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Abstract In this work, an approach for strongly temperature-dependent thermoelastic homogenization is
presented. It is based on computational homogenization paired with reduced order models (ROMs) that allow
for full temperature dependence of material parameters in all phases. In order to keep the model accurate and
computationally efficient at the same time, we suggest the use of different ROMs at few discrete temperatures.
Then, for intermediate temperatures, we derive an energy optimal basis emerging from the available ones. The
resulting reduced homogenization problem can be solved in real time. Unlike classical homogenization where
only the effective behavior, i.e., the effective stiffness and the effective thermal expansion, of the microscopic
reference volume element are of interest, our ROM delivers also accurate full-field reconstructions of all
mechanical fields within the microstructure. We show that the proposed method referred to as optimal field
interpolation is computationally as efficient as simplistic linear interpolation. However, our method yields
an accuracy that matches direct numerical simulation in many cases, i.e., very accurate real-time predictions
are achieved. Additionally, we propose a greedy sampling procedure yielding a minimal number of direct
numerical simulations as inputs (two to six discrete temperatures are used over a range of around 1000 K).
Further, we pick up a black box machine-learned model as an alternative route and show its limitations in
view of the limited amount of training data. Using our new method to generate an abundance of data, we
demonstrate that a highly accurate tabular interpolator can be gained easily.

Keywords Reduced order homogenization · Multiscale modeling · Metal-matrix composites (MMCs) ·
Temperature-dependent material parameters

1 Introduction

The consideration ofanisothermal settings ismandatory during the simulation of compositematerials generated
via laser melt injection [10,24]. Such composite materials may be obtained by adding fused tungsten carbide
particles (FTC), for instance, into the melt pool of a metallic substrate to generate surface coatings [39].
These coatings are used to boost wear resistance, more precisely to protect metallic surfaces against abrasion
and erosion, e.g., Zou et al. [39]. They can significantly extend the lifetime of engineering parts due to the
outstanding material characteristics of the locally produced metal matrix composite (MMC) while retaining
the ductility of the substrate.

The thermomechanical response of suchmicroheterogeneousmaterials has to be investigated to understand
the response on themacroscopic scale, i.e., on the scale of components or parts. Obvious influence factors on the
microscopic response are, for instance, the phase volume fraction and the shape and orientation of the inclusion
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phase. Various methods were developed to predict the linear thermoelastic response of microstructures, e.g.,
the seminal work of Eshelby [6] that investigates the special case of an ellipsoidal inclusion and its extension by
Mori and Tanaka [30] to predict the response of structures with near isotropic inclusions. Other methods aiming
at finding rigorous bounds of the effective properties of composites were developed by Hashin and Shtrikman
[18] and generalized by Willis [38]. While the aforementioned approaches tackle elastic problems, semi-
analytical methods allow the estimation of the effective behavior of some nonlinear and inelastic composites
[3,23].

Besides analytical and semi-analytical approaches, computational homogenization is commonly employed.
It can accurately predict the thermomechanical response of heterogeneous structures, e.g., Feyel [8], Feyel and
Chaboche [9] andMiehe [29]. In such schemes, the constitutive response of every material point on the macro-
scale is obtained by solving a microscopic boundary value problem (BVP) on a representative volume element
(RVE) with boundary conditions from the corresponding macroscopic point. Direct numerical simulation
(DNS) on the RVE scale, e.g., in the FE2 context, is computationally demanding and usually prohibitive due to
its long computational time and large memory demands as well as due to its massive energy footprint. On the
contrary, reduced order models (ROM) and data-driven surrogate models provide an appealing and efficient
alternative toDNS. The goal of ROMs is to provide an accurate and efficient computational scheme by reducing
the large number of degrees of freedom on the microscopic scale systematically, i.e., in a problem-specific
way. Reduced order computational homogenization approaches to predict the linear response of composites
are well-established by now, e.g., Fritzen et al. [14] and Fritzen and Böhlke [11]. However, when it comes
to temperature-dependent microscopic material behavior, the task gets more challenging and nontrivial. For
each temperature observed in a macroscopic simulation, the underlying microscopic constituents within the
composite show a different thermomechanical response.

In the tackled problem of laser melt injection, temperature changes cannot be ignored due to the very wide
temperature range of the process, i.e., from room temperature (around 300 K) to melt temperature (around
1356 K) within seconds (and vice versa). This rapid variation of the process temperature strongly affects all
thermomechanical material parameters.

Hence, our goal in this paper is to develop a reduced order model to tackle the challenging anisothermal
setting. The developed approach is built on field solutions (displacements, strains, stresses) obtained viaDNS at
(few) discrete temperatures. Starting from this sequence of ROMs—each of them being exact at their respective
temperature—we introduce a new but very small optimization problem at arbitrary intermediate temperatures.
The latter can be solved in real-time yielding accurate homogenized properties. Further, the proposed method
allows the reconstruction of the full local displacement, strain, and stress fields in an inexpensive postprocessing
step which enables statistical failure analysis and more.

Regarding DNSs, an in-house FE simulation software called Combo FANS was used. Therein, a Fourier-
Accelerated Nodal Solver (FANS) [25] is used to iteratively solve the linear system of equations by successive
discrete convolutions of residual forces with fundamental solutions matching discrete Green’s functions. The
fundamental solutions are available in closed form in the Fourier domain. Further, the convolutions can effi-
ciently be computed in the frequency domain before a computationally sleek inverse fast Fourier transform
(FFT) is used to update the unknowns. In addition and for the sake of efficiency, Combo FANS utilizes a
coarse graining technique based on composite voxels [15,21,22]. Inside of coarse-grained voxels comprising
a material interface, the material behavior is replaced by that of an infinite laminate with matching orientation
and phase volume fraction. Recently, the usefulness of advanced 3D image processing and a generalization of
composite voxels toward non-equiaxed so-called composite boxels (ComBo) have been illustrated in Keshav
et al. [22]: The image processing yields more accurate orientation information, while ComBo enables axis-
specific coarse graining which can lead to improved computational performance for pseudo-uniaxial materials,
containing almost aligned fibers. Besides a much improved effectivematerial response, it is noteworthy that the
local stress fields benefit significantly. Stair-casing is reduced, and accurate information on interface tractions
can be extracted.

In view of reduced order models, we focus on classical Galerkin projection which is established today,
see, e.g., the textbooks [19,31–33]. It is well-known that the linear homogenization problem can be solved
by the superposition principle for arbitrarily applied strains. However, such ROM, exact at its identification
temperature, has limited validity for differentmaterial data.Naive interpolation assuming a convex combination
of the solutions at different temperatures would be the go-to engineering approach. However, if the number of
sampling temperatures is small (e.g., in order to limit the amount of data as well as to have low offline cost),
such naive interpolation can lead to inaccuracies. Hence, we suggest a recombination of the available basis
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functions at select, i.e., corresponding to a few temperatures, to yield an energy optimal basis that is local with
respect to the temperature.

The outline of the paper is as follows: In Sect. 3, the homogenization problem is introduced. The proposed
reduced order homogenization methods are described in Sect. 4, and algorithmic details are summarized in
Sect. 5. The numerical results for different benchmark problems are presented in Sect. 6. Section7 provides a
concise summary and concluding remarks.

2 Notation

An index-free notation is used for different tensor types. Scalars are represented by lowercase letters (a, ϕ).
First-order tensors are denoted by lowercase boldface letters, e.g., (u, x) while uppercase or Greek boldface
letters (I, N, σ , ε) refer to second-order tensors. Blackboard bold letters denote fourth-order tensors (C,H).
Discrete values are stored in column vectors (•) or matrices (•). Symmetric second-order tensors such as stress
σ or strain ε are identified by their corresponding six-dimensional column vector, in Mandel notation which is
detailed in section A.. The volume average of a general local field on a representative volume element (RVE)
� is defined by

• = 〈•〉 = 1

|�|
∫

�

• dV, (1)

where |�| denotes the volume of the domain �. If a function f is dependent on a strain field ε and it is
evaluated at a given temperature θ , then it is expressed via f (ε

∣∣ θ), i.e., θ is considered an external parameter.

3 Problem setting

3.1 Homogenization problem

The proposed approach is introduced within a first-order homogenization scheme of microheterogeneous
materials with anisothermal constitutive relations in an infinitesimal strain framework. In view of mechanical
homogenization, separation of length scales is assumed, i.e., gradients ofmacroscopic fluctuations are assumed
to be small in comparison with the characteristic length of the representative volume element (RVE). The
macroscopic domain is denoted by �, and its corresponding macroscopic fields are overlined (•). Balance of
linear and angular momentum must hold on either of the two scales:

σ · ∇ + b = 0 σ = σT + BC, (2)

σ · ∇ = 0 σ = σT + BC, (3)

where σ and σ are the stress fields, b denotes a volumetric force density and BC and BC refer to boundary
conditions on the macroscopic scale and on the RVE, respectively. The scale coupling relations are defined via
the volume averaging operator (assuming no voids are present) as

ε = 〈ε〉 = 1

|�|
∫

�

ε dV, σ = 〈σ 〉 = 1

|�|
∫

�

σ dV . (4)

The boundary conditions of the microscopic boundary value problem in Eq. (3) are taken in accordance with
the Hill–Mandel condition [20]. The Hill–Mandel condition is, for instance, satisfied by periodic displacement
fluctuations ũ, i.e., the microscopic displacements u, and the strain field ε can be written in terms of their
macroscopic counterparts as

u = u + ε x + ũ, ε = ε + ε̃(̃u), (5)

where x ∈ � is the position in the microscopic domain, and the infinitesimal strain tensors ε and ε̃ are
defined via ε = u ⊗sym ∇, ε̃ = ũ ⊗sym ∇. The superimposed rigid body translation is represented by u,
and infinitesimal macroscopic rotations are eliminated, therefore, the use of ε. The periodic displacement and
strain fluctuation fields are denoted by ũ and ε̃, respectively. To ensure the clarity and completeness of this
work, important definitions are listed below.
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Definition 1 Hill–Mandel macro-homogeneity condition states that given an equilibrated stress field σ and
any compatible strain rate ε̇, the total mechanical power should be identical on both length scales, i.e.,

〈σ · ε̇〉 = 〈σ 〉 · 〈ε̇〉 = σ · ε̇. (6)

Definition 2 A statically admissible or self-equilibrated stress field σ is a field that satisfies the balance of
linear and angular momentum in the absence of body forces (b = 0), i.e., it is a divergence-free field as in eq.
(3).

Definition 3 A compatible strain field or kinematically admissible strain field ε = u ⊗sym ∇ is a field equal
to the symmetric gradient of a displacement field u that satisfies the kinematic boundary conditions.

Definition 4 Strain fluctuation is the symmetric gradient of a displacement fluctuation field, i.e., it is a com-
patible field in itself. Further, the volume average of such a field vanishes and does not affect the corresponding
strain average. Hence, any multiple of such a field can be added to any kinematically admissible field without
introducing any incompatibilities and without changing the applied strain ε.

Definition 5 A periodic displacement-fluctuation field is a field that has identical displacement values on
opposing boundaries of an RVE, and the volume average of such field is zero.

Definition 6 The decomposition of microscopic strain states that given an arbitrary strain ε, it can be additively
decomposed into a homogeneous part of a virtually homogeneous material ε and a strain fluctuation part ε̃ via
ε = ε + ε̃.

The microscopic temperature θ is written analogously to the displacement but asymptotically, i.e., as the
RVE length tends to zero l� → 0, it coincides with θ . Hence, temperature-dependent material parameters in
the microscopic scale are considered as functions of the macroscopic temperature θ , e.g., Chatzigeorgiou et
al [4], which is in line with the assumed separation of length scales. Therefore, when seeking the mechanical
response in the sequel, the temperature θ is assumed to be constant across �, i.e., θ = θ which can be seen as
an external parameter.

In this work, the focus is confined to anisothermal thermoelasticity, where material parameters are
temperature-dependent. Therefore, on the microscopic scale, the anisothermal elastic material response is
assumed to be driven by a Helmholtz free energy density function

ψ(ε
∣∣ θ) = 1

2
(ε − εθ(θ)) · (C(θ) (ε − εθ(θ))) +ψθ(θ), (7)

whereC(θ) is a symmetric and positive definite material stiffness tensor, εθ(θ) is the thermal strain at temper-
ature θ and ψθ(θ) is the thermal energy. The stress σ (ε

∣∣ θ) and the stiffness C(θ) are derived via the relations

σ (ε
∣∣ θ) = ∂ψ(ε

∣∣ θ)

∂ε
, C(θ) = ∂2ψ(ε

∣∣ θ)

∂ε ∂ε
. (8)

The thermal strain is defined as the integral of the thermal expansion coefficient α(θ) through

εθ(θ) =
θ∫

θ0

α(θ̂) dθ̂ , (9)

where θ0 is the reference temperature at which the thermal strain vanishes, i.e., it refers to a stress-free ground
state with εθ(θ0) = 0.

3.2 Solution of the thermoelastic homogenization problem

In the homogenization problem introduced earlier in this section (cf. Equation (3)), the microscopic problem
has to be solved for every material point on the macroscopic scale and for every given loading condition (ε, θ)

in order to obtain σ (or also C) and, possibly, locally resolved stress and strain fields which could be used,
e.g., for failure initiation indication. Hence, a true many-query context is present which would rule out direct
numerical simulations due to the related computational cost.
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In the following, we reformulate the microscopic problem that has to be solved as

(C(θ) [̃ε(θ) − p(θ)]) · ∇ = 0, (10)

where p is a generic eigenstrain (or polarization) that, in the case of thermoelasticity, comprises themacroscopic
strain ε (constant throughout�) and the heterogeneous, temperature-dependent thermal strain εθ(θ) according
to

p(θ) = −ε + εθ(θ). (11)

In the following, the vector and tensor notation are used interchangeably, e.g., p ↔ p. For stress and strain
tensors, the orthonormal basis described in section A is assumed. Then, we can rewrite Eq. (11) through

P(θ) = [
P

ε
, Pθ(θ)

] =
[
−I

6×6
, εθ(θ)

]
, ζ =

[
ε
1

]
, p(θ) = P(θ) ζ . (12)

Thematrix P(θ) contains themacroscopic and thermal eigenstrains, while the vector ζ represents the activation
coefficients for these modes. To this end, only the thermal eigenstrain εθ is variable. It depends on the
temperature and the material at position x.

The general formulation (10) with the split of the total strain ε into a fluctuation part ε̃ and a polarization
or eigenstrain p simplifies the following derivation. It also renders the derivation more general, e.g., for future
applications to elastoplasticity where the eigenstrain in Eq. (11) will have additional contributions emerging
from the plastic strain.

Effective RVE properties, which are required for the overarching macroscopic simulation, result from
solutions to the microscopic problem. By virtue of the linearity of (10), these solutions can be obtained
through the superposition principle: At a given temperature θ = θ , Eq. (10) is solved 7 times to obtain
displacement fluctuation fields ũ1, . . . , ũ6, ũθ and related strains ε̃1, . . . , ε̃6, ε̃θ. More precisely, Eq. (10)
is solved for ζ

β
← eβ (β = 1, . . . , 7). This corresponds to solving (in the absence of thermal eigenstrains)

the elastic homogenization problem with temperature-dependent elastic parameters and, further, the thermal
eigenproblem in the absence of macroscopic deformation. The resulting thermoelastic displacement, strain,
and stress are obtained from:

ũ(x
∣∣ (ε, θ)) = U (x

∣∣ θ) ζ , (13)

ε(x
∣∣ (ε, θ)) = ε + E(x

∣∣ θ) ζ , (14)

σ(x
∣∣ (ε, θ)) = S(x

∣∣ θ) ζ . (15)

The operators U , E and S are given by

U (x
∣∣ θ) = [̃

u1, . . . , ũ6, ũθ

]
, (16)

E(x
∣∣ θ) = [̃

ε1, . . . , ε̃6, ε̃θ

]
, (17)

S(x
∣∣ θ) = C(x

∣∣ θ)
(

E(x
∣∣ θ) − P(x

∣∣ θ)
)

. (18)

The strain and stress localization operators E, S contain compatible strains and admissible stresses (cf.
Definitions 3 and 2). They can be written as

E(x
∣∣ θ) = [

E
ε
, Eθ

]
, S(x

∣∣ θ) = [
S

ε
, Sθ

]
. (19)

Further, the volume average over the RVE has the following properties:

〈
E(x

∣∣ θ)
〉
= 0,

〈
S(x

∣∣ θ)
〉
=
[
C(θ), τθ(θ)

]
, (20)

where τθ(θ) is the effective stress from the deformation constraint thermal eigenproblem.
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3.2.1 Effective material model

The material belongs to the class of generalized standard materials (GSM) as in Suquet et al. [36]and Halphen
and Nguyen [17]. By using a Galerkin formulation, the weak form of Eq. (10) can be obtained from the free
energy as a function of the strain fluctuation ε̃

�(̃ε
∣∣ (ε, θ)) = 〈

ψ(̃ε
∣∣ (ε, θ))

〉
. (21)

Minimizing this energy with respect to the strain fluctuation ε̃ results in the stationary condition for

δ̃ε�(̃ε
∣∣ (ε, θ)) =

〈
∂ψ(̃ε

∣∣ (ε, θ))

∂ ε̃
· δε̃

〉
!= 0 , (22)

where δε̃ denotes kinematically admissible variations of ε̃. The stationary point of � (i.e., its minimum) is the
effective strain energy ψ

ψ(ε, θ) = min
ε̃

�(̃ε
∣∣ (ε, θ)) . (23)

Defining the strain operator by B
ε
and the discrete degrees of freedom (nodal DOF or reduced kinematic DOF)

by ũ, the relation

ε̃(x) = B
ε
(x) ũ , (24)

is gained. Condition (22) leads to the following algebraic equation:

r =
〈(

∂ε

∂ ũ

)T
∂ψ

∂ε

〉
=
〈
BT

ε
σ
〉 != 0 . (25)

Note that in Eq. (25) and thereafter dependencies on x, ε and θ are not written explicitly to simplify the
notation. In general, i.e., in a nonlinear setting, the system in Eq. (25) can be solved by a Newton–Raphson
scheme with the following Jacobian:

J =
〈

BT
ε

∂2ψ

∂ε ∂ε
B

ε

〉
=
〈
BT

ε
C B

ε

〉
. (26)

More precisely, J coincides with the FE stiffness matrix in a finite element context and with its reduced
counterpart in a Galerkin reduced order model (ROM). The effective stress and tangent stiffness are deduced
from

σ = ∂ψ

∂ε
= 〈σ 〉 , C = ∂2ψ

∂ε ∂ε
. (27)

Following established procedure (see, e.g., [12]), the effective stiffness is given by

C =
〈
C
〉
−
〈
C B

ε

〉
J−1

〈
BT

ε
C
〉
. (28)

The symmetry of C is guaranteed by construction, and positive definiteness can be confirmed as in Fritzen and
Kunc [13]. The first term in Eq. (28) is the upper Voigt/Taylor bound that overestimates the tangent stiffness,
while the second term accounts for the fluctuations and leads to a relaxation of the overly stiff estimate. Notably,
this part depends on the admissible strain space, and it is valid for finite element (FE) models as well as ROM,
where loose inequalities relate the spectrum of C (ROM is stiffer or equal than FE), since the only difference
is found in the operator B

ε
.
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4 Optimal field interpolation

4.1 Problem settings and preparation

In the following, we investigate the solution at some intermediate temperate θ(α) ∈ [θ(1), θ (2)] characterized
by the affine coordinate αθ ∈ [0, 1]:

θ(α) = (1 − αθ) θ(1) + αθ θ(2) αθ ∈ [0, 1] ⇔ αθ = θ(α) − θ(1)

θ (2) − θ(1)
. (29)

At either of the two discrete temperature indexed i ∈ {1, 2}, the procedure from Sect. 3 yields operators
U (i), E (i) and S(i). The superscript is also used to indicate other fields, e.g., the temperature-dependent stiffness

C
(i) = C(x | θ(i)) and the thermal strain ε

(i)
θ = εθ(x | θ(i)).

Balance of momentum Eq. (10) is satisfied at both temperatures for arbitrary applied loadings ζ = [ε, 1],
i.e.,

(
C

(1)[E (1) − P(1)] ζ
)

· ∇ = 0,
(
C

(2)[E (2) − P(2)] ζ
)

· ∇ = 0. (30)

At the intermediate temperature θ(α), the stiffnessC(α) and the thermal strain ε
(α)
θ are defined by the underlying

constitutivemodels. The target of this paper is the construction of near exact, yet approximate solution operators
U (α), E (α), S(α) that depend only on the available solutions at the boundary of the considered interval, namely

θ(1) and θ(2). Naive linear affine combinations of E (i) or S(i) are, however, prone to fail:

• While affine combinations of the strain fields preserve kinematic admissibility, the temperature-induced
variation of the stiffness generally induces stresses that do not satisfy the balance of linear momentum Eq.
(10).

• Likewise, affine combinations of stresses preserve static admissibility, but the thermal variation of C(α)

would—in general—lead to incompatible strains εincomp = C
−1σ + εθ.

4.2 Proposition

As stated before, it is nontrivial to solve Eq. (10) in closed form due to the variability of both C
(α) and

ε
(α)
θ . While it is feasible to solve Eq. (10) at specific discrete temperatures given a certain computational

investment. Finding a generic solution for arbitrary intermediate temperatures θ(α) with θ(1) ≤ θ(α) ≤ θ(2)

remains challenging, even when the solutions at θ(1) and θ(2) are known. In the sequel, we propose a thermo-
elastic homogenization procedure that makes use of (few) solutions at discrete sampling temperatures. These
solutions serve as samples/snapshots that are used to predict solutions at arbitrary intermediate temperatures
in a real-time fashion. The task is thus to get optimal operators U (α), E (α), and the induced S(α) in an efficient
way through (non-Naive) recombination of the available data, see Fig. 1.

Since U and E are linearly related and S is an inferred quantity, we focus on finding E (α). In order to
a priori guarantee kinematic compatibility (see Definition 3), we propose a linear combination of the strain

Fig. 1 Visualization of the inputs and outputs of the proposed interpolation method. The effective total strain is shown as a
representation of E
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fluctuations at either temperature which can be defined by matrices φ(1)(α)
, φ(2)(α) ∈ R

7×7:

E (α) =
[

E (1) E (2)
] ⎡⎣φ(1)(α)

φ(2)(α)

⎤
⎦ = E φ(α) . (31)

Thus, we seek a matrix φ(α) ∈ R
14×7 that provides a temperature-dependent, optimal interpolation of available

field data. The stress localization is obtained using Eq. (18) via

S(α) = C (α)
(

E (α) − P(α)
)

. (32)

Note that φ(α) depends on the temperature, but not on the spatial coordinate x or on the applied strain

ε, while E (i) (i = 1, 2) is a discrete spatially heterogeneous operator at θ(i). Finding φ(α) is the core of the

proposed algorithm.
Based on Eqs. (31) and (32), displacement, strain, and stress fields are obtained via

ũ(α) ← U (α) ζ = U φ(α) ζ , (33)

ε(α) ← ε + E (α) ζ = ε + E φ(α) ζ , (34)

σ (α) ← S(α) ζ = C (α)
(

E φ(α) − P(α)
)

ζ , (35)

where (C (α), P(α), φ(α)) are the only temperature-dependent quantities. The missing interpolation matrix φ(α)

is gained from the minimization problem (23). First, we express the potential Eq. (21) at θ = θ(α) as

�
(α) = 1

2|�| ζT

⎛
⎝
∫

�

(
E φ(α) − P(α)

)T
C (α)

(
E φ(α) − P(α)

)
dV

⎞
⎠ ζ . (36)

The stationary condition for gaining the effective free energy (23) results in the matrix-valued root-finding
problem

∂�
(α)

∂φ(α)
= 1

|�|

⎛
⎝
∫

�

ETC (α)
(

E φ(α) − P(α)
)
dV

⎞
⎠ ζ ζT != 0 . (37)

After closer inspection, this algebraic system reduces to(〈
ETC (α)E

〉
φ(α) −

〈
ETC (α) P(α)

〉)
ζ =

(
K (α) φ(α) − F (α)

)
ζ

!= 0. (38)

Allowing ε to be arbitrary and accounting for the structure of ζ cf. (12), we find that in order for (38) to hold,

ζ can be ruled out. Notably, this system could have a nonunique solution since K (α) ∈ Sym≥0(R
14), i.e., K (α)

can be positive semi-definite. Therefore, the solution is obtained via least-squares solution or, equivalently (up

to numerical issues), by using the Moore–Penrose pseudoinverse K (α)† of K (α):

K (α)φ(α) = F (α) ⇒ φ(α) = K (α)† F (α) . (39)

The solution to the problem thus consists of the following steps:

• Precomputation of solutions at (few) discrete temperatures (offline)
• Assembly of K (α) ∈ R

14×14 and F (α) ∈ R
14×7 (online)

• Solution of the least squares problem (39) (online)
• Postprocessing of the solution (online)
(e.g., effective stiffness/thermal expansion, local stress fields, …).

Here, offline refers to preprocessing calculations effected prior to the evaluation of the model and online refers
to operations required during the model query.
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5 Real-time capable assembly and solution using affine decomposition

5.1 Stiffness and thermal strain approximations

In Sect. 4.1, it is assumed that the material stiffness C(x | θ) and the thermal strain εθ(x | θ) are exact. Hence,
the assembly of thematrices K (α) and F (α) which depend on the temperature θ(α) during the online phase is the
computational bottlenecks of themethod. In this section, we refine the scheme bymaking use of an approximate
affine parameter decomposition. The temperature-dependent coefficients of the problem emerge from the
variation of the stiffness C(α)

(m) (m = 1, . . . , M) of the M different phases in the microheterogeneous materials

and from the thermal strains ε
(α)
θ(m)

. In order to simplify this dependency, we assert a secant interpolation (SI)

for both C(α)
(m), and the thermal strain ε

(α)
θ(m)

(C(α)

(m)ref and ε
(α)

θ(m)ref denote the actual material data in phase m at

the intermediate temperature θ(α)):

C
(α)
(m) ← SIC(m)(β) = (1 − β)C

(1)
(m) + β C

(2)
(m) ≈ C

(α)

(m)ref, β ∈ [0, 1], (40)

ε
(α)
θ(m)

← SIθ(m)(β) = (1 − β) ε
(1)
θ(m)

+ β ε
(2)
θ(m)

≈ ε
(α)

θ(m)ref, β ∈ [0, 1], (41)

where SIX
(m)(β) is a short-hand notation for the secant interpolation of quantity X in phasem at secant parameter

β. Hence, the 2M free parameters of the secant interpolation are the secant interpolation coefficient for the
stiffness αC

(m) and for the thermal strain α
εθ
(m) within each phase m as a function of given αθ (see (29)). In the

sequel, we investigate four different approaches which differ in how these coefficients are chosen:

• Approach (O0): One explicit DOF (αθ) and no implicit DOF
The coefficients match the one of the temperature, i.e., αC

(m) = α
εθ
(m) = αθ:

C
(α)
(m) ← SIC(m)(αθ) ε

(α)
θ(m)

← SIθ(m)(αθ). (42)

• Approach (O1): One explicit DOF (αθ) and one implicit DOF
One new coefficient α̃ is introduced, i.e., αC

(m) = α
εθ
(m) = α̃:

C
(α)
(m) ← SIC(m)(̃α) ε

(α)
θ(m)

← SIθ(m)(̃α). (43)

• Approach (O2): One explicit DOF (αθ) and two implicit DOFs
One coefficient for the stiffness and the thermal strain of all materials are introduced (αC, αεθ):

C
(α)
(m) ← SIC(m)(α

C) ε
(α)
θ(m)

← SIθ(m)(α
εθ). (44)

• Approach (O2M ): One explicit DOF (αθ) and 2M implicit DOFs
All coefficients in all phases are defined independently:

C
(α)
(m) ← SIC(m)(α

C

(m)) ε
(α)
θ(m)

← SIθ(m)(α
εθ
(m)). (45)

The coefficients α̃ (O1), αC, αεθ (O2) and αC

(m), α
εθ
(m) (m = 1, . . . , M ; O2M ) are chosen based on least

squares regression (see Section B for details).
Evidently, approachesO0,O1 andO2 can be recovered as a special case ofO2M as shown in Table 1 for a

microstructure with two constituents, i.e., M = 2. O2 is recovered from O2M ↔ O4 by dropping the material
number subscripts, while O1 is recovered by dropping all subscripts and superscripts.

In addition to using up to 2M values for secant interpolation of the material data to compute φ(α), an

alternative naive interpolation can be studied. It corresponds to an approximation of the strain localization
operator via

E (α) = (1 − αθ) E (1) + αθ E (2) αθ ∈ [0, 1] . (46)

In the sequel, this is labeled (N). It corresponds to settings φ(α) = [
(1 − αθ)I , αθ I

]T
, i.e., a predefined

(generally not optimal) choice for the interpolation of the reduced basis of the strain is made (see also the
comment at the of Sect. 4.1).
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Table 1 Interpolation parameters O0–O4 for biphasic materials (M = 2)

Approach # DOF C mat.1 C mat.2 εθ mat.1 εθ mat.2 Temperature
interpolation

O0 0 αθ αθ αθ αθ αθ
O1 1 α̃ α̃ α̃ α̃ αθ

O2 2 αC αC αεθ αεθ αθ

O4 2M=4 αC

(1) αC

(2) α
εθ
(1) α

εθ
(2) αθ

5.2 Affine operator representation and efficient implementation

The implementation is detailed for the most general case, i.e., O2M with 2M parameters. As detailed above,
the O2M approach contains the other cases. For an intermediate temperature θ(α) ∈ [θ(1), θ (2)] characterized
by αθ ∈ [0, 1], the eigenstrain from Eq. (11) is evaluated with the help of Eq. (41) as

p(α)

(m)
= [

P
ε
, �Pθ(m)

] [ ε

α
εθ
(m)

]
+ P(1)

θ(m)
, (47)

where �• = •(2) − •(1). Likewise, we reformulate (40) as

C (α)

(m)
= αC

(m) �C
(m)

+ C (1)
(m)

. (48)

The linear system Eq. (39) is rewritten as

K (α) =
(

M∑
m=1

(
K (1)

(m)
+ αC

(m) K (�)

(m)

))
φ(α) (49)

F (α) =
[ M∑

m=1

(
F (1)

ε(m)
+ αC

(m) F (�)

ε(m)

) ∣∣
M∑

m=1

(
F (1)

θ(m)
+ αC

(m) F (�)
θ(m)

+ α
εθ
(m) F (�P)

θ(m)
+ αC

(m) α
εθ
(m)F (��)

θ(m)

)]
, (50)

where all terms can be precomputed given quantities corresponding to the temperatures θ(1) and θ(2) at the
boundary of the considered interval via

K (1)
(m)

=
〈
ET

(m)
C (1)

(m)
E

(m)

〉
, K (�)

(m)
=
〈
ET

(m)
�C

(m)
E

(m)

〉
,

F (1)
ε(m)

=
〈
ET

(m)
C (1)

(m)
P

ε(m)

〉
, F (1)

θ(m)
=
〈
ET

(m)
C (1)

(m)
P(1)

θ(m)

〉
,

F (�)

ε(m)
=
〈
ET

(m)
�C

(m)
P

ε(m)

〉
, F (�)

θ(m)
=
〈
ET

(m)
�C

(m)
P(1)

θ(m)

〉
,

F (�P)
θ(m)

=
〈
ET

(m)
C (1)

(m)
�Pθ(m)

〉
, F (��)

θ(m)
=
〈
ET

(m)
�C

(m)
�Pθ(m)

〉
. (51)

Given these preassembled matrices, Eq. (49) provides the condensed stiffness as a linear function of the
interpolation parameters, while the right-hand side F (α) is bilinear in the coefficients. The assembly and the
solution of the least squares problem are feasible in real time.

Likewise, an approximate stress localization operator from Eq. (32) can efficiently be assembled via

S(α)

(m)
=
[(

C (1)
(m)

E
(m)

)
+ αC

(m)

(
�C

(m)
E

(m)

)]
φ(α)−

[(
C (1)

(m)
P

ε(m)

)
+ αC

(m)

(
�C

(m)
P

ε(m)

) ∣∣
(

C (1)
(m)

P(1)
θ(m)

)
+ αC

(m)

(
�C

(m)
P(1)

θ(m)

)
+
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α
εθ
(m)

(
C (1)

(m)
�Pθ(m)

)
+ αC

(m) α
εθ
(m)

(
�C

(m)
�Pθ(m)

)]
(52)

=
(

S(∗)

(m)
+ αC

(m) S(�)

(m)

)
φ(α) + S(∗)

(m)

+ αC

(m) S(�C)

(m)
+ α

εθ
(m) S(�P)

(m)
+ αC

(m)α
εθ
(m) S(��)

(m)
. (53)

The last line emphasizes the simplicity of using the preassembled operators, although Definition (52) seems
dense at first glance. Note that the stress localization depends on the temperature-dependent interpolation
matrix φ(α) and on the coefficients of the secant interpolation.

The affine structure of the operator K (α) and of the right-hand side F (α) is closely related to the reduced

basis method developed byMaday et al. [28] with ξ being the vector of boundary conditions and φ(α) being the

sought after quantity of interest (see also, e.g., [32]). The use in the mechanical homogenization context and
the reformulation of the mechanical problem using the general polarization strain (11) has not been exploited
to the best of the authors’ knowledge. Further, the use of distinct temperature intervals with local validity of
the surrogate model resembles local reduced basis methods (see, e.g., [16]).

5.3 Greedy sampling

The accuracy of the proposed optimal interpolation method depends, as with any other interpolation method,
on the width of the considered temperature interval and on the nonlinearity of the approximated quantities.
Hence, an efficient sampling strategy is sought-after. We opt for a scheme that requires as fewDNS evaluations
as possible while allowing for an accurate prediction of the homogenized response.

An equidistant sampling of the temperature over the full range might not be the best approach. Hence,
an enrichment indicator that is independent of the loading direction is sought. The relative nodal force error
is evaluated seven times corresponding to ζ

β
← eβ (β = 1, . . . , 7), and the mean of these errors define an a

posterior enrichment indicator ef that can be efficiently evaluated via

ef =
mean
β=1,...,7

(∥∥∥R•β

∥∥∥∞

)

rref
, R =

∫

�

BT
ε

S dV, (54)

where R•β
refers to the βth column of the matrix R, ‖•‖∞ is the maximum norm and B

ε
is the standard FE

strain operator. The normalization factor rref is used to allow for a direct comparison with DNS residuals; it
comes from the ground truth problem and is defined as

rref = max
γ=1,...,6

⎛
⎝
∥∥∥∥∥∥
∫

�

BT
ε

C εγ dV

∥∥∥∥∥∥
∞

⎞
⎠, (55)

corresponding to six orthonormal macroscopic strains εγ = Bγ (γ = 1, . . . , 6).

6 Numerical examples

Here, two materials that are used in laser melt injection are considered as RVE constituents: copper and fused
tungsten carbide. Their temperature-dependent material parameters are approximated via a cubic polynomial
with the form f (θ) = a + b (θ − θ0) + c (θ − θ0)

2 + d (θ − θ0)
3. Polynomial coefficients corresponding to

the utilized material parameters (visualized in Fig. 2) are given in Table 2. Most noteworthy is the decay
of Young’s modulus of copper toward 1300K where the contrast with respect to Young’s modulus of fused
tungsten carbide is 65.07 compared to 3.13 at room temperature.
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Fig. 2 Copper (Cu) and tungsten carbide (FTC) thermomechanical material properties w.r.t. temperature

Error measures
As error measures, we consider the average relative nodal force error Eq. (54) and the volume average of the
point-wise error of the stress localization operator, in Eq. (18), evaluated via

eS =
〈∥∥∥S

ref
− S

approx

∥∥∥
Fro∥∥∥S

ref

∥∥∥
Fro

〉
. (56)

It measures the accuracy with respect to the reconstruction of the local stress field, which is deemed to be of
major interest in potential applications. In addition, core outputs in thermomechanical homogenization are the
effective quantities, namely the effective material stiffness C and the effective thermal strain εθ. Therefore,
corresponding error measures are defined next. Since C is symmetric and positive definite, its Cholesky
decomposition is used to construct e

C
, i.e., the reference stiffness is written as C

ref
= L

ref
LT
ref
. We propose

the two relative error measures:

e
C

=
∥∥∥
(

L−1
ref

C
approx

L−T
ref

)
− I

∥∥∥
Fro∥∥∥I

∥∥∥
Fro

, eεθ =
∥∥∥εθref − εθapprox

∥∥∥
2∥∥εθref

∥∥
2

, (57)

where I ∈ R
6×6 is the identity matrix.

Table 2 Temperature-dependent material parameters of the used constituents with reference temperature θ0 = 293K

Copper a(−) b(K −1) c(K −2) d(K −3)

Poisson’s ratio (−) 0.34 0 0 0
Thermal conductivity (W/(m K )) 400.68 −0.0684 0 0
Heat capacity (J/(m3 · K )) 34.07 × 105 950.43 −1.66 0.00147
Thermal expansion (10−6m/(m k)) 15.22 0.00823 0 0
Elastic modulus (G Pa) 130.45 −0.00419 −8.16 × 10−5 0
Fused tungsten carbide
Poisson’s ratio (−) 0.28 0 0 0
Thermal conductivity (W/(m K )) 172.91 −0.13 8.75 × 10−5 −2.01 × 10−8

Heat capacity (J/(m3 K )) 25.64 × 105 514.97 −0.22 6.39 × 10−5

Thermal expansion (10−6m/(m k)) 5.24 5.67 × 10−4 0 0
Elastic modulus (G Pa) 407.99 −0.0279 −3.18 × 10−5 5.49 × 10−9

Data from Lide [26], Touloukian et al. [37] and Deutsches Kupferinstitut Berufsverband e.V. [5]



Reduced order homogenization of thermoelastic materials 2867

Fig. 3 Approximation error of copper and fused tungsten material properties w.r.t. temperature and approaches (O0,O1,O2,O4);
a shows the normalized maximum eigenvalue error of the copper material stiffness, while b shows the normalized maximum
eigenvalue error of the tungsten material stiffness

6.1 Approximation of material properties

The first example illustrates the approximation of the material properties within individual phases with respect
to varying temperatures. Figure3 demonstrates how the proposed approaches (O0, O1, O2, O4) behave when
used to approximate the properties of copper and fused tungsten carbide. Recall that the coefficients for the
secant interpolation stem from least squares regression (see also Section B). Only two input samples are used
for the approximation: one at 300K (around room temperature) and one at 1300K (considered the highest
temperature expected in the simulation).

It is found that approach (O0) provides the worst approximation of the material stiffness, while approaches
(O1, O2) move closer to the reference values, and (O4) is equal to the ground truth by machine precision, see
Fig. 3.

6.2 Comparison between the proposed approaches

In this example, the accuracy of the proposed approaches is evaluated, and a comparison with a naive strain
field interpolation is provided. In order to have a microstructure with an anisotropic response yet with a simple
structure, a striped laminate structure is considered as the first example.

Virtual tests are run on 100 equidistant temperatures in the range [300, 1300]K. Consequently, a phase
contrast of Young’s modulus ranging from 3.13 at 300K to 65.07 at 1300K is observed which exemplifies the
strong temperature dependence of the underlying homogenization problem. Empirical cumulative distribution
curves (Fig. 4) use direct numerical simulation data at the two extremal temperature θ(1) = 300K and θ(2) =
1300K, i.e., no intermediate data are used in this example.

The first error ef corresponds to the evaluation of the relative nodal force error. Figure4 illustrates the
cumulative distribution function of ef. Ideally, the residual should be as close as possible to zero (meaning a
jump of the plot from zero to one at x ≈ 0% is aspired). Then, the approximated solution will have a negligible
error in the high fidelity model and, hence, accurate predictions of the underlying problem, i.e., Eq. (10). The
response of approach (O4) is basically indistinguishable from the reference solution, while the maximum error
of 14.6% is observed for naive interpolation (N). Note that as expected and motivated earlier, approach (O4) is
the most reliable approach with 99% of the scenarios having a relative error smaller than 7 × 10−13%. (Such
error is on the order of numerical roundoff errors.) At the same ratio of 99%, approaches (N,O0,O1,O2) show
relative errors up to 11.4%, 8.03%, 5.45% and 0.29%, respectively. Most notably, O2 and O4 are distinctly
superior to the remaining approaches, immediately motivating their potential usefulness.
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Fig. 4 Empirical cumulative distribution functions of the relative nodal force error in Eq. (54); obtained via 100 temperature
samples and 1000 strain loadings; approximation inputs are DNSs at 300K and 1300K;N represents the naive strain interpolation
approach in Eq. (46); O0 conforms to Eq. (42); O1 conforms to Eq. (43); O2 conforms to Eq. (44); O4 conforms to Eq. (45)

Fig. 5 Empirical cumulative distribution functions of the volume averaged relative error of the stress localization operator (eS)
cf. Equation (56); obtained via 100 temperature samples; approximation inputs are DNSs at 300K and 1300K; N conforms to
Eq. (46); O0 conforms to Eq. (42); O1 conforms to Eq. (43); O2 conforms to Eq. (44); O4 conforms to Eq. (45)

The error eS is evaluated next. The error is visualized in Fig. 5 where it is seen that approaches (O2,O4)
behave very well which indicates that approximating each of the material stiffness and the thermal strain
separately is beneficial and leads to considerable improvement in approaches (O2,O4) over the results of
approach (O1). Furthermore, approach (O4) guarantees the best approximation of the material stiffness and
the thermal strain. It introduces relative stress localization errors (eS) that do not exceed 5× 10−13%, i.e., the
method yields exact local stress predictions.

6.3 Illustration of the greedy sampling approach

Virtual tests are continued on another simple microstructure shown in Fig. 6. The temperature range stays the
same as in the previous example [300, 1300]K. It is sampled via 100 equidistant points and the thermome-
chanical response of the RVE is evaluated on 100 uniformly random strain directions with a constant amplitude
of one.

Now, ef is used to enrich the initial samples at 300K and 1300K in a hierarchical manner by successively
adding further sampling temperatures one by one (each requiring 7 linear problems to be solved using DNS):
The peak value of ef over all candidate temperatures is used to select the next sampling temperature. By
construction, the error is numerically zero at the sampling points which is nicely seen in Fig. 7, which reports
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Fig. 6 Simple microstructure with an embedded octahedron made of the inclusion material

Fig. 7 Error evolution with a hierarchical sampling of 2–6 DNSs, where the first three enrichment steps are indicated by arrows;
at the first hierarchical level with 2 samples, inputs are DNSs at 300K and 1300K; the enrichment indicator ef is defined in Eq.
(54)

the corresponding relative nodal force error ef. It is noted that adding two sampling temperatures (i.e., using
data at four temperatures overall) reduced the relative error from more than 4.5% when using the min./max.
temperatures only to less than 0.66%.

6.4 Comparison with an artificial neural network approach

A comparison with a black box artificial neural network (ANN) is presented in this example. The model uses
the temperature θ as the sole input feature and predicts the effective quantities C and εθ. Since machine
learning is not the main topic of this work, interested readers are referred to, e.g., Alzub et al. [1]; Bishop and
Nasrabadi [2] for further details about machine learning.

For the comparison between the proposed O4 approach and ANN, three RVEs with randomly oriented,
and shaped cuboids and spheroids are generated with various inclusion volume fractions of 20%, 40%, and
60%. These RVEs are visualized in Fig. 8. The temperature range stays the same as in the previous examples
[300, 1300]K. It is sampled via 100 equidistant points and only the effective thermomechanical response of
the RVE is evaluated, i.e.,C and εθ. The training samples forO4 andANN are chosen based on the enrichment
indicator Eq. (54).

Remark 1 Note that while O4 offers full-field reconstruction capabilities of all mechanical fields on the RVE
scale, such reconstruction would be demanding using machine-learned models such as ANNs. Hence, the
presented ANN model predicts only effective quantities, and the comparison with O4 will be confined to C

and εθ.

Results corresponding to the first RVE on the left of Fig. 8, i.e., the one with 20% inclusions, are illustrated
in Fig. 9. Figure9a, b shows the superiority ofO4 that led to errors less than 0.02% and 0.2% for approximating
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Fig. 8 Microstructures with randomly oriented and shaped cuboids and spheroids and with inclusion volume fractions of 20%,
40%, and 60%

Fig. 9 Error evolution of O4 with a hierarchical sampling of 2–6 DNSs of the RVE with 20% inclusions and comparison with
ANN; a effective stiffness error; b effective thermal strain error

the effective stiffness and the effective thermal strain, respectively. At the same time, ANN resulted in higher
errors of ∼ 3.5% and ∼ 14%. Similar conclusions can be deduced by investigating Figs. 10 and 11 that
correspond to the RVEs with 40% and 60% inclusions.

Remark 2 The ANNmodel showed high approximation errors with a very low number of samples. Hence, the
comparison with O4 is confined to the best scenario with six samples.

Remark 3 The supposedly easy ML-centric approach—though known to potentially fail—does not even get
sufficiently accurate predictions on the effective quantities, not mentioning the local fields at all. This is due
to the limited amount of training data. It is worth noting that in the current application and the black box
framework, more than 50 out of 100 data points were required for the training and validation of the ANN
model to reach an approximation error smaller than 1%.

6.5 Staggered model for practical two-scale applications

The homogenized response consisting of C and εθ is often sufficient for practical applications. As we have
demonstrated, ANNs could be used for this purpose but they would require more input data. However, since
our proposed scheme (O4) allows the rapid precomputation of an abundance of data points with high accuracy,
we can also rely on a staggered model. In such a model, trivial linear interpolation is used to obtain the
homogenized response at arbitrary intermediate temperatures based on sufficiently resolved data.

This staggered model with space-saving tabular data has many advantages over the previously presented
ANN approach, e.g., no model training or hyperparameter tuning is required, and accuracy can be increased
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arbitrarily by adding new samples using (O4). An interface to this procedure is given in the GitHub repository
[35] accompanying this article. With this approach, our presented scheme can be conveniently used to provide
the homogenized response for practical two-scale applications. Moreover, this approach can also be used to
generate the high amount of training data that other ML models (ANN, kernel regression, …) require for
accurate and reliable predictions.

7 Conclusion

An efficient optimal field interpolation approach is proposed and investigated in this work. It is shown that
such an approach has a very low numerical cost. Its cost is comparable to linear interpolation, but it is
superior when it comes to accuracy. In many scenarios, the predicted quantities match their reference values.
Optimal field interpolation is used to predict full thermomechanical fields of various RVEs with temperature-
dependentmaterials. DNSs are required and evaluated at a few discrete temperatures. Then for any intermediate
temperature, an energy optimal basis is derived from the sampled DNSs.

Different variations of the proposed method from O0 to O4 are investigated. It is shown that O4 ensures
superior accuracy. Even though in some cases, O2 and O4 results are not that far from each other, it is still
worth it to use O4 because its technical implementation is on par with O2.

Furthermore, a comparison with a black box machine-learned model is presented where the limitations of
the ML model are illustrated in view of the limited availability of training data.

Applications of optimal field interpolation include but are not limited to:

• Approximation of thermal homogenization problems that can be seen as a special case of the presented
thermomechanical one,

• efficient generation of training data for deep material networks [27] or other ML models,
• and for sure an extension to plasticity will show the versatility of the proposed method.

A key advantage for the latter will be the access to local stress and strain fields offered by the proposed method.
When targeting the generation of tabular data (see also Sect. 6.5), one can start with a few calls to the

high-fidelity finite element (FE) model in order to build the proposed ROM. Then, the ROM allows for rapid
computations of the effective quantities over a very wide input range, i.e., for the generation of an abundance
of high-fidelity data. The availability of many samples of such quality data is ideal; for instance, when it is fed
into an ANNmodel, the ANNwill benefit from the large amount of training data to ensure its accuracy. Hence,
our ROM allows ML models to be trained efficiently and accurately. As illustrated in Sect. 6.5, the availability
of large amounts of quality data can also eliminate the ANNmodeling (with training, etc.) by replacing it with
simplistic look-up table interpolation that can still yield arbitrary accuracy needs.

Supplementary information

The proposed interpolation algorithm is available from Sharba et al. [35]. All presented results may be repro-
duced using this repository. It is also possible to use the proposed approach on new RVEs given that their
DNSs are stored in a HDF5® file that has a matching structure to the files we use Sharba and Fritzen [34].
Further details are available in the readme file in Sharba et al. [35].
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Appendix A: Mandel notation

Symmetric second-order tensors such as stress σ or strain ε are identified by their corresponding six-
dimensional column vector, in Mandel notation, i.e.,

• = [•11, •22, •33, √2 •12,
√
2 •13,

√
2 •23

]T ∈ R
6. (A1)

The previous expression is a result of utilizing the following symmetric orthonormal basis tensors of second
order [7],

B1 = e1 ⊗ e1, B4 =
√
2

2
(e1 ⊗ e2 + e2 ⊗ e1) , (A2)

B2 = e2 ⊗ e2, B5 =
√
2

2
(e1 ⊗ e3 + e3 ⊗ e1) , (A3)

B3 = e3 ⊗ e3, B6 =
√
2

2
(e2 ⊗ e3 + e3 ⊗ e2) , (A4)

where {e1, e2, e3} is an orthonormal basis of the three-dimensional Euclidean space E3. Fourth-order tensors
with minor and major symmetries, e.g., C ↔ C ∈ R

6×6 are represented as

C =

⎡
⎢⎢⎢⎢⎢⎢⎣

C1111 C1122 C1133
√
2C1112

√
2C1113

√
2C1123

C2211 C2222 C2233
√
2C2212

√
2C2213

√
2C2223

C3311 C3322 C3333
√
2C3312

√
2C3313

√
2C3323√

2C1211
√
2C1222

√
2C1233 2C1212 2C1213 2C1223√

2C1311
√
2C1322

√
2C1333 2C1312 2C1313 2C1323√

2C2311
√
2C2322

√
2C2333 2C2312 2C2313 2C2323

⎤
⎥⎥⎥⎥⎥⎥⎦

, (A5)

where C•••• are the elements of C.

Appendix B: Optimization parameters

• Approach (O1): One explicit DOF (αθ) and One implicit DOF (̃α)

C
(α)
(m) ← SIC(m)(̃α) ε

(α)
θ(m)

← SIθ(m)(̃α), (B6)

where α̃ is obtained from a minimization problem defined via

α̃ = argmin
β∈[0,1]

(
w

M∑
m=1

⎛
⎜⎝
∥∥∥SIC(m)(β) − C

(α)

(m)ref

∥∥∥2
Fro∥∥∥C(α)

(m)ref

∥∥∥2
Fro

⎞
⎟⎠
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+ (1 − w)

M∑
m=1

⎛
⎜⎝
∥∥∥SIθ(m)(β) − ε

(α)

θ(m)ref

∥∥∥2
Fro∥∥∥ε(α)

θ(m)ref

∥∥∥2
Fro

⎞
⎟⎠
)

. (B7)

Here, w ∈]0, 1[ is a weighting factor to determine the importance of each term, w = 0.1 is used in the
examples. The Frobenius norm is denoted by ‖•‖Fro.• Approach (O2): One explicit DOF (αθ) and two implicit DOFs (αC, αεθ)

C
(α)
(m) ← SIC(m)(α

C) ε
(α)
θ(m)

← SIθ(m)(α
εθ), (B8)

where αC and αεθ are obtained from

αC = argmin
β∈[0,1]

⎛
⎜⎝

M∑
m=1

⎛
⎜⎝
∥∥∥SIC(m)(β) − C

(α)

(m)ref

∥∥∥2
Fro∥∥∥C(α)

(m)ref

∥∥∥2
Fro

⎞
⎟⎠
⎞
⎟⎠ , (B9)

αεθ = argmin
β∈[0,1]

⎛
⎜⎝

M∑
m=1

⎛
⎜⎝
∥∥∥SIθ(m)(β) − ε

(α)

θ(m)ref

∥∥∥2
Fro∥∥∥ε(α)

θ(m)ref

∥∥∥2
Fro

⎞
⎟⎠
⎞
⎟⎠ . (B10)

• Approach (O2M ): One explicit DOF (αθ) and 2M implicit DOFs (αC

(m), α
εθ
(m))

C
(α)
(m) ← SIC(m)(α

C

(m)) ε
(α)
θ(m)

← SIθ(m)(α
εθ
(m)), (B11)

where αC

(m) and α
εθ
(m) are obtained from

αC

(m) = argmin
β∈[0,1]

⎛
⎜⎝
∥∥∥SIC(m)(β) − C

(α)

(m)ref

∥∥∥2
Fro∥∥∥C(α)

(m)ref

∥∥∥2
Fro

⎞
⎟⎠ , (B12)

Fig. 10 Error evolution of O4 with a hierarchical sampling of 2–6 DNSs of the RVE with 40% inclusions and comparison with
ANN; a effective stiffness error; b effective thermal strain error defined
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α
εθ
(m) = argmin

β∈[0,1]

⎛
⎜⎝
∥∥∥SIθ(m)(β) − ε

(α)

θ(m)ref

∥∥∥2
Fro∥∥∥ε(α)

θ(m)ref

∥∥∥2
Fro

⎞
⎟⎠ . (B13)

Remark 4 The minimization problems introduced above have closed-form solutions that ensure a negligible
computational cost to obtain the introduced interpolation parameters, Eqs. (B12) and (B13), for instance, are
minimized via

αC

(m) =
tr

((
C (α)

(m)ref
− C (1)

(m)

)T
�C

(m)

)

tr

((
�C

(m)

)T
�C

(m)

) ,

α
εθ
(m) =

(
ε
(α)

θ(m)ref − ε
(1)
θ(m)

)T
�εθ(m)(

�εθ(m)

)T
�εθ(m)

, (B14)

where �• = •(2) − •(1).

Appendix C: ANN results

Fig. 11 Error evolution of O4 with a hierarchical sampling of 2–6 DNSs of the RVE with 60% inclusions and comparison with
ANN; a effective stiffness error; b effective thermal strain error
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Appendix D: Workflow

Algorithm 1 demonstrates a common usage of the proposed O4 approach. Note that no dependencies are
explicitly stated below, and the algorithm is stated in a compact way to allow for a bird’s-eye view of the
proposed method.

Algorithm 1 Optimal field interpolation

Require:

DNS θ �→
(

E(x
∣∣ θ), C, εθ

)
temperature interval I0 ← [θ(1), θ (2)]

maximum allowed error tol

Ensure: θ(1) �= θ0 and θ(2) > θ(1)

1: K ← I0
2: DNS(I0) // applied on θ(1) and θ(2)

3: C ← components of K , F and S from eqs. (49), (50) and (53)
4: r ← 0 // maximum error
5: for θ ∈ I0 do
6: identify the interval I ⊂ K such that θ ∈ I
7: if C does not contain the corresponding components to I then
8: C∪ DNS(I) // same as 3, components of K , F and S
9: end if
10: from C identify the components that belong to the interval I
11: update interpolation parameters from eq. (B14)
12: use the interpolation parameters to assemble K and F , cf. eqs. (49) and (50)
13: solve eq. (39) to get φ

14: assemble stress localization S, cf. eq. (53)

15: use eq. (20) to get effective quantities C, τθ

16: r ← max(r, ef) // evaluation of the enrichment indicator, cf. eq. (54)
17: end for
18: if r > tol then
19: identify θ(r) that corresponds to r and I such that θ(r) ∈ I
20: given θ(r), split I into two intervals I1 and I2
21: K \ I
22: K ∪ {I1, I2}
23: goto 4
24: end if
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