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Abstract The expediency of replacing the corrugated ring of a vascular stent with a constant corrugation pitch
by a corrugated ring of variable pitch is being investigated. To describe the change in pitch of corrugation, a
special function is introduced. The equilibrium and deformation equations were analyzed using the asymptotic
homogenization method. The dependence of the radial stiffness of a corrugated ring with a variable pitch of
corrugation on the constructive parameters is obtained. The effectiveness of the design under consideration is
evaluated by the area of the lumen provided by the vascular stent. Compared to stents with regularly corrugated
rings, this area is larger which improves the ring stent efficiency.

Keywords Patient-specific vascular stent · Corrugated ring · Asymptotic homogenization method ·
Structural design

1 Introduction

Vascular, intervascular and cardiovascular stents are widely used to restore patency in artherosclerotic coronary
arteries and they play an important role in recovering patients from various cardiovascular diseases. It is
expected in the coming future that the key issues with regard to high stress, damage and restenosis rate after
stent implantation will be reasonably well solved. In addition, it is expected that vascular stents will be both
patient-specific and customized for patients.

It is obvious that during mathematical modeling and practical design of vascular stents, there is a need to
consider interaction effects between the stent and the artery as well as the influence of the vascular injury on the
degree of restenosis [1–7]. In order to achieve optimum stent design, majority of the preliminary investigation
relies on employment of the finite element method (FEM).

Rogers et al. [8] used FEM to analyze balloon-artery interactions during stent placement based on the 2D
model and linear elastic material properties. Auricchio et al. [9] developed a 3Dmodel to improve stent design,
and then Holzapfel et al. [10] estimated the stress introduced within the vessel for a balloon angioplasty and
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employed the Palmaz-Schatz procedure with a help of FEM. The study of Lally et al. [11] based on FEM
was focused on testing the hypothesis that two different stent designs imply different levels of stress in an
atherosclerotic artery. The authors claim that their results correlated with observed clinical restenosis rates.

Timmins et al. [12] examined the effects of varying stent designs and atherosclerotic plaque stiffness on the
arterial wall biomechanic features. Various 3D FEM models were developed for calculation of displacement,
pressure and contact boundary conditions. A non-uniform mesh was employed, whereas displacements were
interpolated using quadratic Lagrange functions and contacting bodies were modeled by a continuous non-
uniform rational B-splines surface. It was concluded that stent design differences can impose dramatically
different stress fields.

Timmins et al. [13] used a combination of computational modeling and in vivo analysis to study the
pathobiologic response to two stent designs that impose greater or lesser levels of stress on the artery wall.

Schmidt et al. [14] studied the 3D self-expanding stent with regard to technical parameters obtained in
the clinical tests. Kokot et al. [15] employed FEM to analyze the crimping process of the polymer stent.
Their results can be used for designing the bioresorbable self-expanding vascular stents. Qiu et al. [16] used
FEM to study mechanical properties of bioresorbable polymeric stents. Wei et al. [17] reported a new design
method to improve biodegradable polymeric stent mechanical properties. It was based on the force analysis
of supporting rings and bridges during stent implantation. Radial force and axial foreshortening of the open
C-shaped stent were studied using FEM. The numerical results were validated by the carried out laboratory
experiments including stent expansion and planar compression.

Liu et al. [18] investigated local hemodynamic environment changes caused by straightening phenomenon
and the relationship between straightening and in-stent restenosis by using the different 3D FEM models
(ANSYS). It was shown that the straightening process altered thewall shear stress and flow patterns distribution
and decreased the wall shear stress. Bernini et al. [19] developed a computational model exhibiting effects of
stent sizing. They predicted the optimal oversizing ratio for self-expanding Nitinol stents being similar to the
clinical observations.

Currently, the creation of a patient-specific vascular stent is becoming a priority. At the same time, special
attention is paid to the development of a stent that takes into account the shape of the blood vessel of a particular
patient. Such a stent is capable of taking on a shape identical to that of a blood vessel after deployment and
deformation. Auricchio et al. [20] studied such vascular stents, having a small degree of curvature. Morlacchi
et al. [21] analyzed the case when two stents were used for the affected part of the curved blood vessel, which
overlapped that considered in the curved part. Ragkousis et al. [22] evaluated the longitudinal deformation
of models of three stent designs. Han and Lu [23] developed a non-uniform Poisson ratio vascular stent for
patients with a linearly curved vessel. In addition, the optimization of stent structures was considered, while
the studied blood vessels had a small curvature. In [24], the authors reviewed the various structural design of
vascular stents. The fabricating methods to achieve optimized vascular stents were illustrated and discussed.

In the work on designing a patient-specific vascular stent, insufficient attention was paid to the fact that the
plaques encountered in the vessel wall (Fig. 1) also have specific sizes and shapes. He et al. [25] developed
personalized nitinol stent designs for lesion-specific arteries with one and two opposite focal plaques. Both
lumen gain and shape of the stent were significantly improved in comparison with the commercial stents.

Majority of the discussed works are devoted to modeling and analysis of the vascular stents based on the
FEM.

It should be emphasized that the distribution of the thickness of vascular plaques is not constant in the
circumferential and longitudinal directions. This leads to the fact that radial pressure of variable intensity acts
on the stent from the side of the vessel wall after installation. Currently, this factor is not taken into account, and
stents are designed with excessive radial stiffness, determined by the maximum value of the radial pressure.
Excessive radial stiffness leads to oversized cross sections of the fibers of the stent, which adversely affects its
medical performance. The resolution of this contradiction can be the design of stents with variable stiffness
in the circumferential direction. For this, it is proposed to use a stent consisting of corrugated rings with a
variable corrugation pitch. Such corrugation was considered earlier in [26–31] for shell structures and showed
higher efficiency for loads of variable intensity. It can be expected that a variable pitch stent that is properly
oriented with respect to the plaques will deform less radially than a regularly shirred stent, and thus provide a
greater opening for blood flow.

It should be noticed that vascular plaques change their geometric characteristics not only along the circum-
ference, but also along the vascular directions. Therefore, another possibility of development of the proposed
approach stands for design of each individual link of the stent—a corrugated ring, depending on its location
along the vascular direction.”
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Fig. 1 An example of a vascular plaque and ballooning scheme [NQ Vascular Townsville review 2022, Open Access]

The paper is organized in the following way. Section 2 deals with simulation of the external load acting
on the stent after ballooning, while Sect. 3 presents the stent model. Geometric characteristics of the stent
are discussed in Sect. 4, and Sect. 5 reports the equilibrium equations. The latter are homogenized in Sect. 6.
Section 7 presents the displacement and strain equations, and Sect. 8 is aimed on evaluation of the effectiveness
of the use of variable pitch corrugations. The obtained results are briefly summarized in Sect. 9.

2 Simulation of the external load acting on the stent after ballooning

Geometrically, vascular plaques can be divided into two types: with complete (Fig. 2) and partial (Fig. 1)
coverage of the vessel around the circumference. The paper considers vascular plaques of the first type, the
boundary of which is modeled in the polar coordinate system on the interval [0, 2π] by the power function.
At the same time, the conjugation conditions for the function (2) and the first two derivatives (3), (4) must be
satisfied at the boundaries of the interval. It is natural to represent this function as a fourth-degree polynomial
of the following form

ρ(ϕ) � R − (
aϕ4 + bϕ3 + cϕ2 + eϕ + d

)
. (1)

and the following boundary conditions

ρ(0) � ρ(2π); (2)

ρϕ(0) � ρϕ(2π), (3)

ρϕϕ(0) � ρϕϕ(2π), (4)
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Fig. 2 An example of a vascular plaque with full circumferential coverage of the vessel [Last reviewed by a Cleveland Clinic
medical professional on 02/25/2022]

Fig. 3 Example of a vascular plaque model (5) before (a) and after (b) ballooning when the balloon restores the natural shape of
the vessel R � 1, and the plug is pressed into the vessel wall

where (·)ϕ � d
dϕ .

Substituting expression (1) into conditions (2)–(4), we obtain

ρ � R − a

(
ϕ4 − 4πϕ3 + 4π2ϕ2 +

d

a

)
, (5)

where the values of the parameters a, d must not violate the following inequality

0 ≤ ρ ≤ R. (6)

The proposed mathematical model of vascular plaque (5) is only demonstrative in terms of assessing the
possibility of using vascular stents with corrugated ring having a variable pitch of corrugation. In other words,
real vascular plaques require more complex mathematical modeling. A review of more adequate models of
plaques is given in Ref. [25] where modeling of one and two opposite focal plaques, based on medical imaging
of patients and computer simulations, is demonstrated. The so-called silico analysis is aimed on assessment of
stent performance in the diseased arteries, and hence, any constructive proposal to improve a stent design and
fabrication plays a crucial role for solving many health problems of patients. It is well known and recognized
that personalized designs significantly increase the lumen gain, reduce the stresses in the media layer, and
improve the lumen shape compared to the commercial nitinol stent. The approaches to modeling vascular
plaques described in [25] can be used to develop and refine the method proposed in this paper for structural
design of patient-specific vascular ring stents.

Figure 3 shows an example of a vascular plaque model (5) with the following fixed parameters: R � 1; a �
0.003; d � 0.01, before (a) and after (b) ballooning.
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Fig. 4 Vascular ring stent. Wikimedia Commons, the free encyclopedia, 2022 [Online; accessed May 2022]

As a result, during ballooning, plaque is pressed into the wall of the artery and the inner side of the
artery takes the shape of a circle (Fig. 3b). This shape is further supported by a stent, which is acted upon
by a distributed external pressure from the side of the artery wall q . The intensity of such pressure will not
be uniform due to the uneven thickness of the plaque. Determining the pressure intensity distribution q is a
non-trivial task and is specified with the elastic properties of the artery wall and plaque. In order to assess
the feasibility of using corrugated rings with a variable corrugation pitch for a stent, we restrict ourselves to a
simplified scheme of vessel wall deformation after balloting and we assume that the pressure intensity will be
proportional to the plaque thickness distribution. At the same time, the refinement of the pressure distribution
law does not change the proposed research scheme. Thus, the wall of the artery is considered as an elastic
Winkler-Fuss foundation with some linear characteristics, and hence,

q � k

(
R + a

(
ϕ4 − 4πϕ3 + 4π2ϕ2 +

d

a

))
, (7)

where k stands for the proportionality factor.
Another characteristic feature of vascular plaque is the position of maximum andminimum of its thickness,

which for the vascular plaque model (5) obeys the following restrictions

max q � q(π), min q � q(0). (8)

It should be noted that the scheme proposed by us makes it possible to calculate vascular plaques that do
not completely cover the artery along the circumference (Fig. 1).

3 Unit cell of stent model

Usually, the unit cell of vascular stent (Fig. 4) is a regularly corrugated ring (Fig. 5).
The vector equation of the axial line of a regularly corrugated ring (Fig. 5) in a cylindrical coordinate

system takes the form

r � Re1 + Z(nϕ)e3, (9)

where Z � Hθ(nϕ); θ(nϕ), θϕ(nϕ), θϕϕ(nϕ) are the continuous periodic functions with period 2π/n; n is the
number of corrugation waves.
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Fig. 5 Corrugated ring as the unit cell of stent 1 (2 is a circle equidistant from the tops of the corrugation; H is the amplitude of
the corrugation; q stands for the distributed load normal to the cylindrical surface of radius R, acting from the side of the vessel
walls)

Fig. 6 Example of a ring with a variable pitch of the corrugation (a) and its development (b); z � sin(n f (ϕ)); n � 8;α � 0.0008;
f � α

(
ϕ5 − 5πϕ4 + 20

3 πϕ3 + 20π2(π − 1)ϕ2 +
( 40
3 π3 − 16π4 + 1

α

)
ϕ
)
.

The smooth function θ(nϕ), which determines the shape of the corrugation, is symmetric with respect to
the circle (curve 2 in Fig. 5), −1 ≤ θ(nϕ) ≤ 1, 0 ≤ ϕ ≤ 2π .

For a ring with a variable corrugation pitch, an example of which is shown in Fig. 5, the vector equation
can be written as

r � R(e1 + z(n f (ϕ))e3), (10)

where f (ϕ) stands for a function, the derivative of which determines the change of the corrugation pitch, and
z � Z/R (Fig. 6).

The choice of the function f (ϕ)will be carried out with the condition that the number of corrugation waves
(11) is preserved. This condition is important for mating the stent rings, each of which can obey different laws
of change in the corrugation pitch. We have

f (0) � 0; f (2π) � 2π ; f (ϕ) > 0, fϕ(ϕ) > 0 for ϕ ∈ [0, 2π]. (11)

The conditions (11) are supplemented by the continuity conditions as follows

fϕ(0) � fϕ(2π); fϕϕ(0) � fϕϕ(2π); fϕϕ(0) � fϕϕ(2π). (12)
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Fig. 7 Influence of the value of the coefficient α (14) on the corrugation pitch change for the function (13), where z � sin
(n f (ϕ)); n � 8

As an example, we define f (ϕ) as a power function on the interval [0, 2π] and periodically continue it
with a period 2π . We have

f � α

(
ϕ5 − 5πϕ4 +

20

3
π2ϕ3 −

(
8

3
π4 − 1

α

)
ϕ

)
, (13)

where a is the coefficient that determines the rate of change of the corrugation step. It follows from constraints
(11) that

0 < α < 0.00087. (14)

Written an approximate formula for the increment of the step function and equating this increment to the
period of the function Z(nϕ), the following estimation holds

� f ≈ fϕ(ϕ)�ϕ � 2π

n
, (15)

and the law of change of the corrugation pitch is governed by the following simple formula

�ϕ � 2π

n fϕ(ϕ)
. (16)

For function (13), the decrease ( fϕ(ϕ) > 1) will be in the interval [0.44π, 1.56π], and increase in the
corrugation pitch ( fϕ(ϕ) < 1) in the rest of the areas. This property can be used to achieve a proper orientation
of the stent relative to the plaque.

Figure 7 shows the influence of the value of the coefficient α (14) versus the change in the corrugation
pitch.

Since stent radial stiffness will depend on the nature of the corrugation, therefore, by choosing the function
(13), it is possible to control the change of the stiffness along circumference direction, increasing it where the
plaque is thicker.

4 Geometric characteristics

The required geometric characteristics of the axial line of the corrugated ring with variable corrugation pitch
(10), i.e., differential ds, curvature k and torsion χ can be found using well-known differential geometry
formulas [32]:

ds � RAdϕ, (17)

k � B

RA3 , (18)

χ � −β + βϕϕ

RB2 , (19)
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Fig. 8 Influence of the value of the coefficient α on the perimeter p1 of the corrugated ring of variable pitch (13); p2 is the
perimeter of a regularly corrugated ring (9)

where (·)ϕ � d
dϕ

, A � √
1 + β2, β � zϕ, B �

√
1 + β2 + β2

ϕ.

Principal normal unit vectors e
′
1, tangent e

′
2 and binormals e

′
3 of the centerline are (Fig. 6)

e
′
1 � − 1

AB

(
A2e1 + ββϕe2 − βϕe3

)
, (20)

e
′
2 � 1

A
(e2 + βe3), (21)

e
′
3 � 1

B

(
βϕe1 − βe2 + e3

)
. (22)

An important geometric characteristic of ring stents, which affects its mechanical and medical character-
istics [33], is the perimeter. By integrating the expression for the arc differential (17) with f � x and with
account of (13), it is possible to determine how the perimeter of the ring (9) changes with the introduction of
a pitch function.

Figure 8 reports the effect of the coefficient α on the change in the perimeter at z � sin n f (ϕ); n � 8; h �
H
R � 0.3 for the pitch function (13). With the growth of the parameter α within the interval of its possible
change (14), the perimeter of the corrugated ring slightly increases.

5 Equilibrium equations

Let us determine the influence of function (13) on the radial stiffness of a ring with a variable corrugation
pitch. To do this, consider its deformation under the action of a uniform external pressure q . For element of
corrugated ring AB of length ds and the forces acting on it (Fig. 9), we obtain two vector equilibrium equations

{
Fϕ + RAq � 0,

Mϕ + RAe
′
2 × F � 0.

(23)

Then, we use the basis expansions

F � F1e1 + F2e2 + F3e3,

M � M1e1 + M2e2 + M3e3,

q � qe1, (24)

where q � q(ϕ).

Substituting expansions (24) into Eqs. (23), we obtain the following equilibrium equations in projections
on the axis of the base circle

F1ϕ − F2 � −RAq, (25)

F2ϕ + F1 � 0, (26)

F3ϕ � 0, (27)
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Fig. 9 The element AB of the corrugated ring (10) (F, M, q are the vectors of internal forces, moments and external load; CD
is the projection of the element AB onto the base circle; e1, e2, e2 are the unit vectors of the tetrahedron associated with the base
circle; e

′
1, e

′
2, e

′
3 are the unit vectors of the movable orthogonal coordinate basis associated with the middle line of the corrugated

ring: e
′
2—tangential, e

′
1—along the main normal, e

′
3—along the binormal to the middle line; e

′
1⊥r )

M1ϕ − M2 + R(F3 − βF2) � 0, (28)

M2ϕ + M1 + RβF1 � 0, (29)

M3ϕ − RF1 � 0. (30)

Equation (27) and the symmetry condition imply that

F3 � 0. (31)

Equations (25), (26) yield

F2ϕϕ + F2 � RAq. (32)

Fore q � const, using the relations (25), (26), Eq. (30) is reduced to the form

M3ϕϕϕ + M3ϕ � R2Aϕq. (33)

Observe that Eq. (33) coincides with the equilibrium equation of a circular ring under the action of variable
external pressure [34].

6 Homogenization of equilibrium equations

For the calculation and optimal design [35] of regularly corrugated rings, the asymptotic homogenization
method (AHM) [36] is employed (for the case of a variable corrugation pitch, the modification of AHM [37]
can be used).

Let us introduce a new variable ξ � n f (ϕ), which is assumed to be independent on ϕ. In what follows,
the "fast" variable is considered on the interval (0,2π). The following differentiations rule holds

d

dϕ
� ∂

∂ϕ
+ n fϕ

∂

∂ξ
(34)

The projections of the forces and moments (24) are represented as the series

Fi �
∞∑

k�0

n−k Fik(ϕ, ξ), Mi �
∞∑

k�0

n−kMik(ϕ, ξ), (35)
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where i � 1 − 3; Fik, Mik are the ξ -periodic functions with period 2π.
Substituting expansions (34), (35) into Eqs. (25)–(30) and assuming fϕβ ~1, after splitting in powers of

n−k , one obtains

Fi0ξ � 0;Mi0ξ � 0, (36)

fϕF11ξ + F10ϕ + F20 � RAq, (37)

fϕF21ξ + F20ϕ + F10 � 0, (38)

fϕM11ξ + M10ϕ − M20 − R fϕβF20 � 0, (39)

fϕM21ξ + M20ϕ + M10 + R fϕβF10 � 0, (40)

fϕM31ξ + M30ϕ − RF10 � 0, (41)

where β � zξ ; A �
√
1 +

(
n fϕβ

)2
.

Equation (36) yields

Fi0 � Fi0(ϕ), Mi0 � Mi0(ϕ). (42)

In what follows, we apply to Eqs. (38)–(42) the averaging operator
2π∫

0
(· · ·)dξ , considering periodicity in ξ

expansions (35), and we get

F10ϕ − F20 � −Raq, (43)

F20ϕ + F10 � 0, (44)

M10ϕ − M20 � 0, (45)

M20ϕ + M10 � 0, (46)

M30ϕ − RF10 � 0, (47)

where a(ϕ) � 1
2π

2π∫

0
Adξ.

From Eqs. (43)–(46), one obtains

F20ϕϕ + F20 � Raq, (48)

M10 � M20 ≡ 0. (49)

In the future, without loss of generality, we restrict ourselves to a sinusoidal corrugation, and hence,

a(ϕ) � 2

π

√
1 + m2E(s), (50)

where m � nh fϕ ; E(s) is the complete elliptic integral of the second kind, s2 � m2

1+m2 .
Expanding E(s) in powers of s, we obtain

a(ϕ) � 4
√
1 + m2

(
1 − 1

4

m2

1 + m2 + O
(
s4

)
)

. (51)

For the considered example of function f (Fig. 6), taking into account the constraint (14), expression (51)
can be expanded in powers of α 
 1. Restricting ourselves to the first two terms of the expansion, we obtain

a(ϕ) � a0 + αa1

(
5ϕ4 − 20πϕ3 + 20πϕ2 + 40π2(π − 1)ϕ +

40

3
π3 − 16π4 +

1

α

)
, (52)

where
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a0 �
√
1 + ĥ2

(

1 − 1

4

ĥ2

1 + ĥ2

)

, a1 � 1

2

√
1 + ĥ2

(

1 − 1

2

ĥ2

1 + ĥ2

)
ĥ2

(
1 + ĥ2

)2 , ĥ � nh.

To assess the impact on the distribution of force involved in the change in the corrugation pitch,we substitute
expression (52) into (48) and write out the general solution of the resulting equation for q � const

(53)

F20 � C1cos (ϕ) + C2sin (ϕ) + Rq(a0 + a1
(
1

+
α

3

(−48π4+(40+120ϕ)π3−120π2ϕ+
(
360ϕ−60ϕ3+60ϕ2−120

)
π+360−180ϕ2+15ϕ4)

)
,

where C1,C2 are integration constants determined from the condition q � 0, F20 ≡ 0.
From here, we have

C1 � C2 � 0. (54)

Using expressions (53), (54), from Eqs. (44), (47), we find that

F10 � −αRqa1a2, (55)

M30 � −αR2qa1a2, (56)

where a2 � 20
(
6π + 2(π2 − 3)ϕ − 3πϕ2 + ϕ3

)
.

Thus, for the considered corrugation with a variable pitch (13), the main internal force factor is the force
directed tangentially to the circle (53), other force factors are equal to zero or are values of a smaller order of
smallness with respect to the value α (55), (56). It is important to notice that the resulting expressions (53)–(56)
satisfy the conjugation conditions of the following form

(F20, F10, M30)ϕ�0 � (F20, F10, M30)ϕ�2π , (57)

and smoothness conditions
(
F20ϕ, F10ϕ, M30ϕ

)
ϕ�0 � −(

F20ϕ, F10ϕ, M30ϕ
)
ϕ�2π , (58)

where (· · ·)ϕ�0,2πmean one-sided derivatives for dϕ+,−, respectively.
Conditions for smooth conjugation of expressions for internal force factors (57), (58) are one of the criteria

for choosing the function (13).
Figure 10 presents the change of F20 (53) in comparison with the change in the corrugation pitch for

function (13) at ĥ � 0.8;α � 0.0005; line 2—development of the corrugated ring.
Thus, with a decrease (increase) in the corrugation pitch, the value of F20 increases (decreases).

7 Displacement and strain equations

The deformation of the axial line of the corrugated ring is considered in a linear formulation. Let, as a result of
deformation, the points of the axial line receive small displacements Ui (ϕ) 
 R in the basis associated with
the circle (Fig. 5). Then, the radius vector of the axial line after deformation can be written as

r̃ � R((1 + u1)e1(ϕ + u2) + (z(ϕ + u2) + u3)e3(ϕ + u2)), (59)

where ui � Ui
R 
 1.

Expanding the functions in (59) in powers of ϕ and leaving only the linear terms, we obtain

r̃ � R((1 + u1)e1 + u2e2 + (z + βu2 + u3)e3). (60)
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Fig. 10 a Magnitude dependency − F20
Rq (53) (green curve) from the change in the corrugation pitch for the function (13) of the

sinusoidal corrugation at n � 8; ĥ � 0.8;α � 0.0005; red curve—corrugated ring development. b Dependency diagram − F20
Rq

yielded by formulas (53) (green curve) with an account of the change in the corrugation pitch in the polar co-ordinates

Substituting the expression for the radius vector (60) into formula (17) and restricting ourselves to linear
terms, we find

ds̃ � ∣∣r̃ϕ
∣∣dϕ � RA

√

1 +
2

A2

(
u1 + u2ϕ + β

(
u3ϕ + βϕu2 + βu2ϕ

))
dϕ. (61)

Let us assume that the linear deformation of the ring under the action of a distributed load q (Fig. 5) occurs
only due to bending, then ds̃ � ds and

u1 + u2ϕ + β
(
u3ϕ + βϕu2 + βu2ϕ

) � 0. (62)

Let us assume that the basic round ring (Fig. 4) is inextensible with regard to the axial line, and find the
relationship between its radial deformation

ε � 2πR − 2π(R − u1)

2πR
� u1

R
(63)

and the value of external pressure q . Since the force F20 (53) is the main force factor for the considered
external load, to assess the effect of a variable corrugation pitch on the radial stiffness of the ring, we restrict
ourselves to the analysis of deformation (63).

The main step in AHM is to solve the problem on the cell, i.e., problem on a periodically repeating element.
With a sufficiently large number of corrugation waves, the curvature of the ring can be neglected in the cell
problem.
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Fig. 11 Radial deformation (67) ku1
h2R2q
E I

(red line); blue line—regular corrugation deformation (α � 0) the same perimeter; black

line – base circle (R � 1, n � 8, ĥ � 0.8, α � 0.0004, k � 0.5).. (Color figure online)

As a result, taking into account the condition of non-extensibility of the axial line (62), we get the depen-
dence between the force F20 and the deformation of the base circle

F20 � ε−1u20ϕ, (64)

where

ε � h2

E I

1

2π

2π∫

0

z2Adξ, (65)

and E is the elastic modulus of the material, while I is the moment of inertia of the transverse cross section
of the stent fibers. Equating the tangential (63) and axial (64) deformations, we obtain the dependence of the
radial displacement u1 on the corrugation pitch at a uniform external pressure

u1 � εRF20. (66)

For the considered function (13), expanding expression (65) in powers α and substituting the expression
(53), (54) into (66), restricting ourselves to terms of zero and first degree α, we get (n � 8; ĥ � 0.8)

u1 � h2R2q

E I

(
0.62 + α

(
0.94ϕ4 − 11.84ϕ3 + 5.36ϕ2 + 200.08ϕ − 216.47

))
. (67)

Figure 11 reports the radial deformation (67) at α � 0.000 4 and for α � 0 (deformation of the ring
with a constant corrugation pitch of the same length of the axial line). Note that, for α � 0, deformation (66)
coincides with the expression obtained in [34].

It follows from Fig. 12 that a decrease in the corrugation pitch reduces the radial rigidity of the corrugated
ring. At the same time, this decrease is significantly affected by the value of the coefficient α. It follows from
expression (67) that for the considered function (13), the greatest (least) radial stiffness g(ϕ) has a corrugated
ring with a variable pitch at

gmax � g(0), (68)

gmin � g(π). (69)

It should be emphasized that the conditions (68), (69) are important in the orientation of the stent in relation
to the vascular plaque.
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Fig. 12 Deformation ku1
h2R2q
E I

at different values of the coefficient α: 1 − 0.0005; 2 − 0.0006; 3 − 0.0008.

Fig. 13 Developments of plaque (5) and stent corrugation (70) for a � 0.003, e � 0.01, h � 0.1, α � 0.0025

8 Evaluation of the effectiveness of the use of variable pitch corrugations

Consider the radial deformation of a corrugated ring with a variable pitch (13) under the action of an external
load (8). Let us match the points of maximum radial stiffness of the corrugated ring (68) and the maximum
intensity of the load (7). To do this, turn the corrugated ring (Fig. 6a) through an angle equal to π . New function
f̂ , in this case, can be found by expanding the expression 1

fϕ
in powers of α, restricting ourselves to terms no

higher than the first degree, and integrating the resulting expression

f̂ � ϕ − α

(
ϕ5 − 5πϕ4 +

20

3
ϕ3 − 8

3
π4ϕ

)
. (70)

The development of the plaque (5) and the corresponding corrugation of the stent (70) are shown in Fig. 13.
To assess the effectiveness of the use of a variable pitch corrugation, we restrict ourselves to radial

deformation caused by the main internal force factor F20. Substituting expressions for external load (7) and
function (70) into Eq. (48), after integration and using expression (66), we obtain an expression for u1c,
which is not shown due to its cumbersomeness. Figure 14 shows a comparison of deformation u1c and u1,
i.e., deformation of a regularly corrugated ring of the same perimeter, for the following fixed parameters:
R � 1, a � 0.003, d � 0.01, n � 8, ĥ � 0.8, α � 0.0008, k � 0.5.
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Fig. 14 Comparison of radial deformation of the ring with variable pitch corrugation (green line) and with a regularly corrugated
ring of the same perimeter (black line) for R � 1, a � 0.003, d � 0.01, n � 8, ĥ � 0.8, α � 0.0008, k � 0.5, û1 �
ku1

h2R2q
E I

, û1c � ku1
h2R2q
E I

.

Fig. 15 Dependence of the deformation of a corrugated ring with a variable pitch (Fig. 14) with respect to the value of the
coefficient α : 0.0008 (green line); 0.0006 (blue line); 0.0004 (yellow line); 0 (black line); red line—inner wall of the vessel after
ballooning. (Color figure online)

Thus (Fig. 14), the use of a corrugation with a variable pitch (70) reduces the deformation in the more
loaded part of the ring, but increases it in the less loaded one. The latter fact reduces the efficiency of variable
pitch corrugation.

Figure 15 presents the dependence of the deformation of a corrugated ring with a variable pitch of corru-
gations (Fig. 14) versus the value of the coefficient α.

The case study of vascular stents is to provide a lumen for the flow of blood after ballooning. Therefore,
the effectiveness of the stent can be assessed by the area of this lumen after deformation. Let us compare the
areas bounded by the deformation lines of a corrugated ring with a variable pitch Sc and regularly corrugated
S. Figure 16 shows the dependence of the relative increase in lumen, which provides a corrugated ring with a



1488 I. V. Andrianov et al.

Fig. 16 The dependence of the relative increase in the lumen, which provides a corrugated ring with a variable pitch in relation

to a regularly corrugated ring
(
� � Sc−S

S 100%
)
on the value of the coefficient α (70)

variable pitch in relation to a regularly corrugated ring
(
� � Sc−S

S 100%
)
on the value of the pitch factor α

(70).
Thus, a stent with variable pitch corrugated rings is more effective than a stent with regularly corrugated

ones.

9 Concluding remarks

A possible design of a patient-specific vascular stent is analyzed, taking into account the geometry of vascular
plaques.An integral element ofmany types of stents is a corrugated ring. It is proposed to replace the corrugation
with a constant pitch to corrugations with variable pitch. The goal is widening of the lumen of blood vessels.
The function that describes the variability of corrugations pitch is derived. It is shown that the proposed
modification of corrugation can be more effective than the known standard design of vascular stent ring.

However, it should be mentioned that the plaque is modeled as idealized, and it suffers for introduction of
various simplifications in terms of geometry and material. Clinical evidence of the anatomical features should
be provided to correctly address such modeling choices. With regard to the stent, several nonlinearities should
be future considered to model the stent insertion into the catheter and the implantation into the vessel, such as
the material (plasticity for balloon-expandable or super-elasticity for self-expandable stents). Also, a variable
corrugated pitch could lead to structural instabilities during the stent crimping and, consequently, to the failure
throughout the insertion in the catheter. The problem of correctly positioning the stent in the circumferential
direction during the implantation procedure should be discussed in future as well.
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