularly good agreement between nonlinear and linear analysis for small pre-buckling deformations. These
observations again agree with the statement from [36], where it is stated that in bifurcational buckling the
deformations in the pre-buckling state are small, and the bending shape is different from the buckling shape.
Thus, linear buckling analysis can give useful results. However, for a more detailed simulation, nonlinear
buckling analysis should be used.

The bending–extension coupling of unsymmetric laminates effects a coupling of the in-plane and out-
of-plane differential equations. In the context of Lévy-type solutions, all differential equations as well as
boundary conditions have to be considered. The considered laminates can be unsymmetric, but still need to have
orthotropic properties. For the CLPT, FSDT and TSDT this procedure is presented for antisymmetric cross-ply
laminates in [39] for the boundary conditions simply supported, clamped and free edges. In [40] antisymmetric
cross-ply and angle-ply laminates are treated in the context of CLPT. The three coupled differential equations
are transformed into a single differential equation of eighth degree. Within the FSDT, the Lévy-type solution
for antisymmetric angle-ply laminates is given in [41]. Biaxial pressure is treated for the boundary conditions
simply supported, clamped and free edges. To the best of the authors’ knowledge, the solution for antisymmetric
angle-ply laminates in the context of TSDT cannot be found in the literature.

The stability of fibre-reinforced composite structures can be describedwith the discrete plate theory. For this
purpose, the structure is divided into individual segments and the supporting effect of the surrounding structure
is modelled by means of elastic restraints and suitable boundary conditions. This is shown schematically for a
stiffened panel and an I-beam in Fig. 1. The literature review shows that in the context of Lévy-type solutions
for unsymmetric laminates, no investigations concerning elastic restraints were conducted. Particularly, the
Lévy-type solution in the context of antisymmetric angle-ply laminates is not found for TSDT with respect to
buckling analysis.

The aim of this work is to close the last mentioned lack in the literature and to develop the remaining
Lévy-type solution for antisymmetric angle-ply laminates in the context of TSDT for the stability problems.
Another focus is on the insufficient description of rotational restraints in the context of TSDT, for which
a better description is required. Since there is no comprehensive investigation of the rotational restraint of
unsymmetric laminates in the literature, this work also wants to address this field. Here, Lévy-type solutions
for unsymmetric cross-ply and antisymmetric angle laminates in the framework of CLPT, FSDT and TSDT
are presented in a consistent and compact notation. Based on these solutions, the rotational elastic restraint for
the mentioned laminated plate theories is investigated.

In [43] a closed-form approximate solution for the mentioned problem, which is outlined in Fig. 1, is
presented for CLPT, FSDT and TSDT. Herein, it is shown that good agreements are obtained for unsymmetric
cross-ply laminates, but large deviations can occur for antisymmetric angle-ply laminates. The present method
also addresses this area and wants to demonstrate that analytical solutions with remarkably high accuracy can
also be achieved for this problem. The present solution considers the same plate types and boundary conditions
as in [43] and additionally presents an exact description of the problem.
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Fig. 1 Stiffened composite panel (left), composite beam (right). Schematic sketch of the discrete plate analysis of the plate types
SRSR (left) and SFSR (right). The individual plates are loaded with a compressive load N 0

xx and supported with the rotational
restraints (k0, kb)

Fig. 2 Kinematics and cross-sectional deformation for the classical laminated plate theory (CLPT, cross sections flat and normal
to the mid-plane, cf. Equation (1)), the first-order shear deformation theory (FSDT, constant transverse shear deformation, cf.
Equation (2)), the third-order shear deformation theory (TSDT, cubic cross-sectional deformation, cf. Equation (3)

2 Laminated plate theories

In this section, the basic quantities are defined, and a consistent definition is introduced. This is the basis for
the formulations in the following sections. For this purpose, the laminate theories considered, CLPT, FSDT,
and TSDT, are given in condensed notation. These can be found in detailed form in relevant textbooks and in
[1,3,5].
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The theories differ essentially in the deformation of the cross section, as shown in Fig. 2. The quantities
u, v, and w indicate the displacements in the direction of the x , y, and z coordinates, respectively. The angles
ψx and ψy define the cross-sectional rotation around the x- and y-axis, respectively. The mentioned quantities
are described in relation to the x-coordinate direction in Fig. 2. The displacement field of CLPT (1) is based
on the assumptions of the classical Kirchhoff plate theory, which means that the cross sections remain flat and
normal to the mid-plane in the deformed state.

u(x, y, z) = u0(x, y) − z
∂w0(x, y)

∂x
,

v(x, y, z) = v0(x, y) − z
∂w0(x, y)

∂y
,

w(x, y, z) = w0(x, y). (1)

In the framework of FSDT, the cross sections also remain flat. However, rotations of the cross sections are
enabled as described in Eq. (2). This leads to constant shear deformations and shear stresses. From a physical
point of view, however, the shear stresses should disappear at the top and bottom surfaces of the laminate; thus,
the so-called shear correction factor K is introduced to keep this error low on average.

u (x, y, z) = u0 (x, y) + z ψx (x, y) ,

v (x, y, z) = v0 (x, y) + z ψy (x, y) ,

w (x, y) = w0 (x, y) . (2)

The displacement field of TSDT (3) eliminates both hypotheses mentioned and describes cross-sectional
rotations as well as shear deformations. All three theories have in common that the laminate thickness t does
not change in the deformed state.

u(x, y, z) = u0(x, y) + zψx (x, y) − 4z3

3t2

(
ψx (x, y) + ∂w0(x, y)

∂x

)
,

v(x, y, z) = v0(x, y) + zψy(x, y) − 4z3

3t2

(
ψy(x, y) + ∂w0(x, y)

∂y

)
,

w(x, y) = w0(x, y). (3)

The constitutive law of the laminated plate theories can be represented in general terms as:

N = S ε. (4)

The resulting forces and moments are summarised in the vector N and the corresponding strains in the vector
ε. The laminate stiffness matrix is denoted by S. The quantities mentioned differ in the various theories. For
the CLPT, the constitutive law results in Eq. (5). The FSDT additionally considers the shear forces Q, whereas
transverse shear stiffnesses AS are reduced by the shear correction factor K , as shown in Eq. (6). Due to the
cross-sectional warping in the TSDT, further terms are added in Eq. (7).

CLPT:

[
N
M

]
=
[
A B
B D

] [
ε(1)

κ

]
(5)

FSDT:

⎡
⎣ N
M
Q

⎤
⎦ =

⎡
⎣ A B 0
B D 0
0 0 K AS

⎤
⎦
⎡
⎣ ε(1)

ε(2)

γ (1)

⎤
⎦ (6)

TSDT:

⎡
⎢⎢⎢⎣

N
M
P
Q
R

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

A B E 0 0
B D F 0 0
E F H 0 0
0 0 0 AS DS

0 0 0 DS FS

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

ε(1)

ε(2)

ε(3)

γ (1)

γ (2)

⎤
⎥⎥⎥⎥⎦ (7)
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The individual quantities from the constitutive laws are composed of the following terms:

ε(1) =
⎡
⎢⎣

∂u0
∂x
∂v0
∂y

∂u0
∂y + ∂v0

∂x

⎤
⎥⎦ , ε(2) =

⎡
⎢⎣

∂ψx
∂x
∂ψy
∂y

∂ψx
∂y + ∂ψy

∂x

⎤
⎥⎦ ,

ε(3) =

⎡
⎢⎢⎢⎣

− 4
3t2

(
∂ψx
∂x + ∂2w0

∂x2

)
− 4

3t2

(
∂ψy
∂y + ∂2w0

∂y2

)
− 4

3t2

(
∂ψx
∂y + ∂ψy

∂x + 2 ∂2w0
∂x∂y

)

⎤
⎥⎥⎥⎦ , κ =

⎡
⎢⎢⎣

− ∂2w0
∂x2

− ∂2w0
∂y2

−2 ∂2w0
∂x∂y

⎤
⎥⎥⎦ ,

γ (1) =
[

ψy + ∂w0
∂y

ψx + ∂w0
∂x

]
, γ (2) =

⎡
⎣− 4

t2

(
ψy + ∂w0

∂y

)
− 4

t2

(
ψx + ∂w0

∂x

)
⎤
⎦ ,

N =
⎡
⎣ N 0

xx
N 0
yy

N 0
xy

⎤
⎦ , M =

⎡
⎣M0

xx
M0

yy
M0

xy

⎤
⎦ , Q =

[
Qy
Qx

]
,

P =
⎡
⎣ Pxx
Pyy
Pxy

⎤
⎦ , R =

[
Ry
Rx

]
. (8)

The stiffness matrix S is composed of different single layer parameters as described in the following. The
reduced stiffness matrix of the single layer is symmetric (Qi j = Q ji for i, j = 1, 2, 6) and composed of the
following engineering constants of the single layer:

Q11 = E11
1−ν12ν21

, Q22 = E22
1−ν12ν21

, Q12 = ν12E22
1−ν12ν21

,

Q16 = 0, Q26 = 0, Q66 = G12.
(9)

The transformed reduced stiffnesses Q̄i j can be determined with the following transformations, where ϕ
indicates the angle between the on-axis and the off-axis coordinate system of the individual layers:

Q̄ = T Q Q T T
Q with T Q =

⎡
⎣ c2 s2 −2 cs
s2 c2 2 cs
cs −cs c2 − s2

⎤
⎦

and s = sin(ϕ), c = cos(ϕ). (10)

The submatrices of S are defined in Eq. (11) and due to the symmetry of Qi j they are symmetric as well.

Ai j =
∫ t

2

− t
2

Q̄i jdz, Bi j =
∫ t

2

− t
2

Q̄i j zdz, Di j =
∫ t

2

− t
2

Q̄i j z
2dz,

Ei j =
∫ t

2

− t
2

Q̄i j z
3dz, Fi j =

∫ t
2

− t
2

Q̄i j z
4dz, Hi j =

∫ t
2

− t
2

Q̄i j z
6dz,

for (i, j = 1, 2, 6). (11)

The single layer transverse shear stiffnesses C44 = G23 and C55 = G13 can be transformed from the local
into the global coordinate system as follows:

C̄ = TC

[
G23 0
0 G13

]
T T
C with TC =

[
c s

−s c

]
(12)

and s = sin(ϕ), c = cos(ϕ).



Lévy-type solutions for the buckling analysis 2913

The stiffness quantities relating to the transverse shear stiffnesses are denoted by the superscript S and can be
calculated as follows:

AS
i j =

∫ t
2

− t
2

C̄i jdz, DS
i j = ∫ t

2
− t

2
C̄i j z2dz, F

S
i j =

∫ t
2

− t
2

C̄i j z
4dz,

for (i, j = 4, 5) (13)

In this publication, orthotropic laminates are considered. Consequently, the following entries of the stiffness
matrices disappear:

A16 = A26 = D16 = D26 = F16 = F26 = H16 = H26

= A45 = D45 = F45 = 0. (14)

In the context of unsymmetrical laminates, this results in two laminate types. On the one hand, the unsymmetric
cross-ply laminate, which has the following zero entries in addition to Eq. (14):

B16 = B26 = E16 = E26 = 0. (15)

On the other hand, the antisymmetric angle-ply laminate, which, besides the zero entries of Eq. (14), shows
the following:

B11 = B12 = B22 = B66 = E11 = E12 = E22 = E66 = 0. (16)

3 Basic equations of the stability problem

This section contains the basic equations that are required to describe the stability problem from Fig. 3. With
the formulation of the potential energy and its variation, the boundary conditions, the equilibrium conditions
as well as the resulting partial differential equations can be formulated, which are the basis for the Lévy-type
solution that follows in the next section. The potential energy of the individual plates from Fig. 3 is composed
on the one hand of the internal energy 	i and the external energy 	e, which can be expressed as follows:

	i = 1

2

∫ b

0

∫ a

0
εTN dx dy, (17)

	e = −Ncr

2

∫ b

0

∫ a

0

{
ξx

(
∂w0

∂x

)2

+ ξy

(
∂w0

∂y

)2
}
dx dy. (18)

In Eq. (18), the load factors ξx and ξy represent, respectively, the proportional values of the critical load Ncr

to the two compressive loads, it holds: N 0
xx = ξx Ncr and N 0

yy = ξy Ncr. On the other hand, the stored energy
of the rotational restraints 	s needs to be considered. The rotation angle of the cross section can be expressed
by:

ϕ = ∂v(x, y, z)

∂z
. (19)

The evaluation of Eq. (19) for the three laminated plate theories shows no dependence with respect to thickness
direction for CLPT and FSDT, see Eqs. (20) and (21). The TSDT, on the other hand, shows a dependence with
respect to z, as shown in Eq. (22).

CLPT: ϕ = ∂w0

∂y
(20)

FSDT: ϕ = ψy (21)

TSDT: ϕ = ψy(x, y) − 4z2

t2

(
ψy(x, y) + ∂w0(x, y)

∂y

)
(22)
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Fig. 3 Boundary conditions and geometrical properties of the considered plates SRSR and SFSR with length a, width b and
rotational elastic restraints k0, kb. The constant compressive loads N 0

xx and N 0
yy depend on Ncr. The respective load portions are

controlled by ξx and ξy and take values from 0 to 1

The rotational restraints are distributed over the entire cross section, which have a constant stiffness per
thickness t . The following relationship applies to the potential:

	s = 1

2

a∫
0

t/2∫
−t/2

{
k0
t

[
ϕ2]

y=0 + kb
t

[
ϕ2]

y=b

}
dz dx . (23)

Evaluating Eq. (23) leads to the following expressions:

CLPT : 	s = 1

2

∫ a

0

⎧⎨
⎩k0

[
∂w0

∂y

∣∣∣∣
y=0

]2

+ kb

[
∂w0

∂y

∣∣∣∣
y=b

]2
⎫⎬
⎭ dx (24)

FSDT : 	s = 1

2

∫ a

0

{
k0
[
ψy (x, 0)

]2 + kb
[
ψy (x, b)

]2}dx (25)

TSDT : 	s = 1

2

∫ a

0

⎧⎨
⎩k0

[
8

15
ψ2
y − 4

15
ψy

∂w0

∂y
+ 1

5

(
∂w0

∂y

)2
]
y=0

+ kb

[
8

15
ψ2
y − 4

15
ψy

∂w0

∂y
+ 1

5

(
∂w0

∂y

)2
]
y=b

⎫⎬
⎭ dx (26)

The potential from Eq. (26) has the possibility to describe the energy of a cross-sectional rotation and warping
at the same time. This consideration is new and reflects the potential energy of the rotational elastic restraint
in a meaningful way. The total potential energy 	 results in:

	 = 	i + 	e + 	s. (27)

The variation of the potential from Eq. (28) enables to determine the equilibrium conditions as well as the
boundary conditions. For that purpose, the corresponding constitutive law (5), (6) or (7) is inserted into the
potential (27). Subsequently, this equation is varied, and the constitutive law is resubstituted.

δ	 = δ	i + δ	e + δ	s = 0. (28)

For reasons of brevity, this is only shown for the TSDT. Particular attention is drawn here to the new potential
formulation (26) and the resulting boundary conditions from the variation in Eq. (30).

δ	i+δ	a = −
∫ b

0

∫ a

0

{(
∂N 0

xx

∂x
+ ∂N 0

xy

∂y

)
δu0 +

(
∂N 0

xy

∂x
+ ∂N 0

yy

∂y

)
δv0

+
(

−ξx Ncr
∂w2

0

∂x2
− ξy Ncr

∂w2
0

∂y2
− 4

t2

[
∂Rx

∂x
+ ∂Ry

∂y

]
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+ 4

3t2

[
∂2Pxx
∂x2

+ ∂2Pyy
∂y2

+2
∂2Pxy
∂x∂y

]
+ ∂Qx

∂x
+ ∂Qy

∂y

)
δw0

+
(

∂Mxx

∂x
+ ∂Mxy

∂y
− 4

3t2

[
∂Pxx
∂x

+ ∂Pxy
∂y

]
− Qx

+ 4

t2
Rx

)
δψx +

(
∂Mxy

∂x
+ ∂Myy

∂y
− 4

3t2

[
∂Pxy
∂x

+ ∂Pyy
∂y

]

−Qy + 4

t2
Ry

)
δψy

}
dx dy +

∫ a

0

{[
N 0
xyδu + N 0

yyδv

+
(

−ξy Ncr
∂w0

∂y
+ 4

3t2

[
∂Pyy
∂y

+ 2
∂Pxy
∂x

]
+ Qy

− 4

t2
Ry

)
δ w0 +

(
Mxy − 4

3t2
Pxy

)
δψx

+
(
Myy − 4

3t2
Pyy

)
δψy − 4

3t2
Pyyδ

(
∂w0

∂y

)] ∣∣∣∣
b

0

}
dx

+
∫ b

0

{
N 0
xxδu + N 0

xyδv +
(

−ξx Ncr
∂w0

∂x

+ 4

3t2

[
∂Pxx
∂x

+ 2
∂Pxy
∂y

]
+ Qx − 4

t2
Rx

)
δ w0

+
(
Mxx − 4

3t2
Pxx

)
δψx +

(
Mxy − 4

3t2
Pxy

)
δψy

− 4

3t2
Pxxδ

(
∂w0

∂x

)} ∣∣∣∣
a

0
dy −

(
8

3t2
Pxyδ w0

) ∣∣∣∣
a

0

∣∣∣∣
b

0
(29)

δ	s =
∫ a

0

{
k0

[(
8

15
ψy − 2

15

∂w0

∂y

)
δψy

]
y=0

+ kb

[(
8

15
ψy − 2

15

∂w0

∂y

)
δψy

]
y=b

+ k0

[(
− 2

15
ψy + 1

5

∂w0

∂y

)
δ

(
∂w0

∂y

)]
y=0

+ kb

[(
− 2

15
ψy + 1

5

∂w0

∂y

)
δ

(
∂w0

∂y

)]
y=b

}
dx (30)

In order that Eq. (28) can be satisfied, the terms fromEqs. (29) and (30)must vanish individually. Consequently,
the first five bracketed terms in (29) provide the equilibrium conditions and the remaining terms from (29)
and (30) the boundary conditions of the system. Each boundary term can be satisfied in two ways. Either
the variable to be varied δ() disappears or the corresponding bracket term becomes zero. This results in the
boundary conditions of the SRSR and SFSR plate described below, which are outlined in Fig. 3. At the edge
x = 0, a the following applies for the simple support (S):

cross-ply:
N 0
xx = v0 = 0,

angle-ply:
N 0
xy = u0 = 0,

⎫⎪⎪⎬
⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

CLPT:
w0 = M0

xx = 0.
FSDT:
w0 = M0

xx = ψy = 0.
TSDT:
w0 = M0

xx = ψy = Pxx = 0.

(31)
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At the edges y = 0, b the following applies for the simple support with the rotational restraint (R):

cross-ply:
N 0
yy = u0 = 0,

angle-ply:
N 0
xy = v0 = 0,

⎫⎪⎪⎬
⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

CLPT:

w0 =
⎧⎨
⎩
[
−M0

yy − k0
∂w0
∂y

]
y=0

= 0.[
M0

yy − kb
∂w0
∂y

]
y=b

= 0.

FSDT:

w0 = ψx =
⎧⎨
⎩
[
−M0

yy + k0ψy

]
y=0

= 0.[
M0

yy + kbψy

]
y=b

= 0.

TSDT:
w0 = ψx

=
[

4
3t2

Pyy + k0
(
− 2

15ψy + 1
5

∂w0
∂y

)]
y=0

=
[
− 4

3t2
Pyy + kb

(
− 2

15ψy + 1
5

∂w0
∂y

)]
y=b

=
[
−M0

yy + 4
3t2

Pyy + k0
(

8
15ψy − 2

15
∂w0
∂y

)]
y=0

=
[
M0

yy − 4
3t2

Pyy + kb
(

8
15ψy − 2

15
∂w0
∂y

)]
y=b

= 0.

(32)

From the new energy consideration of the potential energy of the rotational elastic restraint in the framework
of the TSDT, see Eq. (26), new boundary conditions result by variation of the total potential, as described
in Eq. (32). This boundary condition contains for the limiting case k0 = kb = 0 the simply supported edge
(w0 = ψx = Pyy = M0

yy = 0). In the case of k0 = kb = ∞ the values ∂w0/∂y and ψy converge to zero so
that they are in sum with the finite values Pyy and M0

yy . This corresponds directly to the fully clamped edge
where the following applies: ∂w0/∂y = ψy = 0. Consequently, the new boundary conditions can represent
both limiting cases. At the edge y = b the following applies to the free edge (F):

cross-ply,
angle-ply:

N 0
yy = N 0

xy = 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

CLPT:

M0
yy = ∂M0

yy
∂y + 2

∂M0
xy

∂x = 0.
FSDT:
M0

yy = M0
xy = Qy = 0.

TSDT:{
M0

yy − 4
3t2

Pyy = Pyy = M0
xy − 4

3t2
Pxy

= 4
3t2

(
∂Pyy
∂y + 2 ∂Pxy

∂x

)
+ Qy − 4

t2
Ry = 0.

(33)

Due to the different coupling terms of unsymmetrical cross-ply and antisymmetrical angle-ply laminates, it
is advisable to adapt the boundary conditions with the selected approaches. This leads to different in-plane
boundary conditions as shown in Eqs. (31)–(33).

The differential equations are obtained by substituting the constitutive law into the equilibrium conditions.
For TSDT, the equilibrium conditions are represented in the first five terms of Eq. (29) and the constitutive law
can be found in Eq. (7). The differential equations can be formulated for CLPT, FSDT and TSDT in compact
matrix notation as follows:

Li j�i = 0,

{
i, j = 1, 2, 3 for CLPT
i, j = 1, .., 5 for FSDT

and TSDT
with �i =

⎡
⎢⎢⎢⎣
u0 (x, y)
v0 (x, y)
w0 (x, y)
ψx (x, y)
ψy (x, y)

⎤
⎥⎥⎥⎦ . (34)

It is important to note that Li j is symmetrical and consequently Li j = L ji is valid. The derivatives are specified
in the following with the derivative operator di,.... The operator di,... indicates with i = x a derivative to x
(∂/∂x) and with i = y a derivative to y (∂/∂y). A repeated index denotes multiple derivation. The different
theories have the following entries, in which the TSDT contains the abbreviation τ = 4/

(
3 t2

)
:

CLPT:
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L11 = A11 dx,x + A66 dy,y, L12 = (A12 + A66) dx,y,

L13 = (−B12 − 2 B66) dx,y,y − B11 dx,x,x − 3 B16 dx,x,y − B26 dy,y,y,

L22 = A22 dy,y + A66 dx,x ,

L23 = (−B12 − 2 B66) dx,x,y − B16 dx,x,x − 3 B26 dx,y,y − B22 dy,y,y,

L33 = (2 D12 + 4 D66) dx,x,y,y + ξx Ncr dx,x
+ ξy Ncr dy,y + D11 dx,x,x,x + D22 dy,y,y,y, (35)

FSDT:

L11 = A11 dx,x + A66 dy,y, L12 = dx,y (A12 + A66) , L13 = 0,

L14 = B11 dx,x + 2 B16 dx,y + B66 dy,y,

L15 = (B12 + B66) dx,y + B16 dx,x + B26 dy,y,

L22 = A22 dy,y + A66 dx,x , L23 = 0,

L24 = (B12 + B66) dx,y + B16 dx,x + B26 dy,y,

L25 = B22 dy,y + 2 B26 dx,y + B66 dx,x ,

L33 = (−K A55 + ξx Ncr) dx,x − (
K A44 − ξy Ncr

)
dy,y,

L34 = − K A55 dx , L35 = −K A44 dy,

L44 = − K A55 + D11 dx,x + D66 dy,y,

L45 = (D12 + D66) dx,y,

L55 = − K A44 + D22 dy,y + D66 dx,x , (36)

TSDT:

L11 = A11 dx,x + A66 dy,y, L12 = (A12 + A66) dx,y,

L13 = − τ
[
(E12 + 2 E66) dx,y,y + E11 dx,x,x

+ 3 E16 dx,x,y + E26 dy,y,y
]
,

L14 = (−τ E11 + B11) dx,x − (2 τ E16 − 2 B16) dx,y
− (τ E66 − B66) dy,y,

L15 = [τ (−E66 − E12) + B12 + B66] dx,y − (τ E16 − B16) dx,x
− (E26 τ − B26) dy,y, L22 = A22 dy,y + A66 dx,x ,

L23 = − τ
[
(E12 + 2 E66) dx,x,y + E16 dx,x,x

+ 3 E26 dx,y,y + E22 dy,y,y
]
,

L24 = [τ (−E66 − E12) + B12 + B66] dx,y + (−τ E16 + B16) dx,x
− (τ E26 − B26) dy,y,

L25 = (−τ E66 + B66) dx,x + (−2τ E26 + 2 B26) dx,y
− (τ E22 − B22) dy,y,

L33 = 2 τ 2 (H12 + 2 H66) dx,x,y,y + τ 2H11 dx,x,x,x + τ 2H22 dy,y,y,y

+ (−9 τ 2F55 + 6 τ D55 − A55 + ξx Ncr
)
dx,x

+ (−9 τ 2F44 + 6 τ D44 − A44 + ξy Ncr
)
dy,y,

L34 = τ [τ (H12 + 2 H66) − F12 − 2 F66] dx,y,y

+ τ (τ H11 − F11) dx,x,x − (
9 τ 2F55 − 6 τ D55 + A55

)
dx ,

L35 = τ [τ (H12 + 2 H66) − F12 − 2 F66] dx,x,y

+ τ (τ H22 − F22) dy,y,y − (
9 τ 2F44 − 6 τ D44 + A44

)
dy,

L44 = (
τ 2H11 − 2 τ F11 + D11

)
dx,x

+ (
τ 2H66 − 2 τ F66 + D66

)
dy,y

− (
9 τ 2F55 − 6 τ D55 + A55

)
,
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L45 = [
τ 2 (H12 + H66) − 2 τ (F12 + F66) + D12 + D66

]
dx,y,

L55 = (
τ 2H66 − 2 τ F66 + D66

)
dx,x

+ (
τ 2H22 − 2 τ F22 + D22

)
dy,y

− (
9 τ 2F44 − 6 τ D44 + A44

)
. (37)

4 Lévy-type solution

Based on the orthotropic laminate behaviour considered, the general form of the ansatz functions provides
a separation of variables with respect to the x- and y-directions. Due to the different coupling effects and
boundary conditions, a distinction must be made between cross- and angle-plies. The respective laminate
types are described in Eqs. (14), (15), and (16), respectively. The ansatz function �CP

i from Eq. (38) apply to
the unsymmetrical cross-ply laminate.

�CP
i =

⎡
⎢⎢⎢⎣
cos (β x)U (y)
sin (β x) V (y)
sin (β x)W (y)
cos (β x) X (y)
sin (β x)Y (y)

⎤
⎥⎥⎥⎦ , �AP

i =

⎡
⎢⎢⎢⎣
sin (β x)U (y)
cos (β x) V (y)
sin (β x)W (y)
cos (β x) X (y)
sin (β x)Y (y)

⎤
⎥⎥⎥⎦ (38)

For the antisymmetric angle-ply laminate the ansatz functions �AP
i result from Eq. (38). Both sets of ansatz

functions fulfil the boundary conditions (31) at the edges x = 0, a identically and contain the abbreviation
β = m π/a. The approaches also satisfy the differential equations with respect to the x-coordinate. Inserting
the approaches into the partial differential equations reduces them to ordinary differential equations in which
only derivatives with respect to y appear ((′) = (∂/∂y)). Since the approaches and coupling terms of the cross-
and angle-ply laminate differ, different ordinary differential equations arise here, which are presented in the
following for CLPT, FSDT and TSDT. The Lévy-type solutions presented in the next section solve the ordinary
differential equations from this section. They can also be found in a similar form in the publications [39] for
cross-ply laminates and in [41] for antisymmetric angle-ply laminates in the framework of the FSDT. In order
to make the results of the present investigation comprehensible and to enable the reader to use all relevant
methods in one consistent notation, they are all presented in the following.

4.1 CLPT cross-ply laminate

In the framework of CLPT, Eq. (34) is considered with the components from (35). The approach �CP
i of the

cross-ply laminate (38) is inserted here and the partial differential equation system reduces to an ordinary one.
The order of the resulting system can be reduced by some transformations to the following system:

U
′′ = c1U + c2 V

′ + c3 W + c4 W
′′
,

V
′′ = c5U

′ + c6 V + c7 W
′ + c8 W

′′′
,

W
′′′′ = c9U + c10 V

′ + c11 W + c12 W
′′
. (39)

The abbreviations in Eq. (39) are defined in Appendix A.1. In the context of the state space concept, Eq. (39)
is transformed into a first-order system with the following transformation:

U = Z1, U
′ = Z2, V = Z3, V

′ = Z4,

W = Z5, W
′ = Z6, W

′′ = Z7, W
′′′ = Z8. (40)

This leads to the following first-order differential equation system:

Z
′
(y) = C Z (41)
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and can be written as: ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Z1
′

Z2
′

Z3
′

Z4
′

Z5
′

Z6
′

Z7
′

Z8
′

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0 0
c1 0 0 c2 c3 0 c4 0
0 0 0 1 0 0 0 0
0 c5 c6 0 0 c7 0 c8
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
c9 0 0 c10 c11 0 c12 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
C

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Z1
Z2
Z3
Z4
Z5
Z6
Z7
Z8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (42)

4.2 CLPT angle-ply laminate

Substituting the approach �AP
i of the antisymmetric angle-ply laminate (38) into the differential equation of

the CLPT (34) with (35) leads after some transformations to:

U
′′ = c1U + c2 V

′ + c3 W
′ + c4 W

′′′
,

V
′′ = c5U

′ + c6 V + c7 W + c8 W
′′
,

W
′′′′ = c9U

′ + c10 V + c11 W + c12 W
′′
. (43)

The abbreviations in Eq. (43) can be found in Appendix A.2. Equation (43) can be transformed into the
following first-order differential equation system using (40):

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Z1
′

Z2
′

Z3
′

Z4
′

Z5
′

Z6
′

Z7
′

Z8
′

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0 0
c1 0 0 c2 0 c3 0 c4
0 0 0 1 0 0 0 0
0 c5 c6 0 c7 0 c8 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 c9 c10 0 c11 0 c12 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
C

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Z1
Z2
Z3
Z4
Z5
Z6
Z7
Z8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (44)

4.3 FSDT cross-ply laminate

In the context of FSDT, Eq. (34) is used with (36). If the approach�CP
i of the cross-ply laminate (38) is inserted

into this equation, the following ordinary differential equation system is obtained after a few transformations:

U
′′ = c1U + c2 V

′ + c3 W + c4 X + c5 Y
′
,

V
′′ = c6U

′ + c7 V + c8 W
′ + c9 X

′ + c10 Y,

W
′′ = c11 W + c12 X + c13 Y

′
,

X
′′ = c14U + c15 V

′ + c16 W + c17 X + c18 Y
′
,

Y
′′ = c19U

′ + c20 V + c21 W
′ + c22 X

′ + c23 Y. (45)

The abbreviations in Eq. (45) can be found in Appendix A.3.With the following transformation, the differential
equation system of the FSDT from Eq. (45) is transformed into a first-order system:

U = Z1, U
′ = Z2, V = Z3, V

′ = Z4,

W = Z5, W
′ = Z6, X = Z7, X

′ = Z8,
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Y = Z9, Y
′ = Z10. (46)

The first-order ordinary differential equation system resulting from the transformation has the form:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Z1
′

Z2
′

Z3
′

Z4
′

Z5
′

Z6
′

Z7
′

Z8
′

Z9
′

Z10
′

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0 0 0 0
c1 0 0 c2 c3 0 c4 0 0 c5
0 0 0 1 0 0 0 0 0 0
0 c6 c7 0 0 c8 0 c9 c10 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 c11 0 c12 0 0 c13
0 0 0 0 0 0 0 1 0 0
c14 0 0 c15 c16 0 c17 0 0 c18
0 0 0 0 0 0 0 0 0 1
0 c19 c20 0 0 c21 0 c22 c23 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
C

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Z1
Z2
Z3
Z4
Z5
Z6
Z7
Z8
Z9
Z10

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (47)

4.4 FSDT angle-ply laminate

For antisymmetric angle-ply laminates, the approach �AP
i from Eq. (38) is substituted into the differential

equation of FSDT (34) with (36). After some transformations, this leads to the following ordinary differential
equation system:

U
′′ = c1U + c2 V

′ + c3 W
′ + c4 X

′ + c5 Y,

V
′′ = c6U

′ + c7 V + c8 W + c9 X + c10 Y
′
,

W
′′ = c11 W + c12 X + c13 Y

′
,

X
′′ = c14U

′ + c15 V + c16 W + c17 X + c18 Y
′
,

Y
′′ = c19U + c20 V

′ + c21 W
′ + c22 X

′ + c23 Y. (48)

The abbreviations in Eq. (48) can be found in Appendix A.4. Using the transformation from Eq. (46), the
differential equation system (43) can be transformed to the following first-order system:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Z1
′

Z2
′

Z3
′

Z4
′

Z5
′

Z6
′

Z7
′

Z8
′

Z9
′

Z10
′

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0 0 0 0
c1 0 0 c2 0 c3 0 c4 c5 0
0 0 0 1 0 0 0 0 0 0
0 c6 c7 0 c8 0 c9 0 0 c10
0 0 0 0 0 1 0 0 0 0
0 0 0 0 c11 0 c12 0 0 c13
0 0 0 0 0 0 0 1 0 0
0 c14 c15 0 c16 0 c17 0 0 c18
0 0 0 0 0 0 0 0 0 1
c19 0 0 c20 0 c21 0 c22 c23 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
C

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Z1
Z2
Z3
Z4
Z5
Z6
Z7
Z8
Z9
Z10

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (49)

4.5 TSDT cross-ply laminate

For the cross-ply laminate in the context of TSDT, substituting the approach �CP
i from Eq. (38) into the

differential equation system (34) with (37) leads after some transformations to:

U
′′ = c1U + c2 V

′ + c3 W + c4 W
′′ + c5 X + c6 Y

′
,

V
′′ = c7U

′ + c8 V + c9 W
′ + c10 W

′′′ + c11 X
′ + c12 Y,
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W
′′′′ = c13U + c14 V

′ + c15 W + c16 W
′′ + c17 X + c18 Y

′
,

X
′′ = c19U + c20 V

′ + c21 W + c22 W
′′ + c23 X + c24 Y

′
,

Y
′′ = c25U

′ + c26 V + c27 W
′ + c28 W

′′′ + c29 X
′ + c30 Y. (50)

The abbreviations in Eq. (50) can be found in Appendix A.5. With the transformation (51), Eq. (50) can be
transformed into the first-order system (52).

U = Z1, U
′ = Z2, V = Z3, V

′ = Z4,

W = Z5, W
′ = Z6, W

′′ = Z7, W
′′′ = Z8,

X = Z9, X
′ = Z10, Y = Z11, Y

′ = Z12. (51)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Z1
′

Z2
′

Z3
′

Z4
′

Z5
′

Z6
′

Z7
′

Z8
′

Z9
′

Z10
′

Z11
′

Z12
′

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0 0 0 0 0 0
c1 0 0 c2 c3 0 c4 0 c5 0 0 c6
0 0 0 1 0 0 0 0 0 0 0 0
0 c7 c8 0 0 c9 0 c10 0 c11 c12 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
c13 0 0 c14 c15 0 c16 0 c17 0 0 c18
0 0 0 0 0 0 0 0 0 1 0 0
c19 0 0 c20 c21 0 c22 0 c23 0 0 c24
0 0 0 0 0 0 0 0 0 0 0 1
0 c25 c26 0 0 c27 0 c28 0 c29 c30 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
C

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Z1
Z2
Z3
Z4
Z5
Z6
Z7
Z8
Z9
Z10
Z11
Z12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(52)

4.6 TSDT angle-ply laminate

The antisymmetric angle-ply laminate has the approach �AP
i from Eq. (38). This is used in Eq. (34) with (37)

in the framework of TSDT. This results in an ordinary differential equation system, the order of the system
can be reduced by suitable reshaping and can be written as:

U
′′ = c1U + c2 V

′ + c3 W
′ + c4 W

′′′ + c5 X
′ + c6 Y,

V
′′ = c7U

′ + c8 V + c9 W + c10 W
′′ + c11 X + Y

′
c12,

W
′′′′ = c13U

′ + c14 V + c15 W + c16 W
′′ + c17 X + c18 Y

′
,

X
′′ = c19U

′ + c20 V + c21 W + c22 W
′′ + c23 X + c24 Y

′
,

Y
′′ = c25U + V

′
c26 + c27 W

′ + c28 W
′′′ + c29 X

′ + c30 Y. (53)

The abbreviations in Eq. (53) can be found in Appendix A.6. With the transformation (51), the differential
equation system (53) can be transformed into the following first-order system:
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Z1
′

Z2
′

Z3
′

Z4
′

Z5
′

Z6
′

Z7
′

Z8
′

Z9
′

Z10
′

Z11
′

Z12
′

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0 0 0 0 0 0
c1 0 0 c2 0 c3 0 c4 0 c5 c6 0
0 0 0 1 0 0 0 0 0 0 0 0
0 c7 c8 0 c9 0 c10 0 c11 0 0 c12
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 c13 c14 0 c15 0 c16 0 c17 0 0 c18
0 0 0 0 0 0 0 0 0 1 0 0
0 c19 c20 0 c21 0 c22 0 c23 0 0 c24
0 0 0 0 0 0 0 0 0 0 0 1
c25 0 0 c26 0 c27 0 c28 0 c29 c30 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
C

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Z1
Z2
Z3
Z4
Z5
Z6
Z7
Z8
Z9
Z10
Z11
Z12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (54)

For the differential equation systems shown, a solution method is presented in the next section.

4.7 The transcendental equation

The first-order differential equation systems shown previously are solved in the following with the space state
approach, which can be found, for example, in [25,42]. A general solution of the ordinary differential equation
system is given by:

Z (y) = eC y K . (55)
The vector K contains constant coefficients and can be described by the boundary conditions. In the case that
C is diagonalisable, the matrix eC y can be defined as follows:

eC y = L

⎡
⎢⎣
eλ1y 0

. . .

0 eλk y

⎤
⎥⎦ L−1. (56)

The matrix L contains the eigenvectors ofC , and λ1.. k represent the respective eigenvalues. The dimension
of the matrix C depends on the different laminated plate theories; therefore, the number of eigenvalues is
different, resulting in: k = 8 for CLPT, k = 10 for FSDT and k = 12 for TSDT. Equation (56) is only valid
as a solution if no multiple eigenvalues occur, i.e. the matrix C is diagonalisable. This is true for all cases
investigated. Substitution of Eq. (55) into the corresponding boundary conditions leads to a homogeneous
system of equations of the type:

M K = 0. (57)

The coefficient matrix M with dimension k × k depends on the underlying theory, as described before. A
non-trivial solution of (57) requires a vanishing determinant of the coefficient matrix:

det
(
M
)

= 0. (58)

This leads to a transcendental equation for the buckling load Ncr which is exact with respect to the underlying
theoretical framework. However, the method described can cause numerical problems. First, zero entries on the
main diagonal of C are problematic for eigenvalue analysis. Second, the problem det(M) = 0 is generally ill-
conditioned. For both problems there are solution strategies described in Appendix B. Supplemental solution
strategies are described below. In order to solve the transcendental equation, it is useful to have a suitable
starting value for the buckling load and half wave number mint. This starting point is determined with the
closed-form solution from [43]. The present Lévy-type solution is determined for mint − 1, mint, and mint + 1.
The lowest buckling loads of the three solutions are of interest and define the half wave number of the Lévy-
type solution. This procedure makes Lévy-type solutions much more efficient and robustly. For the solution
algorithm,moreover, the very large gradients of det(M)might cause difficulties aswell. Therefore, the objective

function is scaled with det(M)−1 from the starting value.
The solutions presented here can also be applied directly to symmetrical orthotropic laminates without any

modifications.
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Table 1 Investigation of the degree of orthotropy of a [(0◦/90◦)n] laminate for an SSSS plate with respect to the non-dimensional
buckling load: N cr = Ncr b2/

(
E22 t3

)
, a/b = 1, b/t = 10, ξx = 1, ξy = 0

Source n E11/E22
3 10 20 30 40

TSDT [39] 2 4.7749 6.2721 8.1151 9.8695 11.563
TSDT 2 4.7749 6.2721 8.1151 9.8695 11.563
FSDT [39] 2 4.7718 6.2465 8.0423 9.7347 11.353
FSDT 2 4.7718 6.2465 8.0423 9.7347 11.353
CLPT [39] 2 5.0338 6.7033 8.8158 10.891 12.957
CLPT 2 5.0338 6.7033 8.8158 10.891 12.957
TSDT [39] 4 5.2523 9.2315 14.254 18.667 22.579
TSDT 4 5.2523 9.2315 14.254 18.667 22.579
FSDT [39] 4 5.2543 9.2552 14.332 18.815 22.806
FSDT 4 5.2543 9.2552 14.332 18.815 22.806
CLPT [39] 4 5.5738 10.295 16.988 23.675 30.359
CLPT 4 5.5738 10.295 16.988 23.675 30.359
TSDT [39] 6 5.3420 9.7762 15.352 20.201 24.460
TSDT 6 5.3420 9.7762 15.352 20.201 24.460
FSDT [39] 6 5.3430 9.7893 15.394 20.280 24.577
FSDT 6 5.3431 9.7893 15.394 20.280 24.578
CLPT [39] 6 5.6740 10.960 18.502 26.042 33.582
CLPT 6 5.6738 10.960 18.502 26.042 33.582
TSDT [39] 10 5.3882 10.056 15.914 20.986 25.422
TSDT 10 5.3882 10.056 15.914 20.986 25.422
FSDT [39] 10 5.3884 10.060 15.927 21.008 25.450
FSDT 10 5.3884 10.060 15.927 21.008 25.450
CLPT [39] 10 5.7250 11.300 19.277 27.254 35.232
CLPT 10 5.7250 11.300 19.277 27.254 35.232

5 Results and discussion

5.1 Comparison with literature values

The present Lévy-type solution is compared with literature values for different E11/E22 ratios for verification.
The material parameters of the single layer are: G12 = G13 = 0.6 E22, G23 = 0.5 E22, ν12 = 0.25. In Table 1
the non-dimensional buckling loads of an SSSS plate under axial compression from [39] are compared with the
present solution. The two solutions present in both cases a Lévy-type solution and address the same laminated
plate theories. The deviation of the two solutions is 0.00%. This indicates the viability of the present solution
and their correct implementation.

5.2 Finite element model

Comparative finite element analyses (FEA) have been carried out using the commercial software Abaqus.
The model used employs quadratic shell elements (S8R) which exhibit Reissner–Mindlin kinematics. This
corresponds to the kinematics of the FSDT used in this work. The laminate stiffness values A, B, D, K As

are directly assigned at the element level and therefore the same as in the analytical modelling. The boundary
conditions of the analytical model used in the FSDT (Eqs. (31–33)) were adopted in the FE model. In detail,
the boundary conditions of the model shown in Fig. 4 are as follows: Edge (x = 0, a): Cross-ply: U3 = UR1
= 0, U2 = 0∗; Angle-ply: U3 = UR1 = 0, U1 = 0∗; Edge with rotational restraints (y = 0, b): Cross-ply:
U3 = UR2 = 0, U2 = 0∗; Angle-ply: U3 = UR2 = 0, U1 = 0∗; free edge (y = b): no displacement boundary
conditions; Vertices (x = 0, y = 0): U1 = U2 = 0; Vertices (x = a, y = 0): U2 = 0. The values marked with
∗ apply exclusively to the eigenvalue analysis. At the edges (y = 0, b) the rotational restraint stiffnesses k0,
kb, which are given per length in the analytical model, are converted to the respective nodes of the FE model:
kFE
0 = k0 a/nedge and kFE

b = kb a/nedge. The quantity nedge represents the number of nodes of the respective
edge. The external load Ncr is implemented as a line load as in the analytical model. The minimum element
edge length is 1/16 of the smallest edge, it provides a relative deviation of less than 0.1 %.
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Fig. 4 The FE model with coordinate system (x, y, z), the displacements (U1, U2, U3) and the rotations (UR1, UR2, UR3). The
plate is loaded with a line load Ncr and has the length a and the width b

Fig. 5 Cross-ply laminate [(0◦/90◦)2]: The non-dimensional buckling load N cr is given as a function of the non-dimensional
rotational restraints ki for axial compression (ξx = 1, ξy = 0), different relative widths b/t (5, 10, 100) and the boundary
conditions SRSR and SFSR with the aspect ratio of a/b = 10

5.3 Investigation of the rotational restraint stiffness

In this section, the present Lévy-type solution is compared with the FEA (see previous section) and the closed-
form (CF) solutions from [43]. The CF solution is an approximate solution for SRSR and SFSR laminates for
the laminate theories as well as laminate types considered here. This solution provides an explicit expression
for the buckling load and is therefore extremely computationally efficient. The present Lévy-type solution,
on the other hand, is an exact solution of the differential equation, which has an extremely high accuracy.
The comparison to FEA is to demonstrate that plausible results are produced with the present method. The
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Fig. 6 Angle-ply laminate [(45◦/ − 45◦)2]: The non-dimensional buckling load N cr is given as a function of the non-dimensional
rotational restraints ki for axial compression (ξx = 1, ξy = 0), different relative widths b/t (5, 10, 100) and the boundary
conditions SRSR and SFSR with the aspect ratio of a/b = 10

CF solution serves as an additional comparison to literature values and is also used as a starting value for
the present Lévy-type solution. The material parameters of the single layer are given below for this analysis:
E11 = 16.2 E22, G12 = G13 = 0.52 E22, G23 = 0.445 E22, ν12 = 0.3. In the framework of FSDT, a shear
correction factor of 5/6 is used.

For the cross-ply laminate, a very good agreement between the solutions is observed. In Fig. 5, all three
analysis methods show comparable results over the whole range of the restraint stiffness. The FEA is based
on the kinematics of the FSDT, so a comparison is appropriate in this framework. The maximum deviations
between the Lévy-type solution and the FEA with respect to the FSDT are 0.90% (SRSR) and 3.52% (SFSR),
which occur at b/t = 100. The CF solutions show small deviations of 3.93% (SRSR) and 7.67% (SFSR) with
respect to the Lévy-type solution. In the context of FSDT, the buckling behaviour of the studied cross-ply
laminate is very well replicated, as shown in Fig. 5. The comparison of the Lévy-type solution for FSDT
with the solution for TSDT gives maximum deviations of −1.81%; thus, both solutions reflect the buckling
behaviour well for all shown b/t ratios. This is in contrast to the CLPT solutions. The different b/t ratios do not
affect the CLPT solution in the non-dimensional diagram in Fig. 5. As indicated in the upper magnification of
Fig. 5, the CLPT lines are exactly on top of each other. This leads to a significant overestimation of the critical
load for decreasing b/t ratios. For b/t = 5 the deviations of the CLPT with respect to FSDT are 228.13%
(SRSR) and 32.64% (SFSR). In comparison, the CLPT solutions for thin-walled laminates (b/t = 100) show
very good results; the maximum deviation is 0.62%.

Results for an angle-ply laminate are shown in Fig. 6. The comparison between the FEA and the Lévy-
type solution within the framework of FSDT shows deviations of −0.67% (SRSR) and −0.15% (SFSR).
The CF solution shows significantly larger deviations of 9.22% (SRSR) and 40.46% (SFSR). Considering
that the CF solutions are mainly used for preliminary design and optimisation, they offer appropriate results
for the SRSR plates. In the case of SFSR angle-ply laminates, it may be necessary to use other analysis
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Fig. 7 Cross-ply laminate [(0◦/90◦)n]: The non-dimensional buckling load N cr is given in terms of the aspect ratio a/b for axial
compression (ξx = 1, ξy = 0) and the relative width of b/t = 10.The ply repetitions n = 1, 2, ∞ for the boundary conditions
SRSR and SFSR with the rotational elastic restraints k0 = kb = 105 N and k0 = 104 N, respectively, are considered

methods such as the Lévy-type solution. The comparison between the FSDT and TSDT Lévy-type solution is
in good agreement as well; the deviations are between −1.12% and 1.57%. The CLPT, as previously noted,
significantly overestimates the buckling load for thick-walled laminates (b/t = 5) by 314.93% (SRSR) and
81.23% (SFSR).

Based on the results from Figs. 5 and 6 the CF approximate solution shows deviations from the Lévy-type
solution and especially for the angle-ply laminates are partly very large. With high demands on the quality of
the results, the Lévy-type solutions offer an excellent solution in the field of analytical methods.

5.4 Investigation of the layer repetitions and the ply angle

Thematerial properties of the investigated single layer can be taken from the previous section. Due to the newly
derived boundary conditions regarding the rotational elastic restraint in the framework of TSDT, this section
focuses on the TSDT solution. The FSDTLévy-type solution shows comparable results to the TSDTLévy-type
solution anyway and the CLPT clearly overestimates the buckling load for the relative widths considered.

To investigate the ply repetitions n, a [(0◦/90◦)n] laminate is studied in Fig. 7. Considering first the stiffness
matrix Si j , see Eq. (7), only the coupling stiffnesses Bi j and Ei j depend on n. These decrease with increasing
n. For the case n = ∞ these are set to zero. In Fig. 7, a good agreement of the non-dimensional buckling load
from the FEA and Lévy-TSDT solution is observed with respect to the aspect ratio a/b. For the case n = 1
the largest deviations of −3.71% (SRSR) and −3.02% (SFSR) are observed. These decrease with increasing
n to −0.84% and −0.34%, respectively.
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Fig. 8 Angle-ply laminate [(θ/ − θ)n]: The non-dimensional buckling load N cr is given in terms of the ply angle θ for axial
compression (ξx = 1, ξy = 0) and the relative width of b/t = 10. The ply repetitions n = 1, 2, ∞ for the boundary conditions
SRSR and SFSR with the rotational elastic restraints k0 = kb = 105 N and k0 = 104 N, respectively, are considered

The angle-ply laminate [(θ/ − θ)n] is investigated with respect to the ply repetitions n and the fibre angle
θ under an axial compressive load. For all angles, a good agreement of the non-dimensional buckling load
between FEA and Lévy-TSDT solutions in Fig. 8 is observed. As already noted for the cross-ply laminate from
Fig. 7, the largest deviations for the angle-ply laminate are also found in the case of n = 1 and take the values
−3.82% (SRSR, θ = 50◦) and −2.21% (SFSR, θ = 15◦). These decrease with increasing n to −1.18% and
−0.20%, respectively.

In Figs. 5, 6, 7 and 8, a very good agreement of the FEA and Lévy-FSDT as well as Lévy-TSDT can be
shown. Particularly, the good agreement of the Lévy-TSDT solution shows that the newly presented boundary
condition for the rotational elastic restraint can be applied in the whole stiffness range. It is important to
emphasise that with the selected boundary conditions within the framework of the TSDT, the simple support
and the fixed clamping can be controlled by means of the stiffness values k0 and kb, respectively.

6 Conclusion

In this paper, it is shown that the Lévy-type solution adequately describes the buckling behaviour of unsym-
metric laminates with rotational restraints. The present study presents the outstanding Lévy-type solutions for
stability analysis. In addition, the further Lévy-type solutions for unsymmetric laminates are presented in a
consistent and compact notation, which facilitates their application.

The result shows a very good agreement of the buckling load between FEA and Lévy-FSDT as well as
Lévy-TSDT. The Lévy-CLPT solution significantly overestimates the critical load for small relative widths, as
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expected. Concerning the layer repetitions, there is also a good agreement between the Lévy-type solution and
the FEA for the cross-ply and angle-ply laminate, which decreases with an increasing number of layers. The
angle-ply laminate also shows very good agreement with respect to the ply angle. The comparison between
Lévy-type and FE solutions shows that the Lévy-type solution produces plausible results. However, the Lévy
solution provides the exact solution to the problem and, for the cases mentioned, a higher-quality result than
the FEA. Furthermore, the boundary conditions of the rotational elastic restraint are discussed and those of
the TSDT are new formulated. Particularly, the good agreement of the Lévy-TSDT solution shows that the
presented boundary condition for the rotational restraint can be applied in thewhole stiffness range and provides
reliable results. It is important to emphasise that with the selected boundary conditions, a simple support and
a fixed clamping can be represented by means of the restraint stiffness values.

For the presented Lévy-type solutions, a solution strategy is developed, which makes it possible to design
the methods robustly and computationally efficient and highly accurate at the same time.

The comparison with the closed-analytical method, which is the starting point for the Lévy-type solution,
shows very good agreement for cross-ply laminates. In the case of angle-ply laminates, greater deviations of
the CF solution can be observed in some cases. Here, the Lévy-type solutions provide a useful supplement.
The Lévy solution is to be preferred for high accuracy requirements.
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Appendix A: Coefficients of ordinary differential equations

A.1: CLPT cross-ply laminate

To represent the ordinary differential equation of a cross-ply laminate, the following abbreviations are used
within the CLPT (as in Eq. (39)), which further include abbreviations from Eq. (A7):

c1 = − k1
k2

, c2 = −k3
k2

, c3 = −k4
k2

, c4 = −k5
k2

,

c5 = k3
k7

, c6 = −k6
k7

, c7 = −k8
k7

, c8 = −k9
k7

,

c9 = k1 k3 k9 − k1 k5 k7 + k4 k7 k2(
k7 k12 − k92

)
k2

,

c10 = k2 k6 k9 − k2 k7 k8 + k32k9 − k3 k5 k7(
k7 k12 − k92

)
k2

,

c11 = −k10 k7 k2 + k3 k4 k9 − k4 k5 k7(
k7 k12 − k92

)
k2

,

http://creativecommons.org/licenses/by/4.0/
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c12 = −k11 k2 k7 + k2 k8 k9 + k3 k5 k9 − k52k7(
k7 k12 − k92

)
k2

. (A1)

A.2: CLPT angle-ply laminate

The representation of the ordinary differential equation of an angle-ply laminate in the context of CLPT (as in
Eq. (43)) contains the following abbreviations, which again include the abbreviations from Eq. (A7):

c1 = − k1
k2

, c2 = k3
k2

, c3 = −k13
k2

, c4 = −k14
k2

,

c5 = − k3
k7

, c6 = −k6
k7

, c7 = −k15
k7

, c8 = −k16
k7

,

c9 = k1 k14 k7 − k13 k2 k7 + k14 k32 − k16 k2 k3(
k2 k12 − k142

)
k7

,

c10 = k14 k3 k6 + k15 k2 k7 − k16 k2 k6(
k2 k12 − k142

)
k7

,

c11 = −k10 k2 k7 + k14 k15 k3 − k15 k16 k2(
k2 k12 − k142

)
k7

,

c12 = −k11 k2 k7 + k13 k14 k7 + k14 k16 k3 − k162k2(
k2 k12 − k142

)
k7

. (A2)

A.3: FSDT cross-ply laminate

The representation of the ordinary differential equation of a cross-ply laminate in the framework of FSDT (as
in Eq. (45)) contains the following abbreviations, which again include the abbreviations from Eq. (A7):

c1 = k1 k26 − k17 k18
k182 − k2 k26

, c2 = −k18 k19 + k26 k3
k182 − k2 k26

,

c3 = k23 k18
k182 − k2 k26

, c4 = k17 k26 − k18 k25
k182 − k2 k26

,

c5 = −k18 k27 + k19 k26
k182 − k2 k26

, c6 = k12 k3 + k19 k9
k7 k12 − k92

,

c7 = −k12 k6 − k20 k9
k7 k12 − k92

, c8 = − k24 k9
k7 k12 − k92

,

c9 = k12 k19 + k27 k9
k7 k12 − k92

, c10 = −k12 k20 − k28 k9
k7 k12 − k92

,

c11 = − k21
k22

, c12 = −k23
k22

, c13 = −k24
k22

,

c14 = −k1 k18 + k17 k2
k182 − k2 k26

, c15 = −k18 k3 + k19 k2
k182 − k2 k26

,

c16 = k2 k23
−k182 + k2 k26

, c17 = −k17 k18 + k2 k25
k182 − k2 k26

,

c18 = −k18 k19 + k2 k27
k182 − k2 k26

, c19 = k19 k7 + k3 k9
k7 k12 − k92

,

c20 = −k20 k7 − k6 k9
k7 k12 − k92

, c21 = − k24 k7
k7 k12 − k92

,

c22 = k19 k9 + k27 k7
k7 k12 − k92

, c23 = −k20 k9 − k28 k7
k7 k12 − k92

. (A3)
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A.4: FSDT angle-ply laminate

The representation of the ordinary differential equation of an angle-ply laminate in the framework of FSDT
(as in Eq. (48)) contains the following abbreviations, which again include the abbreviations from Eq. (A7):

c1 = −k1 k12 − k14 k30
k2 k12 − k142

, c2 = k12 k3 + k14 k31
k2 k12 − k142

,

c3 = − k24 k14
k2 k12 − k142

, c4 = −k12 k29 + k14 k27
k2 k12 − k142

,

c5 = −k12 k30 − k14 k28
k2 k12 − k142

, c6 = −k14 k29 + k26 k3
k142 − k7 k26

,

c7 = k14 k30 + k26 k6
k142 − k7 k26

, c8 = k23 k14
−k142 + k7 k26

,

c9 = k14 k25 + k26 k30
k142 − k7 k26

, c10 = k14 k27 + k26 k31
k142 − k7 k26

,

c11 = − k21
k22

, c12 = −k23
k22

, c13 = −k24
k22

,

c14 = k14 k3 − k29 k7
k142 − k7 k26

, c15 = k14 k6 + k30 k7
k142 − k7 k26

,

c16 = k23 k7
−k142 + k7 k26

, c17 = k14 k30 + k25 k7
k142 − k7 k26

,

c18 = k14 k31 + k27 k7
k142 − k7 k26

, c19 = −k1 k14 − k2 k30
k2 k12 − k142

,

c20 = k14 k3 + k2 k31
k2 k12 − k142

, c21 = − k2 k24
k2 k12 − k142

,

c22 = −k14 k29 + k2 k27
k2 k12 − k142

, c23 = −k14 k30 − k2 k28
k2 k12 − k142

. (A4)

A.5: TSDT cross-ply laminate

The representation of the ordinary differential equation of an angle-ply laminate in the framework of FSDT
(as in Eq. (50)) contains the following abbreviations, which again include the abbreviations from Eq. (A7):

c1 = −k1 k49 + k34 k35
k2 k49 − k352

, c2 = −k3 k49 + k35 k36
k2 k49 − k352

,

c3 = −k32 k49 − k35 k44
k2 k49 − k352

, c4 = −k33 k49 − k35 k45
k2 k49 − k352

,

c5 = −k34 k49 + k35 k48
k2 k49 − k352

, c6 = k35 k50 − k36 k49
k2 k49 − k352

,

c7 = −k3 k52 + k36 k40
k402 − k7 k52

, c8 = −k39 k40 + k52 k6
k402 − k7 k52

,

c9 = k37 k52 − k40 k46
k402 − k7 k52

, c10 = k38 k52 − k40 k47
k402 − k7 k52

,

c11 = −k36 k52 + k40 k50
k402 − k7 k52

, c12 = k39 k52 − k40 k51
k402 − k7 k52

,

c13 = (−c11 k38 − c29 k47 − k45) c19 − c1 c7 k38
c10 k38 + c28 k47 + k43

+ −c1 c25 k47 + c1 k33 + k32
c10 k38 + c28 k47 + k43

,
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c14 = (−c11 c20 − c2 c7 − c8) k38 + (−c2 c25 − c20 c29 − c26) k47
c10 k38 + c28 k47 + k43

+c2 k33 − c20 k45 − k37
c10 k38 + c28 k47 + k43

,

c15 = (−c11 k38 − c29 k47 − k45) c21 − c3 c7 k38
c10 k38 + c28 k47 + k43

+ −c25 c3 k47 + c3 k33 − k41
c10 k38 + c28 k47 + k43

,

c16 = (−c11 c22 − c4 c7 − c9) k38 + (−c22 c29 − c25 c4 − c27) k47
c10 k38 + c28 k47 + k43

+ +k33 c4 − k45 c22 − k42
c10 k38 + c28 k47 + k43

,

c17 = (−c11 k38 − c29 k47 − k45) c23 − c5 c7 k38
c10 k38 + c28 k47 + k43

+ −c25 c5 k47 + c5 k33 − k44
c10 k38 + c28 k47 + k43

,

c18 = (−c11 c24 − c6 c7 − c12) k38 + (−c24 c29 − c25 c6 − c30) k47
c10 k38 + c28 k47 + k43

+ +c6 k33 − c24 k45 − k46
c10 k38 + c28 k47 + k43

,

c19 = k1 k35 − k2 k34
k2 k49 − k352

, c20 = −k2 k36 + k3 k35
k2 k49 − k352

,

c21 = k2 k44 + k32 k35
k2 k49 − k352

, c22 = k2 k45 + k33 k35
k2 k49 − k352

,

c23 = −k2 k48 + k34 k35
k2 k49 − k352

, c24 = −k2 k50 + k35 k36
k2 k49 − k352

,

c25 = k3 k40 − k36 k7
k402 − k7 k52

, c26 = k39 k7 − k40 k6
k402 − k7 k52

,

c27 = −k37 k40 + k46 k7
k402 − k7 k52

, c28 = −k38 k40 + k47 k7
k402 − k7 k52

,

c29 = k36 k40 − k50 k7
k402 − k7 k52

, c30 = −k39 k40 + k51 k7
k402 − k7 k52

. (A5)

A.6: TSDT angle-ply laminate

The representation of the ordinary differential equation of an angle-ply laminate in the context of FSDT (as in
Eq. (53)) contains the following abbreviations, which again include the abbreviations from Eq. (A7):

c1 = −k1 k52 + k56 k57
k2 k52 − k572

, c2 = k3 k52 − k57 k60
k2 k52 − k572

,

c3 = k46 k57 − k52 k53
k2 k52 − k572

, c4 = k47 k57 − k52 k54
k2 k52 − k572

,

c5 = −k50 k57 − k52 k55
k2 k52 − k572

, c6 = k51 k57 − k52 k56
k2 k52 − k572

,

c7 = −k3 k49 − k55 k57
k7 k49 − k572

, c8 = −k49 k6 + k56 k57
k7 k49 − k572

,

c9 = −k44 k57 − k49 k58
k7 k49 − k572

, c10 = −k45 k57 − k49 k59
k7 k49 − k572

,



2932 P. Schreiber, C. Mittelstedt

c11 = k48 k57 − k49 k56
k7 k49 − k572

, c12 = −k49 k60 + k50 k57
k7 k49 − k572

,

c13 = (−c19 c29 − c26 c7 − c25) k47 + (−c19 c5 − c2 c7 − c1) k54
c28 k47 + c4 k54 + k43

+ −c19 k45 + c7 k59 − k53
c28 k47 + c4 k54 + k43

,

c14 = (−c29 k47 − c5 k54 − k45) c20 − c2 c8 k54
c28 k47 + c4 k54 + k43

+ −c26 c8 k47 + c8 k59 + k58
c28 k47 + c4 k54 + k43

,

c15 = (−c29 k47 − c5 k54 − k45) c21 − c2 c9 k54
c28 k47 + c4 k54 + k43

+ −c26 c9 k47 + c9 k59 − k41
c28 k47 + c4 k54 + k43

,

c16 = (−c10 c26 − c22 c29 − c27) k47 + (−c10 c2 − c22 c5 − c3) k54
c28 k47 + c4 k54 + k43

+ −c22 k45 + c10 k59 − k42
c28 k47 + c4 k54 + k43

,

c17 = (−c2 k54 − c26 k47 + k59) c11
c28 k47 + c4 k54 + k43

+ + (−c29 k47 − c5 k54 − k45) c23 − k44
c28 k47 + c4 k54 + k43

,

c18 = (−c12 c26 − c24 c29 − c30) k47 + (−c12 c2 − c24 c5 − c6) k54
c28 k47 + c4 k54 + k43

+ −c24 k45 + c12 k59 − k46
c28 k47 + c4 k54 + k43

,

c19 = k3 k57 + k55 k7
k7 k49 − k572

, c20 = −k56 k7 + k57 k6
k7 k49 − k572

,

c21 = k44 k7 + k57 k58
k7 k49 − k572

, c22 = k45 k7 + k57 k59
k7 k49 − k572

,

c23 = −k48 k7 + k56 k57
k7 k49 − k572

, c24 = −k50 k7 + k57 k60
k7 k49 − k572

,

c25 = k1 k57 − k2 k56
k2 k52 − k572

, c26 = k2 k60 − k3 k57
k2 k52 − k572

,

c27 = −k2 k46 + k53 k57
k2 k52 − k572

, c28 = −k2 k47 + k54 k57
k2 k52 − k572

,

c29 = k2 k50 + k55 k57
k2 k52 − k572

, c30 = −k2 k51 + k56 k57
k2 k52 − k572

. (A6)

A.7: Additional abbreviations

Equations (A1–A6) contain the following abbreviations, wherein β = m π/a and τ = 4/
(
3 t2

)
:

k1 = − A11 β2, k2 = A66, k3 = (A12 + A66) β,

k4 = B11 β3, k5 = − (B12 + 2 B66) β, k6 = −A66 β2,

k7 = A22, k8 = (B12 + 2 B66) β2, k9 = −B22,

k10 = D11 β4 − ξx Ncr β
2, k11 = − (2 D12 + 4 D66) β2 + ξy Ncr,
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k12 = D22, k13 = 3 B16 β2, k14 = −B26, k15 = B16 β3,

k16 = − 3 B26 β, k17 = −B11 β2, k18 = B66,

k19 = (B12 + B66) β, k20 = −B66 β2,

k21 = (K A55 − ξx Ncr) β2, k22 = −K A44 + ξy Ncr,

k23 = A55 Kβ, k24 = −K A44, k25 = −D11 β2 − K A55,

k26 = D66, k27 = (D12 + D66) β, k28 = −D66 β2 − K A44,

k29 = − 2 B16 β, k30 = −B16 β2, k31 = 2 B26 β,

k32 = E11 β3τ, k33 = − (E12 + 2 E66) β τ,

k34 = (E11 τ − B11) β2, k35 = −E66 τ + B66,

k36 = (− (E66 + E12) τ + B12 + B66) β,

k37 = (E12 + 2 E66) β2τ, k38 = −τ E22,

k39 = (E66 τ − B66) β2, k40 = −τ E22 + B22,

k41 = H11 τ 2β4 + (
9 F55 τ 2 − 6 D55 τ + A55 − ξx Ncr

)
β2,

k42 = − 2 τ 2 (H12 + 2 H66) β2 − 9 F44 τ 2 + 6 D44 τ − A44 + ξy Ncr,

k43 = H22 τ 2,

k44 = τ (H11 τ − F11) β3 + (
9 F55 τ 2 − 6 D55 τ + A55

)
β,

k45 = − ((H12 + 2 H66) τ − F12 − 2 F66) τ β,

k46 = − ((H12 + 2 H66) τ − F12 − 2 F66) τ β2 − 9 F44 τ 2

+ 6 D44 τ − A44, k47 = τ (H22 τ − F22) ,

k48 = − (
H11 τ 2 − 2 F11 τ + D11

)
β2 − 9 F55 τ 2 + 6 D55 τ − A55,

k49 = H66 τ 2 − 2 F66 τ + D66,

k50 = (
(H12 + H66) τ 2 − (2 F12 + 2 F66) τ + D12 + D66

)
β,

k51 = − (
H66 τ 2 − 2 F66 τ + D66

)
β2 − 9 F44 τ 2 + 6 D44 τ − A44,

k52 = H22 τ 2 − 2 F22 τ + D22, k53 = 3 E16 β2τ,

k54 = − E26 τ, k55 = (2 E16 τ − 2 B16) β,

k56 = (E16 τ − B16) β2, k57 = −E26 τ + B26,

k58 = E16 β3τ, k59 = −3 E26 β τ,

k60 = (−2 E26 τ + 2 B26) β. (A7)

Appendix B Solution strategies

The following solution strategies are extracted from [42]. The eigenvalue analysis of the matrix C is difficult
from a numerical point of view. The following procedure provides a workaround to avoid the difficult zero
entries on the principal diagonal. A constant value c is added to the principal diagonal elements of C :

C = C +
⎡
⎢⎣
c 0

. . .

0 c

⎤
⎥⎦ . (B8)

The relation between the eigenvalues is as follows:

λi = λi − c, for i = 1, .., k. (B9)

The eigenvectors of C and C are equal.
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Furthermore, det(M) is often ill-conditioned. Therefore, a procedure is presented which avoids the calculation

of det(M), extracted from [42]. The solution (56) can be expressedwith the following substitution: K = L−1 K
as:

Z (y) = L

⎡
⎢⎣
eλ1y 0

. . .

0 eλk y

⎤
⎥⎦ K . (B10)

The substitution of this solution into the boundary conditions leads to:

M K = 0. (B11)

The resubstitution of M into the system of equations (B11) yields:

M L−1 K = 0. (B12)

The non-trivial solution of (B12) is given by:

det(M L−1) = 0, (B13)

which can be split into:
det(M)

det(L)
= 0. (B14)

Equation (B14) is the buckling condition for the critical load Ncr and produces the same results as condition
(58). The shown procedure avoids the calculation of L−1 and calculates the determinant of M and L which
are better conditioned than M .
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