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Abstract This work investigates the planar motion of a dynamical model with two degrees-of-freedom (DOF)
consisting of a connected tuned absorber with a simple pendulum. It is taken into account that the pendulum’s
pivot moves in a Lissajous trajectory with stationary angular velocity in the presence of a harmonic excitation
moment. In terms of the model’s generalized coordinates, Lagrange’s equations are used to derive the motion’s
controlling system. The approximate solutions of this system, up to a higher order of approximation, are
achieved utilizing the approach of multiple scales (AMS). Resonance cases are all classified, in which two of
them are examined simultaneously to gain the corresponding equations of modulation. The solutions at the
steady-state are studied in terms of solvability conditions. According to the Routh-Hurwitz criteria, all potential
fixed points at steady and unsteady states are determined and graphed. The dynamical behavior of the motion’s
time-histories and the curves of resonance are drawn. Regions of stability are examined by inspecting their
graphs in order to assess the favorable impact of various parameters on the motion. The achieved outcomes are
regarded as novel because the used methodology is applied to a specific dynamical system. The importance of
this model under study can be seen from its numerous applications in disciplines like engineering and physics.
Furthermore, pendulum vibration absorbers are commonly employed to reduce the vibrations in engineering
constructions such as chimneys, bridges, television towers, high buildings, auto-balancing shafts, and antennas.

Keywords Vibrational motion ·Nonlinear dynamics ·Absorbers systems · Stability · Perturbation methods ·
Fixed points

1 Introduction

It is well known that vibrations and dynamic chaos are undesirable phenomena, especially in structures. They
have the potential to disrupt, annoy, injure, or damage the various dynamical systems or structures. Therefore,
effort, time, and money are expended to eliminate or reduce vibrations, disorder, and noise. Consequently,
controlling on the vibrations is considered as a current problem. Many methods have been developed to absorb
these vibrations to achieve the stabilization cases of different dynamic systems. In addition, there are an
excessive number of developed smart materials for this reason.
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Mechanical structures must be developed to enable us for obtaining better performance under various types
of loading, especially dynamic and temporal loads. One of the most common control methods is a vibration
absorber. It is a supplementary system that is linked to a main one. As a result, the system gains a new degree of
freedom. The absorber’s parameters are selected in order to minimize or cancel the primary system’s vibration.
When the system is in main resonance, there is a good chance that it will be damaged; the absorber is often
intended to control one mode or one frequency. In most circumstances when vibration must be decreased, a
rectilinear motion is performed by the primary system. When a tuned absorber consists of a spring, a mass,
and occasionally a damper, the motion can be rectilinear, but when dealing with a swinging pendulum, the
rotating motion can be considered [1]. In [2], the authors investigated a dynamic absorber, in which it can be
moved in a transverse direction or a longitudinal one, and is coupled to a simple pendulum that is externally
triggered.

Many scientists have been interested in studying active vibration control [3–9]. In [3], the authors presented
an approach for analyzing the structures using active and passive control systems, while a feedback of an
optimal displacement control rule is constructed in [4] for a single DOF structure with an active tuned mass
damper. In [5] and [6], the authors examined a basic pendulum connected with one tuned absorber in either
the transverse or longitudinal directions. Negative velocity feedback or its square or cubic value is used to
provide controllability to the system. Moreover, a feedback of reverse acceleration and angular displacement
can be used besides their squares values or cubic ones to provide with an active control. Generalization of this
work has been presented in [7] when a longitudinal absorber connected with the simple pendulum, in which
the system’s pivot point moves in a route of ellipse. Recently, the behavior of a dynamical system composed
of a damped linear tuned-absorber in a transverse direction of a nonlinear damped-spring-pendulum whose
hanging point rotates on an elliptic route is studied in [8]. Using the AMS, the approximate solutions for the
controlling system are obtained up higher order of approximation. The conditions of Routh Hurwitz [10] have
been used to investigate the stability and instability zones, and the results are compared with the steady-state
solutions. A limited case from this work can be found in [9] for a fixed pivot point of an elastic pendulum
attached with a transverse absorber.

Vibrational motion is used to treat severe damage that occurs in high-rise buildings, such as tall building
which has a long period and low damping rate. This makes it more sensitive to long-range earthquakes and
records near the fault, including long-period components due to resonance. Therefore, special attention should
be paid to the seismic protection of tall buildings [11]. In [12, 13], an adaptive-passive variable pendulum
and a tuned mass damper (TMD) were used to control wind-induced vibrations in a tall building, while a
revolutionary tuned mass damper that can retune its frequency and damping ratio in real-time to protect a
structure over its entire life cycle is investigated in [14]. Recently, a high-rise structure is fitted in [15] with
a passive adaptive pendulum stream eddy TMD, in the presence of four different soil conditions. In [16], the
authors simplified a supported steel footbridge to be used as the test model with a single DOF system. More
applications can be found in [17, 18].

It must be noted that the motion of a damped linear or nonlinear spring pendulums in different paths
has piqued the curiosity of many academics [19–32]. The analytic approximate solution of the nonlinear
controlling equations of an elastic pendulum whose suspension point oscillates vertically in investigated in
[19].Whereas, amathematical pendulum’s planar rotationalmotion,where its fulcrumpoint oscillates vertically
and horizontally, is examined in [20]. The stability and performance of the obtained solutions are established.
On the other hand, the rotatory movements of a suspension point of a spring pendulum on an elliptic trajectory
and on a closed Lissajous curve near resonance cases are investigated in [21, 22], respectively. Some prescribed
motions as limited cases are presented. In [23], the authors examined the movement of a 3DOF dynamical
system in a plane of a damped linear spring connected to a rigid body. The point of suspension is considered
to be fixed. The generalizations of this problem are studied in [24] (for linear spring) and [25] (for nonlinear
spring) when their pivot points rotate in elliptic trajectories. More descriptions of the rigid body pendulum can
be found in [26] and [27]. The approximate solutions are obtained using the AMS, in which the corresponding
equations of modulation are gained in light of the solvability requirements. The motion of a 2DOF auto-
parametric dynamical model consisting of a coupled rolling cylinder and a damped spring is examined in [28].
The nonlinear stability of this system is investigated in view of the Routh-Hurwitz Criteria. The rotational
motion of a charged gyro around a fixed point is investigated in [29] when some external moments and forces
are applied. The approximate solutions are obtained using the approach of small parameter and represented
graphically. The planar movement of a heavy solid attached to a string from one end and the other end moves in
a specified trajectory is investigated analytically and numerically in [30] using the approach of large parameter
and [31] applying the Runge–Kutta algorithms, respectively. On the other hand, the motion of a spring in a



Modeling and analyzing the motion of a 2DOF dynamical 787

plane is studied in [32] when its suspension point has a trajectory of a circle with sufficiently large radius.
Computer codes are used to show the effect of the system’s parameters on the examined motion. The nonlinear
stability analysis for various motions of oscillating systems under harmonic external forces and torques is
examined in [23–37].

In this study, the planar motion of a 2DOF dynamical model consisting of a coupled tuned longitudinal
absorber with a simple pendulum is studied. This movement is devoted under the existence of an external
harmonic excitation moment, in which the pendulum’s pivot is constrained to move in a Lissajous trajectory
with stationary angular velocity. Lagrange’s equations are utilized to derive the governing EOM in light of the
model’s generalized coordinates. The AMS is used to estimate their solutions analytically till the third-order of
approximation. Various classifications for resonance cases are presented, in which two of them are examined
at the same time. As a result, the corresponding equations of modulation are obtained. The solvability criteria
for the solutions at the steady-state are studied. The criteria of Routh-Hurwitz are used to find and graph all
feasible fixed points at steady and unstable states. Modified phases and amplitudes, as well as the solutions’
temporal histories, and resonance curves are graphed to investigate the dynamical behavior of the dynamical
model at any instant. The impact of various parameters on the system’s behavior is evaluated by checking the
different stability regions. The significance of the investigated dynamical model can be observed in its several
applications in practical life, especially in reducing vibrations that arise in various engineering structures.

The calculations were performed using the symbolic manipulationWolframMathematica software (Math-
ematica_12.1.0_WIN_DLM: https://nsaneforums.com/topic/394731-wolfram-mathematica-v122-download-
manager/). The majority of processes are performed automatically, owing to unique procedures developed
by the authors.

2 Description of the problem

In this section, a full description of the examined model is presented, in which the EOM are derived and
transformed to their dimensionless forms. Therefore, we consider the planar motion of a 2DOF dynamical
model comprises of a simple pendulum of known mass M and with arm’s length l besides its connection
with a nonlinear absorber of mass m, which can only move in a longitudinal direction. It is considered that
the pendulum’s pivot point O follows a Lissajous curve, in an anticlockwise rotation, harmonically in two
mutually perpendicular directions (see Fig. 1). As a result, the coordinates of this point are

x � Rx cos(�x t) , y � Ry sin(�yt), (1)

where R j ( j � x, y) and � j are well-known parameters.
Let us consider O1Y1 and O1X1 to represent the vertical downward axis and the horizontal one, respectively,

with the origin O1. Furthermore, let ϕ be the rotation angle (the angle between the pendulum arm OA and
the vertical at O), u is the absorber’s longitudinal elongation from the equilibrium location, l0 is the natural
length of the absorber, c1 and c2 are the damping coefficients of rotation and absorber, M(t) � f cos(�t) is
the harmonic excitation rotation moment at O in which � is its frequency, and k1 and k2 are the spring’s linear
and nonlinear stiffness, respectively.

The model’s kinetic and potential energies T and V have the forms

T � 1

2
(M + m)[�2

x R
2
x sin

2(�x t) + �2
y R

2
y cos

2(�yt)] +
1

2
ϕ̇2[M l2 + m(l + l0 + u)2]

+
1

2
mu̇2 + ϕ̇{(M l + m(l + l0 + u))[Rx�x sin(�x t) sin ϕ + Ry�y cos(�x t) cosϕ]}

− mu̇[Rx�x sin(�x t) cosϕ − Ry�y cos(�x t) sin ϕ].

V � 1

2
k1u

2 +
1

4
k2u

4 − Mg[Rx cos(�x t) + l cosϕ] − mg[Rx cos(�x t) + (l + l0 + u) cosϕ]. (2)

Here, the letter g denotes the acceleration due to gravity and dots denote the derivatives regarding time t .

https://nsaneforums.com/topic/394731-wolfram-mathematica-v122-download-manager/
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Fig. 1 Portrays the prescribed path of the dynamical model

Based on the latter equations, Lagrange’s function L � T − V can be immediately obtained, and then
one can derive the regulating system of the EOM according to the model’s generalized coordinates ϕ and u
utilizing the following Lagrange’s equations [38]

d

dt

(
∂L

∂ϕ̇

)
− ∂L

∂ϕ
� f cos(�t) − c1ϕ̇,

d

dt

(
∂L

∂ u̇

)
− ∂L

∂u
� −c2u̇,

(3)

To deal with the handled model, let us consider the following dimensionless forms

l1 � l0
l

, m1 � m

m + M
, rx � Rx

l
, ry � Ry

l
, α � k2l2

mω2
1

, ω2
1 � g

l
,

ω2
2 � k1

m
, ω2 � ω2

2

ω2
1

, u1 � u

l
, C1 � c1

ω1l2(m + M)
, C2 � c2

mω2
1

,

F � f

ω2
1l

2(m + M)
, px � �x

ω1
, py � �y

ω1
, p � �

ω1
, τ � ω1t. (4)

The substitution of (2) and (4) into (3), yields the next dimensionless forms of the controlling system

[1 + m1(l1 + u1)(2 + l1 + u1)]ϕ̈ + 2m1(1 + l1 + u1)u̇1 ϕ̇ + [1 + m1(l1 + u1)][p
2
xrx cos pxτ sin ϕ

− p2y ry sin pyτ cosϕ] + sin ϕ[1 + m1(l1 + u1)] + c1ϕ̇ � F cos pτ, (5)

ü1 − (1 + l1 + u1)ϕ̇
2 − p2x rx cos pxτ cosϕ − p2y ry sin pyτ sin ϕ + ω2u1+α u31 − cosϕ + c2u̇1� 0. (6)

Here, the over dot represents the derivatives regarding τ . These equations represent a system of two
nonlinear ordinary differential equations (ODE) of second order.

3 The perturbation methodology

The main purpose of this part is to acquire the approximate solutions of the governing system of EOM (5) and
(6) utilizing the AMS up to the third-order of approximation in light of the exclusion of secular terms. To attain
this objective, the trigonometric functions must be approximated using Taylor series up to the third-order in a
way that is valid in a neighborhood region of static equilibrium. Therefore, introducing the following forms
of sin ϕ and cosϕ into Eqs. (5) and (6)

sin ϕ ∼�
(

ϕ − ϕ3

3!

)
, cosϕ ∼�

(
1 − ϕ2

2

)
, (7)
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to obtain the EOM in the forms

{1 + m1(l1 + u1)[2 + l1 + u1]}ϕ̈ + 2m1(1 + l1 + u1)u̇1ϕ̇

+ [1 + m1(l1 + u1)]

[
p2xrx

(
ϕ − ϕ3

6

)
cos pxτ − p2yry

(
1 − ϕ2

2

)
sin pyτ

]

+

(
ϕ − ϕ3

6

)
[1 + m1(l1 + u1)] + c1ϕ̇ � F cos pτ, (8)

ü1 −
[
p2xrx

(
1 − ϕ2

2

)
cos pxτ + p2yry

(
ϕ − ϕ3

6

)
sin pyτ

]
− (1 + l1 + u1)ϕ̇

2 + ω2u1

+ αu31 −
(
1 − ϕ2

2

)
+ c2u̇1 � 0. (9)

It is worthy to note that, the functions u1 and ϕ must be represented in terms of a small parameter
0 < ε << 1 in light of the new functions φ and Z according to

ϕ(τ ) � ε φ(τ ; ε), u1(τ ) � ε Z (τ ; ε). (10)

Based on AMS, the approximate solutions of these functions can be represented as a power series of ε as
follows [39]

φ �
3∑
j�1

ε j−1φ j−1(τ0, τ1, τ2) + O(ε3),

Z �
3∑
j�1

ε j−1Z j−1(τ0, τ1, τ2) + O(ε3), (11)

where τ0 � τ, τ1 � ετ, and τ2 � ε2τ are distinct time scales, in which τ0 and τ1, τ2 are known as the fast
and slow time scales, respectively. Since we have a variety of scales, then the derivatives of τ can then be
transformed to τn (n � 0, 1, 2) as follows

d

dτ
� ∂

∂τ0
+ ε

∂

∂τ1
+ ε2

∂

∂τ2
,

d2

dτ 2
� ∂2

∂τ 20
+ 2ε

∂2

∂τ0∂τ1
+ ε2

(
∂2

∂τ 21
+ 2

∂2

∂τ0∂τ2

)
+ O(ε3). (12)

The terms of O(ε3) are obviously ignored in (12) due to the smallness of them.
The damping parameters, amplitude of the force, and other parameters are assumed to be small according

to the forms

C j � ε2C̃ j ( j � 1, 2), F � ε3 F̃, l1 � εl̃1,

m1 � εm̃1, rx � ε2r̃x , ry � ε2r̃y, α � α̃, (13)

where F̃, l̃1, C̃ j , m̃1, α̃, r̃x , and r̃y are parameters of order unity,
Substituting (10)–(13) into (8)–(9), and then equating the different coefficients of powers of ε in each side

to construct the next groups of partial differential equations (PDE).
Equations of order (ε)

∂2φ0

∂τ 20
+ φ0 � 0, (14)

∂2Z0

∂τ 20
+ ω2Z0 � 0. (15)

Equations of order (ε2)

∂2φ1

∂τ 20
+ φ1 � −2

∂2φ0

∂τ0∂τ1
+ p2yry sin pyτ0, (16)
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∂2Z1

∂τ 20
+ ω2Z1 � −2

∂2Z0

∂τ0∂τ1
+ p2xrx cos pxτ0 +

(
∂φ0

∂τ0

)2

− 1

2
φ2
0 . (17)

Equations of order (ε3)
∂2φ2

∂τ 20
+ φ2 � −2

∂2φ1

∂τ0∂τ1
− ∂2φ0

∂τ 21
− 2

∂2φ0

∂τ0∂τ2
− 2m̃1

∂2φ0

∂τ 20
(l̃1 + Z0) − 2m̃1

∂φ0

∂τ0

∂Z0

∂τ0

− φ0 p
2
xrx cos pxτ0 +

1

6
φ3
0 − m̃1φ0(l̃1 + Z0) − C̃1

∂φ0

∂τ0
+ F̃ cos pτ0, (18)

∂2Z2

∂τ 20
+ ω2Z2 � −2

∂2Z1

∂τ0∂τ1
− ∂2Z0

∂τ 21
− 2

∂2Z0

∂τ0∂τ2
+ φ0 p

2
yry sin pyτ0 + 2

∂φ0

∂τ0

∂φ1

∂τ0

− α̃Z3
0 + [l̃1 + Z0]

(
∂φ0

∂τ0

)2

+ 2
∂φ0

∂τ0

∂φ0

∂τ1
− φ0φ1 − C̃2

∂Z0

∂τ0
. (19)

Our aim now is to solve the previous PDE (14)–(19), in which it can be solved successively. To accomplish
this target, we start with the general solutions of the first group of Eqs. (14) and (15), which can be formulated
as follows

φ0 � A1e
iτ0 + A1e

−iτ0 , (20)

Z0 � A2 e
iωτ0 + A2 e

−iωτ0 . (21)

Here A j ( j � 1, 2) and A j are known as complex functions and their conjugates, in which they depend on
τ j .

Inserting these solutions into the second group of PDE (16)-(17) and then deleting terms that generate
secular ones to find their removal criteria as below

∂A1

∂τ1
� 0,

∂A2

∂τ1
� 0. (22)

As a result of these criteria, we may write the solutions of the second group in the following forms

φ1 � − i p2y r̃ye
ipyτ0

2(1 − p2y)
+ CC, (23)

Z1 � p2x r̃x e
ipx τ0

2(ω2 − p2x )
− 3A2

1e
2iτ0

2(ω2 − 4)
+

A1 A1

ω2 + CC, (24)

where CC denotes the conjugates of the foregoing terms.
To obtain the criteria of solvability for the approximation of third-order, substitute (20), (21), (23), and

(24) into the last set of PDE (18) and (19), and then remove terms that yield the secular ones. Therefore, we
can write

m̃1l̃1A1 − 2i
∂A1

∂τ2
+
1

2
A2
1A1 − i C̃1A1 � 0, (25)

2A2A1A1 − 2iω
∂A2

∂τ2
− 3α̃A2

2A2 − iωC̃2A2 � 0. (26)

In light of these criteria, the third-order approximations can be given in the forms

φ2 � m̃1(1 + 2ω)

[1 − (1 + ω)2]
A1A2e

i(1+ω)τ0 +
m̃1(1 − 2ω)

[1 − (1 − ω)2]
A1A2e

i(1−ω)τ0 − p2x r̃x
2[1 − (1 + px )2]

A1e
i(1+px )τ0

− p2x r̃x
2[1 − (1 − px )2]

A1e
i(1−px )τ0 − 1

48
A3
1e

3iτ0 +
F̃eipτ0

2(1 − p2)
+ CC, (27)

Z2 � i A1 p2ye
i(1+py )τ0

2[ω2 − (1 + py)2]

[
1 + 2py
(1 − p2y)

− 1

]
+

i A1ei(1−py )τ0

2[ω2 − (1 − py)2]
+

1

8ω2 α̃A3
2e

3iωτ0

− l̃1A2
1e

2iτ0

(ω2 − 4)
+

2

ω2 l̃1A1A1 − A2
1A2ei(2+ω)τ0

[ω2 − (2 + ω)2]
− A2

1A2ei(2−ω)τ0

[ω2 − (2 − ω)2]
+ CC. (28)

The functions A j ( j � 1, 2) can be estimated using the removal criteria (22), (25), and (16) for secular
terms. Therefore, the approximate solutions ϕ and u1 can be easily obtained using the above derived solutions
of first to third orders and the postulates (10).
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4 Resonance categorizations and modulating equations

The categorizations of resonance cases that may emerge in the acquired solutions, as well as the evaluation of
one of these cases, are both significant aspects of this section. We infer that these solutions are collapsed when
any of their denominators equal zero [40]. As a result, the following cases can be recognized.

(i) The primary external resonance case can be discovered at p ≈ 1 ,
(ii) The internal resonance case has been satisfied at ω � 0, ω � ±2, ω � ±px ,ω � 1 ± py, py � ±1,

px � 0, px � ±2.
It is important to keep in mind that if any one of the previous resonance instances is fulfilled, the examined

system’s behavior will become convoluted. Consequently, we ought to modify the used approach. To deal with
this circumstance, we will look at one of primary external resonance and one of internal resonance that operate
together, i.e., p ≈ 1 and ω ≈ 2. These correlations show how closely p and ω to 1 and 2, respectively.

It is necessary to employ the dimensionless parameters known as detuning σ j ( j � 1, 2), which measure
the displacement from the oscillations to the tight resonance [39]. Then we can start writing

p � 1 + σ1, 2 � 2ω + σ2. (29)

Therefore, we can write them in terms of ε as follows

σ j � εσ̃ j ( j � 1, 2 ). (30)

The criteria of solvability can be gained through the substitution of (29) and (30) into the second and third
groups of PDE (16)-(19). Elimination of terms that yield the secular terms gives the next conditions.

Solvability criteria of the second group

∂A1

∂τ
� 0,

∂A2

∂τ
� 0. (30)

Solvability criteria of the third group

m̃1l̃1A1 − 2i
∂A1

∂τ2
+
1

2
A2
1A1 − i C̃1A1 + F̃ei σ̃1τ1 � 0,

2A2A1A1 − 2iω
∂A2

∂τ2
− 3α̃A2

2A2 − iωC̃2A2 − A2
1A2e

i σ̃2τ1 � 0.
(31)

This implies that the solvability criteria consist of four nonlinear PDE in which A j ( j � 1, 2 ) depend only
on τ2, which motivates us to depict them in the following polar form

A j (τ2) � h̃ j (τ2)

2
eiψ j (τ2), h j � εh̃ j ( j � 1, 2), (32)

where h̃ j and ψ j are real functions of the amplitudes and phases of the solutions ϕ and u1.
The below indicated modified phases can be used to adapt the preceding solvability criteria from PDE to

ordinary differential equations (ODE).

θ1(τ2) � τ2σ̃1 − ψ1(τ2),

θ2(τ2) � τ2σ̃2 + 2[ψ1(τ2) − ψ2(τ2)].
(33)

Substituting (32) and (33) into (31), and then splitting the imaginary and real components to obtain the
below four first-order modulation equations for the resonance cases under consideration

h1
dθ1
dτ

� σ1h1 +
1

2
m1l1h1 +

1

16
h31 +

F

2
cos θ1,

dh1
dτ

� −1

2
C1h1 +

F

2
sin θ1,

dθ2
dτ

� σ2 + 2σ1 − 2
dθ1
dτ

− 3

4ω
αh22 +

h21
2ω

(
1 − 1

2
cos θ2

)
,

dh2
dτ

� −1

2
C2h2 − h21h2

8ω
sin θ2. (34)
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Fig. 2 Describes the influence of various values of C1: a on the amplitude h1(τ ), b on the phase θ1(τ )

Fig. 3 Explores the impact of different values of C2: a on the amplitude h2(τ ), b on the phase θ2(τ )

The variation of the solutions h j ( j � 1, 2) and θ j of system (34) with time is drawn in Figs. 2 and 3, while
the diagrams of the planes θ j h j are represented in Figs. 4 and 5 taking the following data into account

σ1 � −1.07114, σ2 � 0.192984, l � 0.9, l0 � 0.6, M � 12,

m � 9 , Rx � 0.9 , Ry � 1.2 , k1 � 80, k2 � 11 , g � 9.8,

α � 0.0909184 , f � 26, �x � 0.002, �y � 0.003, p � −0.07114 . (35)

The time histories of h1, θ1 and h2, θ2 are calculated when C1(� 0.0809848, 0.134975, 0.188964) and
C2(� 0.102041, 0.153061, 0.255102), respectively. The planes θ1h1 and θ2h2 are graphed in accordance with
the same values of C1 and C2. The included curves in portions (a) and (b) of Fig. 2 oscillate rapidly around
a fanciful horizontal symmetry axis at the first stage of the considered time interval and have a decay mode.
Therefore, they have steady behavior till the end of the time interval. It is noticed that with the increasing of
the values of damping coefficient C1, the solutions h1 and θ1 reach faster to their steady case than the other
little values. It is found that h1 and θ1 have not any variation with the various values of C2. The reason is due
to that their equations do not depend on C2.

On the other hand, the represented curves of h2(τ ) and θ2(τ ) are plotted in portions (a) and (b) of Fig. 3,
which they are constitute with the solutions of the system of Eq. (34), in which they do not depend on C1.
Therefore, we cannot expect any variation with C1. The corresponding phase plane curves of Figs. 2 and 3 are
plotted in Fig. 4 with spiral curves and Fig. 5 with convex curves, respectively.

The time histories of the acquired approximate solutions (AS) ϕ(τ ) and u1(τ ) are drawn in portions (a)
and (b) of Fig. 6 when C1 and C2 have different values. An assessment of the included curves in these portions
reveals that periodicwaves and decay ones are produced for the solutionsϕ and u1, respectively. Figure 7 depicts
a comparison between the AS and numerical solutions (NS) of the governing system of motion, demonstrating
their remarkable consistency. This indicates that the AS is precise with the used perturbation approach.

One of the important aspects of this research is to study the effect of various values of F, px ,
and py on the behavior of the amplitudes h j ( j � 1, 2), phases θ j , and the approximate solutions
ϕ and u1. Therefore, Figs. 8, 9, 10, 11 and12) are graphed according to the data (35) and with the
variation of F(� 0.10798, 0.140374, 0.188964),px (� 0.00060609, 0.0303046, 0.0757614), and py(�
0.0009091, 0.0242437, 0.0606092).

The indicated curves of portions of Figs. 8 and 9 show the variation of the time histories of h1, θ1 and h2, θ2
at the considered values of F,px , and py . It is clear that the change of the values of F has a good influence on
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Fig. 4 Describes the plane curves θ1h1 for the values of C1 as in Fig. 2

Fig. 5 Represents the plane curves θ2h2 for the values of C2 as in Fig. 3

Fig. 6 Depicts the variation with τ for the functions: a ϕ at different values of C1, b u1 at different values of C2
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Fig. 7 Explores the differences between the NS and the AS for: a ϕ at C1 � 0.0809848, b u1 at C2 � 0.102041

Fig. 8 Parts a, b reveal the influence of F , parts c, d describe the impact of px , and parts e, f show the change of py , on the time
histories of h1 and θ1

the behavior of h1 and θ1 as seen in portions (a) and (b) of Fig. 8, while the influence of different values of px
and py has a little effect, to some extent, on the time histories of h1 and θ1 as drawn in portions (c), (d), (e),
and (f ) of Fig. 8. The reason goes back to the formulation of Eq. (34). As plotted in Fig. 9, one can observe that
there are no variations of the temporal histories of h1 and θ1 when F,px , and py take their mentioned values.
The phase plane diagrams of these amplitudes h j and phases θ j are drawn in the planes θ j h j , see portions (a),
(b), and (c) of Figs. 10 and 11.

Curves of portions (a), (c), (e) and (b), (d), (f ) show the behavior of the attained solutions ϕ(τ ) and u1(τ )
when F, px , and py have the same considered values in drawing Figs. 8, 9, 10 and 11. As predicted from
the equations of system (34) that ϕ and u1 have an excellent influences with the values of F as seen in parts
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Fig. 9 Portions a, b reveal the influence of F , portions c, d describe the impact of px , and portions e, f show the change of py ,
on the time histories of h2 and θ2

(a), and (b) of Fig. 12. However, the behavior of ϕ has the form of standing periodic waves with some nodes,
in which their amplitudes decrease with the increase in the values of F , as graphed in Fig. 12a. On the other
hand, the variation of u1 has a decaying pattern till the end of the investigated time interval. Therefore, these
solutions have stable behaviors. As drawn in parts (c), (e) and (d), (f ), one can conclude that the variations
of ϕ and u1 become stationary (to some extent) and slightly with the variation of the values of px and py ,
respectively.

5 Steady-state solutions

The main goal of this part is to explore the vibrations of the investigated system in the case of steady-state,
in which it will appear when the transitory processes fade away. As a result, the left-hand sides of Eq. (34)
will be regarded as zero, i.e., dh j

/
dτ � dθ j

/
dτ � 0 ( j � 1, 2) [23, 27]. Then an algebraic system of four

equations for the adjusted phases θ j and the amplitudes h j can be produced in the following form

σ1h1 + m1l1h1 +
1

16
h31 +

F

2
cos θ1 � 0,

F sin θ1 − C1h1 � 0,

σ2 + 2σ1 − 3

4ω
αh22 +

h21
4ω

(2 − cos θ2) � 0,

C2h2 +
h21h2
4ω

sin θ2 � 0. (36)
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Fig. 10 Represents the curves in the planes θ1h1: a when F has different values, b at different values of px , c when py changes

A closer look at the aforementioned system (36), we can find the elimination of its adjusted phases θ j
yields the following functions of frequency response

F2 �
(

σ1h1 + m1l1h1 +
1

16
h31

)2

+ C2
1h

2
1,

h41 � 16ω2

⎡
⎣

(
σ2 + 2σ1 − 3

4ω
αh22 +

h21
2ω

)2

+ C2
2

⎤
⎦. (37)

These equations are clearly implicit formulations of nonlinear algebraic equations between h j and σ j . It is
well recognized that one of the main stages in the steady-state vibrations is to look into the stability analysis
of fixed points. Consequently, the system’s behavior in an area near the fixed points is investigated. To achieve
this goal, inserting the next substitutions in (34) [40]

h1 � h10 + h11, θ1 � θ10 + θ11,

h2 � h20 + h21, θ2 � θ20 + θ21. (38)

Here h j0 and θ j0 symbolize the solutions at the steady-state case of (34), while h j1 and θ j1 denote the
perturbation that is very minor in relation to h j0 and θ j0. Making use of (34) and (38) to obtain

h10
dθ11
dτ

� σ1h11 +
1

2
(m1l1h11 − Fθ11 sin θ10) +

3

16
h210h11,

dh11
dτ

� −1

2
(C1h11 + Fθ11 cos θ10),
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Fig. 11 Presents the curves in the planes θ2h2: a when F has different values, b at different values of px , c when py changes

h20
dθ21
dτ

� h21(σ2 + 2σ1) − 2h20
dθ1
dτ

+
1

4ω
(2h210h21 − 9αh220h21

+ 4h10h20h11 + h210h20θ21 sin θ20),

dh21
dτ

� −1

2
C2h21 − h210h20

8ω
θ21 cos θ20. (39)

Taking into account that the functions θ j1 ( j � 1, 2) and h j1 are unknown perturbed functions for the
system of Eqs. (39). Then, their solutions can be represented as kseλT (s � 1, 2, 3, 4), where λ and ks are the
eigenvalues and constants of these functions, respectively. When the steady-state solutions are asymptotically
stable, then the real potions’ roots of the below characteristic equation of system (39) should be negative [10,
41]

λ4 + �1λ
3 + �2λ

2 + �3λ + �4 � 0, (40)

where �s (s � 1, 2, 3, 4) have the forms

�1 � 1

4

[
2C1 + 2C2 − 2F sin θ10

h10
− h210 sin θ20

ω

]
,

�2 � 1

32h10ω2 [8C1C2ω
2h10 − F(3h210 + 16σ1)ω

2 cos θ10 + [2h210 − 9h220α

+ 4(2σ1 + σ2)ω] cos θ20h
3
10 + 8(C1 + C2)Fω2 sin θ10 − 4(C1 + C2)ω

× sin θ20h
3
10 − 4Fω sin θ10 sin θ20h

2
10 − 8Fω2l1m1 cos θ10],

�3 � 1

128h10ω2 {F(3h210 + 16σ1)(h
2
10 sin θ20 − 2C2ω)ω cos θ10 + 2{h210[2h210
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Fig. 12 Parts a, b reveal the influence of F , parts c, d describe the impact of px , and parts e, f show the change of py , on the
solutions ϕ(τ ) and u1(τ )

Fig. 13 Displays no fixed points at σ1 � −0.194

− 9αh220 + 4(2σ1 + σ2)ω](C1h10 + F sin θ10) cos θ20 + 4ω[C1C2 sin θ20

× h210 + F sin θ10(2C1C2ω − (C1 + C2) sin θ20h
2
10)]} − 8Fω cos θ10[2C2

× ωl1m1 sin θ20h
2
10]},

�4 � 1

1024ω2 {−Fh10[(2h
2
10 − 9h220 + 4(2σ1 + σ2)ω) cos θ20 − 4C2ω sin θ20]

× [(3h210 + 16σ1) cos θ10 − 8C1 sin θ10 + 8l1m1 cos θ10]}. (41)
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Fig. 14 Reveals two distinct unstable fixed points when σ1 � −0.17

Fig. 15 Explores one possible stable fixed point and one unstable fixed point for the amplitudes h1 and h2 at σ1 � −0.15162

Fig. 16 Explores one possible stable fixed point and one unstable fixed point for the amplitudes h1 and h2 at σ1 � −0.14162

The criteria of Routh-Hurwitz [10] that outline the necessary and sufficient requirements of the solutions
at the steady-state can be stated as follows

�1 > 0, �3(�1�2 − �3) − �2
1�4 > 0,

�1�2 − �3 > 0, �4 > 0.
(42)

Equations of system (37) have been solved and drawn with different values of σ1, when σ2 � −0.0514914,
C1 � 0.134975, and C2 � 0.153061 to yield the curves of Figs. 13, 14, 15, 16 and 17. The blue and red
curves represent the first and second equations of system (37), respectively. Intersections of these curves
produce fixed points which may be stable or not. The black and green circles express stable and unstable fixed
points, respectively. Figures 13, 14, 15, 16, and 17 represent the variation of h2 versus h1 when σ1 has the
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Fig. 17 Shows twopossible stablefixedpoint and twopossible unstablefixedpoints for the amplitudesh1 andh2 atσ1 � −0.13162

Fig. 18 Shows the resonance curve of h1(σ1)whenσ2 � 0.192984:a atC1 � 0.0809848,b atC1 � 0.134975, c atC1 � 0.188964

values −0.194, −0.17,−0.15162,−0.14162, and −0.13162, respectively. Curves of Fig. 13 do not have any
fixed points when σ1 � −0.194, while the included curves of Fig. 14 have two unstable fixed points at the
locations (−1.458, 1.032) and (1.437, 1.032) when σ1 � −0.17. Other two fixed points are given in Figs. 15
and 16 at σ1 � −0.15162, and σ1 � −0.14162, respectively. One of them is stable in each figure at the
points (−1.2961, 0.9791) and (−1.1961, 0.9592), while the other is unstable at the locations (1.284, 0.979)
and (1.222, 0.9592). On the other hand, the intersections of the curves of Fig. 17 have four fixed points. The
stable ones are found at the points (−0.4493, 0.9193) and (−1.01, 0.9193), while the unstable points will be
at the locations (0.447, 0.9193) and (1.026, 0.9193).

6 Examination of the stability

The Routh-Hurwitz criteria are used in this part to assess the system’s stability and to examine its nonlinear
evolution, in which the motion of the model is studied in the presence of the external excitation harmonic
moment M(t). Some elements, such as the coefficients of damping C j ( j � 1, 2), the frequencies p, ω, and
the parameters of detuning σ j have been found to have a significant effect on stability operations. A precise
procedure involving several system parameters was employed to draw the stability plots of system (34). The
modified amplitudes h j are displayed with σ j for different parametrical areas when the values F � 0.140374,
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Fig. 19 Demonstrates the frequency response of h2 as function of σ1 when σ2 � 0.192984: a at C2 � 0.102041, b at C2 �
0.153061, c at C2 � 0.255102

Fig. 20 Sketches h1(σ1) when σ2 � 0: a at C1 � 0.0809848, b at C1 � 0.134975, c at C1 � 0.188964

C1(� 0.0809848,0.134975,0.188964) and C2(� 0.102041, 0.153061, 0.255102) are considered. Therefore,
Figs. 18, 19, 20, 21, 22 and 23 are graphed to characterize the variation of h j versus σ1 at distinct values of σ2
when the coefficients of damping C j have different values during the specified interval −3.0 ≤ σ1 ≤ 3.0. The
influence of variation ofC1 is shown in Figs. 18, 20, and 22 at σ2 � 0.192984,σ2 � 0, and σ2 � −0.05141914,
respectively. Whereas the effect of C2 is graphed in Figs. 19, 21, and 23 at the same values of σ2.

The scrutiny of these figures detects that the stability domains of the fixed points are found in the area
−3.0 ≤ σ1 ≤ −0.2, while the unstable ones are located in the zone −0.2 < σ1 ≤ 3.0. The continued curves
and the dotted ones are used to represent the stable and unstable points, respectively. The locations of different
peaks of fixed points (PFP) and the critical fixed points (CFP) of the response curves of these figures at the
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Fig. 21 Explores the resonance curve of h2 as a function of σ1 when σ2 � 0: a at C2 � 0.102041, b at C2 � 0.153061, c at
C2 � 0.255102

Fig. 22 Displays h1 via σ1 when σ2 � −0.0514914: a at C1 � 0.0809848, b at C1 � 0.134975, c at C1 � 0.188964

various values of σ2 are presented in Tables 1, 2, 3, 4, 5 and 6. The CFP is known as that point which is located
between the stable and unstable areas, and then it may be stable or not. Moreover, each CFP represent PEP,
while the inverse is not necessary.

Figures 24, 25 and 26 describe the resonance curves of h1 as a function of σ1, and ther are calcu-
lated at C1 � 0.0809848,C2 � 0.102041 when F(� 0.10798, 0.140374, 0.188964), px (� 0.00060609,
0.0303046, 0.0757614),py(� 0.0009091, 0.0242437, 0.0606092). Moreover, curves of Figs. 24, 25, 26 are
drawn when σ2 � 0.192984,σ2 � 0, and σ2 � −0.0514914, respectively. The stability zones of Fig. 24, 25
and 26 are −3.0 ≤ σ1 ≤ −0.2, while the instability areas lie in the domains −0.2 < σ1 ≤ 3.0. Tables 7, 8 and
9 show the positions of various PFP and CFP for the response curves of Figs. 24, 25 and 26 at various values
of σ2(� 0.192984 , 0,−0.0514914).
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Fig. 23 Describes the variation of the amplitude h2 versus σ1 when σ2 � −0.0514914: a atC2 � 0.102041, b atC2 � 0.153061,
c at C2 � 0.255102

Table 1 Demonstrates the positions of the PFP and the CFP for the response curves at σ2 � 0.192984 for the curves of Fig. 18

Figure PFP CFP σ2

Figure 18a (− 0..391011, 0.105832)
(− 0.184238, 1.25089)

(− 0.184238, 1.25089) 0.192984

Figure 18b (− 0.403174, 0.110184)
(− 0.200626, 1.0473)
(− 0.0918118, 0.117015)
(0.00340044, 0.452913)

(− 0.200626, 1.0473) 0.192984

Figure 18c (− 0.500479, 0.0998696)
(− 0.384929, 0.179824)
(− 0.293706, 0.207501)
(− 0.200626, 0.849878)
(− 0.10185, 0.113436)
(0.0999664, 0.315835)

(− 0.200626, 0.849878) 0.192984

Table 2 Shows the positions of the PFP and the CFP for the response curves of Fig. (19) at σ2 � 0.192984

Figure PFP CFP σ2

Figure 19a (− 0.308099, 0.07366890)
(− 0.186213, 3.85488)
(− 0.0914139, − 1.46375)
(0.0033857, 2.23436)

(− 0.186213, 3.85488) 0.192984

Figure 19b (− 0.289412, 0.00585496)
(− 0.185354, 3.01606)
(− 0.10731, − 0.0283519)

(− 0.185354, 3.01606) 0.192984

Figure 19c (− 0.397092, 0.074943)
(− 0.299787, 0.0272784)
(− 0.198361, 1.61391)
(− 0.0812955, 0.0547762)

(− 0.198361, 1.61391) 0.192984
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Fig. 24 Describes the resonance curve of h j ( j � 1, 2) as a function of σ1 at σ2 � 0.192984: parts a, b when
F(� 0.10798, 0.140374, 0.188964), parts c, d when px (� 0.00060609, 0.0303046, 0.0757614), parts e , f when py(�
0.0009091, 0.0242437, 0.0606092)

Table 3 Describes the coordinates of the PFP and the CFP for the response curves of Fig. (20) at σ2 � 0.

Figure PFP CFP σ2

Figure 20a (− 0.409255, 0.109994)
(− 0.196401, 0.790384)
(− 0.122032, 0.829729)
(0.00340044, 0.101236)
(0.112214, 0.258865)

(− 0.196401, 0.790384) 0

Figure 20b (− 0.299787, 0.123756)
(− 0.202482, 1.16459)
(− 0.0102013, 0.102463)
(0.15302, 0.193026)

(− 0.202482, 1.16459) 0

Figure 20c (− 0..603865, 0.099717)
(− 0..500479, 0.121885)
(− 0..397092, 0.103128)
(− 0..293706, 0.128706)
(− 0..184238, 0.474875)
(− 0.108577, 0.489359)
(0.0057854, 0.103902)
(0.207602, 0.178228)

(− 0.184238, 0.474875) 0
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Fig. 25 Explores the resonance curve of h j ( j � 1, 2) as a function of σ1 at σ2 � 0: parts a ,b for different values of F , parts
(c),(d) for different values of px , and parts (e),(f ) for different values of py

Table 4 Explains the positions of the PFP and the CFP for the response curves of Fig. 21 at σ2 � 0.

Figure PFP CFP σ2

Figure 21a (− 0.224376, 0.282419)
(− 0.10731, 1.39554)
(0.0227627, 0.230646)

(− 0.224376, 0.282419) 0

Figure 21b (− 0.198361, -0.00233394)
(− 0.10731, 1.05902)
(0.00975549, 0.204759)

(− 0.198361, -0.00233394) 0

Figure 21c (− 0.494397, 0.0714494)
(.-0.196401, 0.527472)

(.-0.196401, 0.527472) 0
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Fig. 26 Shows the resonance curve of h j ( j � 1, 2) as a function of σ1 at σ2 � −0.0514914: parts a, b for various values of F ,
parts c , d for various values of px , and parts (e , f for various values of py

Table 5 Displays the coordinates of the PFP and the CFP for the response curves of Fig. 22)at σ2 � −0.0514914

Figure PFP CFP σ2

Figure 22a (− 0.397092, 0.110284)
(− 0.281543, 0.237859)
(− 0.190319, 1.3615)
(0.0999664, 0.199994)

(− 0.190319, 1.3615) − 0.0514914

Figure 22b (− 0.282236, 0.117462)
(0.214227, 0.85852)
(0.112214, 0.164602)

(0.214227, 0.85852) − 0.0514914

Figure 22c (− 0.403174, 0.100322)
(− 0.293706, 0.124925)
(− 0.10185, 0.461135)
(0.0170022, 0.117628)
(0.23463, 0.143168)

(− 0.196401, 0.358003) − 0.0514914



Modeling and analyzing the motion of a 2DOF dynamical 807

Table 6 Highlights the destinations of the PFP and the CFP for the response curves of Fig. (23) when σ2 � −0.0514914

Figure PFP CFP σ2

Figure 23a (− 0.299787, 0.0782844)
(− 0.196401, − 0.321224)
(− 0.09430281, 1.9292)
(− 0.003251, -0.528545)

(− 0.196401, − 0.321224) − 0.0514914

Figure 23b (− 0.185354, −
0.00930659)

(− 0.0812955, 0.71634)
(0.00975549, 0.0874464)

(− 0..185354, − 0.00930659) − 0.0514914

Figure 23c – (− 0.0422737, − 0.0334947) − 0.0514914

Table 7 Shows the locations of the PFP and the CFP for the response curves at σ2 � 0.192984 for the curves of Fig. 24

Figure PFP CFP σ2

Figure 24a (− 0.404652, 0.103169)
(− 0.187024, 1.15527)
(− 0.39105, 0.10923)
(− 0.200626, 1.25516)
(− 0.472661, 0.106736)
(− 0.187024, 1.36248)

(− 0.187024, 1.15527)
(− 0.200626, 1.25516)
(− 0.187024, 1.36248)

0.192984

Figure 24b (− 0.294556, 0.037748)
(− 0.186213, 3.4868)
(− 0.0914139, − 1.98857)
(0.0304713, 2.10718)
(− 0.321641, − 0.00943457)
(− 0.199756, 3.8133)
(− 0.104957, − 1.5053)
(0.0169285, 2.1097)
(− 0.276405, − 0.0130093)
(− 0.198361, 4.2916)
(− 0.0812955, 1.88509)

(− 0.186213, 3.4868)
(− 0.199756, 3.81333)
(− 0.198361, 4.2916)

0.192984

Figure 24c (− 0.39105, 0.10923)
(− 0.200626, 125516)
(− 0.350245, 0.109231)
(− 0.200626, 1.25054)
(− 0.363847, 0.0999894)
(− 0.187024, 1.25054)

(− 0.200626, 1.25516)
(− 0.200626, 1.25554)

0.192984

Figure 24d (− 0.321641, − 0.00943457)
(− 0.199756, 3.8133)
(− 0.104957, − 1.5053)
(0.0169285, 2.1097)
(− 0.281013, − 0.0509863)
(− 0.186213, 3.81333)
(− 0.0914139, − 1.54685)
(0.0101351, 2.2504)
(− 0.281013, 0.0321172)
(− 0.186213, 3.85488)
(− 0.0914139, − 1.46375)
(0.0033857, 2.23436)

(− 0.199756, 3.81333)
(− 0.186213, 3.81333)
(− 0. 186213, 3.85488)

0.192984

Figure 24e (− 0.39105, 0.10923)
(− 0.200626, 125516)
(− 0.380849, 0.105765)
(− 0.197225, 1.25632)
(− 0.38552, 0.105379)
(− 0.192776, 1.2497)

(− 0.200626, 1.25516)
(− 0.197225, 1.25632)
(− 0.192776, 1.2497)

0.192984
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Table 7 continued

Figure PFP CFP σ2

Figure 24f (− 0.321641, − 0.00943457)
(− 0.199756, 3.8133)
(− 0.104957, − 1.5053)
(0.0169285, 2.1097)
(− 0.278566, − 0.144181)
(− 0.197528, 3.83945)
(− 0.106361, − 1.53732)
(0.00506483, 2.22331)
(− 0.268436, 0.016615)
(− 0.197528, 3.87053)
(0.0962318, − 1.50624)
(0.0151945, 2.22331)

(− 0.199756, 3.81333)
(− 0.197528, 3.83945)
(− 0.197528, 3.87053)

0.192984

Table 8 Presents the locations of the PFP and the CFP for the response curves at σ2 � 0 for the curves of Fig. 25

Figure PFP CFP σ2

Figure 25a (− 0.268634, 0.120127)
(− 0.200626, 1.25403)
(0.00340044, 0.101539)
(0.112214, 0.21307)
(− 0.404652, 0.110509)
(− 0.0918118, 0.833747)
(0.00340044, 0.101236)
(0.112214, 0.258865)
(− 0.486262, 0.103274)
(− 0.105413, 0.94891)
(0.00340044, 0.0997502)
(0.0986126, 0.367535)

(− 0.200626, 1.25403)
(− 0.200626, 0.790477)
(− 0.187024, 0.772735)

0

Figure 25b (− 0.302419, 0.0672743)
(− 0.198361, 0.300746)
(− 0.0812955, 0.868745)
(0.00975546, 0.200853)
(− 0.0943028, 1.42143)
(0.022767, 0.256532)
(− 0.289412, − 0.00240918)
(− 0.0812955, 1.86145)
(0.0097546, 0.204686)

(− 0.198361, − 0.300746)
(− 0.185354, 0.385965)
(− 0.172347, 1.3696)

0

Figure 25c (− 0.404652, 0.110509)
(− 0.0918118, 0.833747)
(0.00340044, 0.101236)
(0.112214, 0.258865)
(− 0.377448, 0.1074108)
(− 0.105413, 0.836838)
(0.00340044, 0.0981456)
(0.0986126, 0.0252684)
(− 0.363847, 0.113599)
(− 0.0918117, 0.833747)
(0.0170022, 0.104377)
(0.112214, 0.255775)

(− 0.200626, 0.790477)
(− 0.200626, 0.78495)
(− 0.187024, 0.793567)

0

Figure 25d (− 0.0943028, 1.42143)
(0.022767, 0.256532)
(− 0.0943028, 1.39554)
(0.0227627, 0.256532)
(− 0.10731, 0.142143)
(0.00650365, 0.237117)

(− 0.185354, 0.385965)
(− 0.1853541, 0.360079)
(− 0.185354, 0.308306)

0
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Table 8 continued

Figure PFP CFP σ2

Figure 25e (− 0.404652, 0.110509)
(− 0.0918118, 0.833747)
(0.00340044, 0.101236)
(0.112214, 0.258865)
(− 0.385552, 0.108517)
(− 0.101461, 0.837064)
(0.0101461, 0.1016)
(0.11607, 0.260682)
(− 0.36526, 0.108517)
(− 0.111607, 0.837064)
(0.0101461, 0.09922946)
(0.131899, 0.258376)

(− 0.200626, 0.790477)
(− 0.192776, 0.788648)

0

Figure 25f (− 0.0943028, 1.42143)
(0.022767, 0.256532)
(− 0.0923406, 1.41911)
(0.0243002, 0.219746)
(− 0.102061, 1.39976)
(0.0145801, 0.200401)

(− 0.185354, 0.385965)
(− 0.189541, 0.316468)
(− 0.199261, 0.316468)

0

Table 9 Gives the positions of the PFP and the CFP for the response curves at σ2 � −0.0514914 for the curves of Fig. 26

Figure PFP CFP σ2

Figure 26a (− 0.295838, 0.1078713)
(− 0.105413, 0.755748)
(1.29557, 0.0492287)
(− 0.39105, 0.108455)
(− 0.187024, 1.36209)
(− 0.369843, 0.121979)
(− 0.179832, 1.44755)
(− 0.132329, 0.27164)

(− 0.105413, 0.755748)
(− 0.202922, 1.36418)
(− 0.179832, 1.44755)

− 0.0514914

Figure 26b (− 0.88361, 0.0390682)
(− 0.0943028, 0.692148)
(0.0227627, 0.111633)
(− 0.296462, 0.136059)
(− 0.189541, − 0.39118)
(− 0.0923406, 1.22946)
(0.00486003, − 0.488743)
(− 0.289412, 0.02978291)
(− 0.198361, 2.76917)
(0.00975546, -0.518095)

(− 0.198361, 0.0390682)
(− 0.189541, -0.39118)
(− 0.198361, 2.76917)

− 0.0514914

Figure 26c (− 0.39105, 0.108455)
(− 0.187024, 1.36209)
(− 0.385552, 0.104751)
(− 0.92776, 1.36418)

(− 0.202922, 1.36418)
(− 0.192776, 1.36418)

− 0.0514914

Figure 26d (− 0.296462, 0.136059)
(− 0.189541, − 0.39118)
(− 0.0923406, 1.22946)
(0.00486003, − 0.488743)
(− 0.296462, 0.136059)
(0.189541, − 0.410643)
(− 0.09234061, 1.22946)
(0.00486003, − 0.488743)

(− 0.189541, − 0.39118) − 0.0514914

Figure 26e (− 0.39105, 0.108455)
(− 0.187024, 1.36209)
(− 0.395698, 0.104751)
(− 0.202922, 1.36795)
(− 0.385552, 0.108521)
(− 0.213068, 1.36041)

(− 0.202922, 1.36418)
(− 0.202922, 1.36795)
(− 0.213068, 1.36041)

− 0.0514914
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Table 9 continued

Figure PFP CFP σ2

Figure 26f (− 0.296462, 0.136059)
(− 0.189541, − 0.39118)
(− 0.0923406, 1.22946)
(0.00486003, − 0.488743)
(− 0.296462, 0.116534)
(− 0.17982, 0.371592)
(− 0.0923406, 1.22946)
(0.00486003, − 0.488743)
(− 0.296462, 0.116536)
(− 0.199261, − 0.371592)
(− 0.102061, 1.24899)
(0.00486003, − 0.449693)

(− 0.189541, − 0.39118)
(− 0.17982, − 0.371592)
(− 0.199261, − 0.371592)

− 0.0514914

7 Conclusion

The planar motion of a 2DOF dynamical system consisting of a coupled tuned longitudinal absorber with
a simple pendulum in the presence of a harmonic excitation moment has been examined. The pendulum’s
pivot has been forced to follow a Lissajous trajectory with constant angular velocity. The governing system of
the EOM has been derived applying the equations of Lagrange of the second kind. One of the most accurate
perturbation approaches, called AMS has been used to achieve the solutions of this system up to a greater order
of approximation. The different types of resonance cases have been categorized, and two of them have been
studied at the same time. The equations of modulation have been obtained in view of the system’s solvability
criteria. These equations have been reduced to an algebraic system of two nonlinear algebraic equations which
are solved numerically and graphed to obtain all possible fixed points. The stability of these points at the
steady-state has been examined based on the criteria of Routh-Hurwitz. The solutions’ temporal histories,
altered phases and amplitudes, and resonance curves have been drawn to analyze the dynamical manner at
any moment. The effect of the various parameters on the system’s behavior has been assessed through the
examination of the various stability areas. The calculations have been performed using the computer’s codes
andWolframMathematica software. Thegained results canbe considered novel, inwhich the usedmethodology
has been applied to a specific dynamical system. The weight of the examined dynamical system can be seen
from its numerous applications in real life, particularly in the reduction in vibrations in diverse engineering
constructions.
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