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Abstract The structural performance of composite beams is sensitive to load distribution as well as actual
boundary conditions. Although the composite beam theory has been solidly established and exact solutions
have been readily developed for various loading and boundary conditions, almost all of them are limited to
classical boundary conditions (free, pinned and clamped) and there has been little discussion about the actual
support conditions in real structures. The general representation of actual boundary conditions can be defined
as rotationally restrained edges. In this research, an analytical model with exact series-type solutions was
developed for composite beams with rotationally restrained edges. The model and displacement solutions
were validated by other analytical methods and numerical results. The influence of rotational and end-slip
restraints was investigated. It was found that the deflection and interface slip of composite beams are highly
affected by both restraints introduced by the actual boundary conditions. The current model can be used as a
benchmark for future design methods considering the realistic boundary conditions of composite beams.

Keywords Partial composite action - Gamma method - Stokes’ transformation - Fourier series - End fixity
factors - End-slip restraints

1 Introduction

Composite structures combining dissimilar materials through various shear connectors are extensively imple-
mented in civil engineering applications as floor/wall components and bridge decks. The most common form
of composite elements in construction is steel-concrete composites, which has attracted tremendous research
interests over last decades (e.g. [1-3]). In parallel, other types of composites including steel-timber and timber—
concrete composites (TCC) have been increasingly developed as alternative solutions to traditional reinforced
concrete and steel-concrete composites or refurbishment techniques for existing structures. More recently, with
rapidly emerging movement towards sustainable construction and significant advances in engineered wood
products and mass timber panels, TCC systems have been increasingly used in new structures and present
numerous advantages over timber-only or reinforced concrete floors [4,5]. Such a trend substantially fuels the
need to improve the existing analysis procedure and design methods for composite beams.
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The behaviour of composite members is complex as the shear connectors generally permit relative slip
between individual components of the member and only partial composite action can be achieved [6]. Since
1940s, a considerable amount of literature has been published on the composite beam theory from linear elastic
models [7-11] to nonlinear plastic methods [12—-15]. A detailed background to the composite beam theory
and the literature in the field can be found in [16]. Based on earlier theoretical models, simplified design
methods for composite beams with partial interaction have been developed. In timber engineering, simplified
design approaches such as Gamma method in Eurocode 5 (Annex B) [17] and Newmark—McCutcheon formula
[8,18,19] have been commonly used in practical designs. The Gamma method, which was recommended by
Ceccotti [4] for linear-elastic analysis, was developed based on the simple linear elastic model of Mdhler [9]
for timber—timber composite beams and derived from the exact solution for a simply supported composite
beam subjected to a sinusoidal distributed load. A closely related deduction can be found in [20]. According
to this approach, the “Effective Stiffness” concept is introduced and a “Connection Efficiency Factor” (y) is
used to account for the composite efficiency of shear connectors, with y = 1 representing fully composite
action, and ¥ = 0 no connection at all. It also provides an elegant solution with acceptable accuracy for simply
supported beams under a uniformly distributed load or concentrated load. In addition, the coefficient of y
renders a favourable illustration of the nature of the problem [21]. In parallel, Newmark et al. [8] developed
similar elastic composite beam model for steel-concrete composite beams and derived the exact solution for
simply supported composite beam under a concentrated load. The expression was simplified by McCutcheon
[18,19] for timber components, which is denoted as Newmark—McCutcheon formula herein. Surprisingly,
these two independent methods (Gamma method and Newmark—McCutcheon formula) produced almost the
same result. The Newmark—McCutcheon formula has been widely used in North America for calculating
effective composite bending stiffness such as ATC Design Guide 1 [22].

However, increasing concerns have been raised about the validity and accuracy of the well-known simplified
methods for arbitrary boundary conditions other than the simple support. Exact solutions and simplified formula
have been readily developed on various boundary conditions for uniform composite beams [6,11,16,23-25].
It has been found that the error of the Gamma method in the clamped—clamped case is around 20% [25],
even up to almost 30% [16]. For extensions of the Gamma method to beams with other boundary conditions,
Eurocode 5 [17] recommends 0.8 of the relevant span for continuous beams and twice the length for cantilever
beams. Furthermore, a general and more accurate way of determining the effective beam length was proposed
by Girhammber [16] for arbitrary boundary and loading conditions.

The newly proposed design methods/formulas for so-called arbitrary boundary conditions [16,23] merely
cover an arbitrary combination of free, pinned (simply supported) and clamped conditions. These conditions
are idealized extreme conditions that do not reflect actual boundary conditions in structures. In fact, it is
prohibitively difficult, if not impossible, to achieve clamped conditions, such that all displacement and rotation
components vanish, at supports [26], especially for timber since it is relatively ‘compressible’ in the across
grain direction [27]. In most simply supported cases, some amount of rotational stiffness can be introduced by
the boundary conditions. For instance, platform-frame construction in timber engineering often result in large
restraints at end supports due to weight of upper stories [28]. In reality, the boundary conditions are normally
semi-rigid, which can be defined as restrained conditions against rotation. Nevertheless, very little attention
has been paid to the actual support conditions for composite beams.

The current research aims to fill this gap by developing an analytical model for static analysis of composite
beams with rotationally restrained edges and deriving an exact series solution. Series type solutions (e.g. Navier
solution and Levy solution) have been extensively used for simple beam and plate structures from the beginning
of the last century [29] and have also been applied to composite beams [30], stressed-skin panels [31] and
stiffened plates [32]. The benefit of series-type solutions is that they can be easily generalized for various loading
scenarios and boundary conditions. While the application of series type solutions is straightforward to various
loading cases, it turns out to be rather tedious to satisfy complex boundary conditions. Accordingly, rigorous
series-type solutions are widely applied for simply supported conditions. Although laborious superposition
techniques can be used [33] for complex boundary conditions, it is common practice to resort to approximate
techniques based on Ritz—Galerkin methodology or direct numerical analysis [34]. It is the use of Stokes’
transformation that releases those complex boundary conditions [35] leading to a simple, unified and systematic
procedure dealing with beams and plates with arbitrary boundary conditions [36-38].

In the current study, the series-type solutions with the employment of Stokes’ transformation were extended
to composite beams with rotationally restrained edges. The fourth-order governing differential equations for
the displacement of partially composite beams with rotationally restrained edges were first derived. Then,
by applying Stokes’ transformation, exact series solutions were deducted. The validity and accuracy of the
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Fig. 1 A typical composite beam and the coordinate system: a elevation; b cross section

proposed solution were assessed by comparing predicted deflections and slips with other analytical models
and numerical results. Finally, the parametric studies were conducted to examine the influence of different
boundary restraints.

2 Formulation
2.1 Governing equations

The present model is based on Euler—Bernoulli beam theory (for each element of the composite beam). All
materials (including shear connectors) are assumed to remain within the linear-elastic range until elements
fail. The shear connectors between two elements are regarded as continuous and uniformly distributed along
the longitudinal direction. Elements are subjects to bending and no axial loads are applied.

A typical composite beam with two sub-elements of different materials, as shown in Fig. 1, is studied. E;,
A; and I; (i = 1, 2) are Young’s modulus, cross-sectional area and moment of inertia of two elements. L
and H denote the length and height of the composite beam, respectively. The symbol /| denotes the distance
from the centroid of the upper element to the interface between the elements. Similarly, the distance from the
centroid of the lower element to the interface is represented by /,. The subscripts “1” and “2” will refer to the
upper and lower elements, respectively. The x-axis of the coordinate system is located in the centroid of the
composite section. The coordinate origin is placed at the left support, and the positive direction of z-axis is
downward. The displacements in the x- and z-directions are denoted as u and w, respectively.

The kinematical relation can be determined first. In the case that partial composite action is developed
between two elements, the interface slippage presents. Based on the above assumptions, the geometrical
relation of the slippage us, the deflection w and the axial displacements of two components, #| and u», is
illustrated in Fig. 2. Thus, the relation between the slippage ug and the deflection w is

us =ur —u; +wh (1)
Then, equilibrium of forces can be established. Fig. 3 shows a free-body diagram of an infinitesimal element

of length dx with internal and external forces upon it. Bending moment, shear force and axial force are denoted
by M, Q and N, respectively. Equilibrium equations for the element are

0'=—g a)
Ni+ N, =0 (2b)
M =0 (2¢)

Considering the equivalence of the internal and external actions on the left-hand side of the free-body
diagram in Fig. 3, it can be obtained

0=01+02 (3a)
Ny = —N; = —q; (3b)
M = M+ M, — Nih (3¢)
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Fig. 2 Kinematic relation between interlayer slip and axial and transverse displacements (adopted from [39])
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Fig. 3 An infinitesimal element of the composite beam

Assuming both layers have equal curvature, it yields

M, M ”

= T _w 4)
E\l ExD

Thus, the internal axial forces can be expressed with the first derivative of displacements as:
N1 = E1Auy, Ny = ExA) (5)
The first governing equation can be obtained by combining Egs. (2b) and (5) as:
E1Au) + E2Axub, =0 (0)
The relation of the interface slippage and the shear force of the shear connector is
g6 = kus (N

where k denotes the shear stiffness of the shear connector per unit length (unit: N/m?). Applying Eq. (3b), it
gives

Ni{ = —Nj = —kus ®)
By considering Egs. (1), (5) and (8), the second governing equation can be derived as:

E1A1u/1/ +k(ur —u; +hw)=0 or E2A2M/2/ —k(uy —u; +hw') =0 ©)]
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Fig. 4 General boundary conditions (shear connectors are not shown here for clarity)

Finally, substituting Egs. (4) and (5) in Eq. (3c) results in
M = —El,w" — E;Aihu} (10)
where EI, = E| I} + E2I>. Then, substituting Egs. (2¢), (10) in (2a), it gives
El,w" + E1Ajhul = q (11

which is the third governing differential equation.

2.2 General boundary conditions

In order to simulate different boundary conditions, two types of springs were defined to characterize all possible
intermediate end supports of a single-span composite beam from simply supported to fully clamped as shown in
Fig. 4. Two external springs represent the rotational restraints, Ro and Ry, and two internal springs restrain the
slip at the beam ends, K and K1, denoted as end slip restraints herein (or end shear restraints in [40—42]). The
rigid end-slip restraint was found to have a significant effect on the behaviour of composite beams, especially
when the intermediate shear connector stiffness between two members of a composite beam is small [42].
However, very little attention has been paid to the role of the end slip restraint in the existing composite beam
theories.

Rigid shear restraints were defined in [40] to suppress the shear deformation at beam ends leading to
plane section at composite beam ends as shown in Fig. 5b, which can be realized by a special support design
(although quite rare in current practice). Numerical results [41] have shown that rigid shear restraints exert
a stiffening action to the beam and significantly reduce the displacement [42]. In this study, a more general
end-slip restraint was defined to characterize a broad range of slip conditions at the beam ends. For zero
end-slip restraints, each member of a composite beam freely elongates leading to larger slip at beam ends.
Similarly, infinite end-slip restraints imposes the end sections to remain plane (no slip), which was defined
as rigid shear restraints in [40]. In addition, although the end-slip restraints are introduced together with the
rotational restraints, they can be considered separately. That means even for simply supported beam (with free
rotations at the beam ends), end-slip restraints can be added to improve the composite actions.

Six boundary conditions are required to solve the system of governing equations. The general boundary
conditions (Fig. 4) can be expressed as:

w(0) = w(L) =0 (12a)
M(©0) = Row'(0), M(L) = —Riw'(L) (12b)
us(0) = —=N1(0)/Ko, us(L) = Ni(L)/KL (12¢)

It should be noted that u5(0) is negative because the element 1 moves in the negative x-direction and undergoes
negative displacement. Substituting Eq. (8) in Eq. (12c) gives

N{(0)/k = N1(0)/Ko, —Ni(L)/k = Ni(L)/KL (13)

Substituting Egs. (10) and (5) in Eqs. (12b) and (13), respectively, the boundary conditions can be expressed
in the form of displacement, rotation, and slip as:

w(0) =w(L) =0 (14a)

Elgw//(O) + E1A1hu/1 ) = Row/(O), Elgw//(L) + E1A1hu/1 (L) = —RLw/(L) (14b)
/ Ko ” / Ky 1

ul(O) = 7”1(0)5 ul(L) = _Tul(L) (14¢)
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(a) Without end shear restraints

(b) End shear restraints

Fig. 5 End conditions of elastic composite beam with/without end shear restraint (after [40])

3 Exact series solution

The displacement functions can be expressed as Fourier series of the form:

o0
w(x) = Z Apsina,x, 0<x <L (15)
m=1
o0
ul(x)zBo-i-ZBmcosamx, 0<x<L (16)
m=1
o0
ur(x) = Co + Z Cpcosayx, 0<x<L (17)
m=1

where o, = mm/L and A,,;, By, and C,, are the Fourier coefficients. In general, the applied load can be given
by

o0
q(x) = Qusinayx, 0<x<L (18)
m=1
where
2 L
Om = —/ q(x) sin o xdx (19)
L Jo

With a given external force g (x), these Fourier coefficients can be determined by substituting the displace-
ment functions [Egs. (15), (16) and (17)] in the governing differential equations of Egs. (6), (9) and (11). The
derivation process is presented as follows.

In particular, the derivative of the displacement functions must be carefully handled because term-by-
term differentiation may not be valid. A special differentiation technique called Stokes’ transformation can
be applied. Mathematical discussions and proofs on this topic can be found on pages 137-139 in [43] and on
pages 375-377 in [44]. The first to fourth derivatives of Fourier sine series and cosine series can be found in
[36,45].

Based on Stokes’ transformation, the first derivative of w(x) can be expressed as:

oo
w (x) = ZamAm cosapmx, 0<x <L (20)

m=1
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However, with regard to the first derivative of u; and u,, term-by-term differentiation is only valid on open
interval of 0 < x < L. They can be expressed as:

/

uy = — Oy By, SIN oy X 21

M2

m=1

M2

uy = — Ay Copy SIN QX (22)

Il
-

m

Substituting Egs. (21) and (22) in Eq. (6), the first governing equation can be expressed as:

o0
Z om(E1A1 B + E2A2Cpy) sinagyx = 0 (23)

m=1

Since Eq. (23) is valid for any x (or Cantor’s theorem [46]), it can be concluded that

E1A1B,, + E2A>C, =0 24)
The second derivative of u; on interval of 0 < x < L can be obtained as:
u' (L) —u (0 > (2
| = % + mX_:l {Z[(—l)mu’l(L) —uj(0)] - oz,anm} COS U X (25)

Substituting Egs. (16), (17), (20) and (25) in the second governing equation of Eq. (9), it gives

E1Aq
k

2E1A;

[} (L) = 1} )] + k(Co — Bo) + Z [ == 0" @) w0 - ErArag By
m=1 (26)

+ k(Cpy — By) +khamAm} COS dtmx = 0

Based on Cantor’s theorem [46], coefficients of the cosine series in Eq. (26) equal zero. Applying Eq. (24), it

arrives
2[(=D™u (L) — u} (0)] ,  k
hoty, A — — B, =0 27
EA, emAn T L (““EA) m 7)

in which ﬁ = ﬁ + ﬁ . Further simplification can be made by substituting the boundary conditions of
Eq. (14c), which results in

M ) k
ElAlhamAm + 221: Dima?B; — (o2 + — =) Bn=0 (28)
1=

The derivation of Djp, is shown in 6.
At last, the fourth derivative of w and the third derivative of u; are given by

w” (x) == am {%[(-1)’” w”(L) — w"(0)] — af,,Am} sin o, x (29)
m=1
uf'(x) = Z U { [(=D"u} (L) — uy (0)] — ap, 2 B, } sin o, x (30)

in which 0 < x < L. After substituting the load function of Eq. (18) and displacement derivatives of Egs. (29)
and (30) in Eq. (11), the first governing equation can be expressed as:

S| - Elans [( "w' (L) — " (0)] = Ey Athoy ~ [( D™} (L) = u} (0)]
e 31)

+ ELa* Ay + E1Athal By — Qm} sin ex = 0
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Based on Cantor’s theorem [46], coefficients of the trigonometric series in Eq. (31) equal zero, which arrives

2 ” ” 2 m, .’ ’
- Eloamz[(—l)mw (L) —w"(0)] - E1A1hamz[(—1) uy (L) — u(0)]

(32)
+ ElLat Ay + E1A1hal By = O
Applying Eq. (14b), Eq. (32) can be rearranged as:
2 m ’ / 4 3
amz[(_l) RiLw' (L) + Row (0)] + EloamAm + ElAlhamBm =0Onm (33)
Using Eq. (20), it can be obtained that
o0 (0.@)
W)=Y D mAn, w0 =) anAn (34)
m=1 m=1
Substituting Eq. (34) into Eq. (33), it gives
4 2 \ i+m 3
Elocy A + 7t 3 [(—1) RL + RO] @i A + E{A1hes By = On (35)

i=1

For convenience, a non-dimensional parameter, r, was introduced herein to replace the rotational restraint
stiffness, R, as

1

yF = ——————
3E]
1+ RL{/

(36)
in which r is so-called end fixity factors, which is widely used in semi-rigid steel frame connections [38,47].
In particular, r = O represents the simply supported condition and r = 1 is used for the fully clamped.
Accordingly, Eq. (35) can be expressed as:

El > ; r T
Elat A, + 6 LOZ“'" ; [(—1)’+'" ﬁ +7 _Oro} @i A; + E1Atha By = O (37)

Equations (28) and (37) are two infinite systems of linear equations with respect to coefficients A,, and B,,.
(Here, the subscripts were set as the same for convenience.) The infinite number of equations can be truncated
to finite terms, say M, for each coefficients. (The truncated terms for A, and B,, can be different as well.) Then,
it will produce 2M equations with 2M unknown coefficients, which can be easily solved. Once coefficients
B, have been determined, C,, can also be calculated based on Eq. (24). As a result, all exact displacements,
w(x), u1(x) and u>(x), can be determined. In addition, the slip can be obtained by using Eq. (1). With all these
displacements known, other moments and inner forces can easily be derived, which are not presented here.

The results are theoretically exact when the number of terms is infinite. Convergent solutions with sufficient
accuracy can be obtained by a finite number of terms. The larger the number of terms used in a particular
analysis, the more accurate the solution will be. No generalizations can be made concerning the choice of an
adequate number of terms, as this will vary depending upon the load distribution and boundary restraints. Zhang
and Xu [38] have shown that this type of solution converges rapidly for orthotropic plates with rotationally
restrained edges. A similar fast convergence can also be observed for the composite beam in this study. For all
results presented in this study, M is taken to be 1000.

4 Validations with other models

In this section, the proposed series-type solution was validated and compared with other existing composite
beam models by considering specific supporting conditions and loading patterns.
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Fig. 6 Concentrated load located e from left-hand support

4.1 Reduce to the simply supported condition

The preceding sections are devoted to composite beams with general boundary conditions which include simply
supported and fully clamped as well as their intermediate cases. Such general expressions can be reduced to
the simply supported case by assuming zero rotational (Rg = Ry, = 0) and end-slip (Ko = K1, = 0) restraints
in Egs. (35) and (28). Then, Eqs. (35) and (28) can be reduced to the following form:

El,at Ay + E1A1hal By = Om (38a)
kh k
A o An <a,2,, + ﬂ) By=0 (38b)

Fourier coefficients A, and By, can easily be solved from the above set of equations. Then, the exact displace-
ment of composite beam under arbitrary transverse loads is given by

ad 1

W) =) o
m=t Elo & e T

& sin o, X 39)

The value of constant Q,, in Eq. (39) was defined in Eq. (19), which is dependent upon the type of load
distribution. The most common types of load distribution are uniform distributed loads and concentrated
loads. For a uniform distributed load, ¢, along the span,

2q m
Om=—0-(=1)") (40)
mm

For a concentrated load, P, as shown in Fig. 6

2P
Om = T sin ;e 41

where e is the distance of the load from left-hand support.

Smith [30] derived exact series-type solutions for deflections of built-up composite beams by expressing
the moment and sectional normal forces due to applied load as two Fourier series. The present solution in
Eq. (39) is equivalent to those results by Smith [30] but in a more concise form.

4.2 Deduction of Gamma method

Van der Linden [20] presented a closed-form solution for a simply supported composite beam with a sinusoidal
load along its length and deduced equivalent expressions of the Gamma method, which can also be derived by
the present series-type solution. The sinusoidal load can be defined as:

qg(x) =qosinax 42)

where o1 = /L, which is the value of ¢, in Eq. (18) when m = 1. In this manner, the displacement function
can be also expressed in a sinusoidal shape as:

w(x) = Asinax 43)
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Fig. 7 A single span timber—concrete beam (unit: meter; the upper element is denoted as element 1 and the lower element is
element 2)

From Eq. (39), the constant A can be derived as:

L4
A=_D (44)
T4E Lgt

in which E I is the effective flexural stiffness and is expressed as:
kh?
2 k
(7)"+ za
Equations (45) differ from the way Van der Linden presented in [20], and the results are nevertheless the same.

Further rearrangements can be carried out leading to the prominent expression of Gamma method proposed
in the Annex B of the Eurocode 5 [17]

Eley = EI, + (45)

Elef = EI, + yE1A1(h — a)* + E»Asa® (46)

in which y = [1 + 72E A{/(kL*)]~" is the shear connection reduction factor and a is the distance from the
centroid of the bottom element to the neutral axis of the composite section, which is given by
yE1A

a=—""121 (47)
vE1A| + E2Ar

5 Numerical examples and parametric studies

In this section, a 4 m single-span timber—concrete composite beam reported by Girhammer in [16] was studied.
The cross section and dimensions of the beam are shown in Fig. 7. The material properties are £; = 12 GPa
and E> = 8 GPa. The slip modulus (i.e. stiffness of shear connectors) is k = 50 N/mm/mm. For this beam,
the influence of end slip restraints was first discussed, followed by deflection predictions and comparisons
with other models.

5.1 Influence of end slip restraints

Based on the expression of Djy, in Eq. (A.6), a non-dimensional parameter, A, was defined herein for end-slip
restraints as:

Ko K1,
PR )\'L = T
kL kL
where k is the slip modulus, Ko and K1, are stiffness of end-slip restraints at two ends, respectively, and the

associated parameters are Ag and Ar. For simplicity, L9 = A, = A in the following analysis. A represents the
relative importance of the end-slip restraints compared to the shear connectors. A very large variation in A is

ho = (48)
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Fig. 8 Deflections and slips of a simply supported composite beam with various end-slip restraints under a distributed load

possible: A equal to zero corresponds to no end-slip restraints, and a higher A results in smaller slip at beam
ends.

First, consider the beam in Fig. 7 simply supported and loaded by a uniformly distributed load, 1 kN/m. For
this beam, four different end-slip restraints were studied and the associated values of A were 0, 0.1, 1 and 10.
The beam displacements and slips were determined for the four cases as illustrated in Fig. 8. It can be found
that both displacements and slips were notably affected by the end-slip restraints. More importantly, the slips
at beam ends were close to zero when A > 1, extremely close for A = 10, as shown in Fig. 8b. Thus, it can
be imagined that when the non-dimensional end-slip parameter A is larger than 10, the relative slip at beam
ends can be considered to be fully suppressed and the slip at other beam positions will almost be the same for
different A.

Similarly, parametric studies were conducted for the same simply supported composite beam with different
slip moduli. Four slip moduli were considered, namely k = 1, 5, 25 and SO N /mm /mm. For each slip modulus,
two end-slip restraint scenarios were investigated: A = 0 and A = 1. In order to illustrate the influence of end-
slip restraints varying with different slip moduli, both numerical results of two different A were presented in the
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Fig. 9 Deflections and slips of a simply supported composite beam with various slip moduli

same figure (left-hand side is for A = 0 and right hand side A = 1). In this manner, Fig. 9 demonstrates the beam
displacements and slips for the composite beam with different slip moduli and end-slip restraints. It is clear that
the effect of end-slip restraints is more evident in the case with smaller slip moduli (see k = 1 N/mm/mm).

Table 1 Maximum deflection of a single-span composite beam

Boundary conditions

Load distributions

Maximum deflections (mm)

Girhammar [16] Present Difference (%)

Pinned-pinned Distributed load (1 kN/m) 7.56 7.526 —04
Point load (1 kN) 3.08 3.061 —0.6

Pinned-clamped Distributed load (1 kN/m) 4.01 3.995 —04
Point load (1 kN) 1.76 1.754 —0.3

Clamped-clamped Distributed load (1 kN/m) 2.32 2.323 0.1
Point load (1 kN) 1.16 1.159 —0.1
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Fig. 10 Deflections and slips of a composite beam with various end support conditions under a concentrated load

5.2 Influence of end support restraints

Not only the simply supported boundary (pinned-pinned) conditions, but also pinned—clamped and clamped—
clamped conditions were analysed and compared with results reported in [16]. For the simply supported case,
r and A were both set as zero. The clamped cases were simulated by setting r = 0.999 [r = 1 results in a
zero denominator in Eq. (37)] and & = 10,000 (far enough for end-slip restraints). Two transverse loading
scenarios were examined: uniformly distributed loading and mid-span concentrated loading. The results and
comparisons are presented in Table 1. It can be seen that the present results obtained from exact series solutions
are in excellent agreement with results in [16]. In addition, the displacement and slip curves for the concentrated
loading case are presented in Fig. 10.

Since very little results can be found for composite beams with rotational restrained edges, no comparison
was conducted for those restrained cases. For demonstration, the displacements and slips of restrained com-
posite beams (r = 0.5) with different end-slip restraints (A = 0, 0.1 & 1) are presented in Fig. 11 as well
as the simply supported case (r = 0 & A = 0) and the clamped case (r = 0.999 & A = 10,000). It can be
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Fig. 11 Deflections and slips of a composite beam with various end support conditions under a distributed load

observed that the deflection and slip of composite beams are highly dependent on boundary restraints. More
importantly, the end-slip restraints have a marginal influence on the deflection but a major effect on the slip.

6 Conclusions

The behaviour of composite beams is governed by load distributions and actual boundary conditions. Existing
solutions normally deal with classical boundary conditions, namely free, simply supported and clamped, which
often deviates from the actual conditions in reality. The realistic supporting conditions are generally semi-rigid,
especially for timber structures since it is notoriously difficult to achieve fully clamped conditions for timber
elements. The current study first summarized widely used design methods for composite beams both in Europe
and North America, and concluded that they are basically the same method. Then, an analytical model for
composite beams with rotationally restrained edges was developed, and its exact series solutions were derived
by using Stokes’ transformation.
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By comparing them to other simple models, it has been shown that the recently proposed model can be
reduced to the simple models by setting the end restraints to zero. The parametric studies revealed that both
rotational and end-slip restraints significantly influence the deflection and interlayer slip of composite beams.
Particularly, the effect of end-slip restraints is more evident when the slip modulus is small, and is notable for
slips but marginal for deflections.

In the future, the proposed model can be useful as a benchmark for future analysis such as finite-element
modelling. Simple design formulas can also be developed for hand-calculation design solutions.
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Appendix A: Derivation of Dy,

By using Eqgs. (14¢) and (25), u’l (0) and ”/1 (L) can be expressed as:

o0

Ko K 2
uj (0) = [ul(L) ug(O)]+7°Z{Z[(—1)’" LWL — u)(0)] — a2 B } (A.1)
m=1
K1, Ki < (2
G0 =~ b0 =60 = 55 ST @) = M) - o) a2
m=1

For numerical calculations, the sum of infinite terms in Egs. (A.1) and (A.2) can be approximately evaluated
by the partial sum of finite terms by truncating the infinite number of terms to finite terms, M. Then, a system
of functions about u/ (0) and (L) can be derived by rearranging Eqgs. (A.1) and (A.2).

[1+(2M+1>—}u1<0>—< Y /(L)——TOZ (A3a)

M
K
(=DM~ o T 0) - [1+(2M+1)k—LL]u’1(L)=—7LZ 1" a2 By (A.3b)

u}(0) and u; (L) can readily be solved and (—1)"u/ (L) — u(0) can be expressed as:

"y (L) — u}(0) & ” —1)"C -
- 1(L) 1()_2{( I)Z(Ag ABCBIIjLL (AI;_CBCDg}“’ZBi a4
in which
A=1+(2M—|—1)f—£, B=(— 1)MK° (A.5a)
C=(—1)Mﬁ, D=1+(2M+1)— (A.5b)
kL kL

At last, Djy, is defined as:
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