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Abstract The present paper addresses the dynamical motion of two degrees-of-freedom (DOF) auto-
parametric system consisting of a connected rolling cylinder with a damped spring. This motion has been
considered under the action of an excitation force. Lagrange’s equations from second kind are utilized to
obtain the governing system of motion. The uniform approximate solutions of this system are acquired up
to higher order of approximation using the technique of multiple scales in view of the abolition of emerging
secular terms. All resonance cases are characterized, and the primary and internal resonances are examined
simultaneously to set up the corresponding modulation equations and the solvability conditions. The time
histories of the amplitudes, modified phases, and the obtained solutions are graphed to illustrate the system’s
motion at any given time. The nonlinear stability approach of Routh–Hurwitz is used to examine the stability
of the system, and the different zones of stability and instability are drawn and discussed. The characteristics
of the nonlinear amplitude for the modulation equations are investigated and described, as well as their stabili-
ties. The gained results can be considered novel and original, where the methodology was applied to a specific
dynamical system.

Keywords Perturbation techniques ·Nonlinear dynamics ·Auto-parametric systems ·Resonance · Stability ·
Fixed points

1 Introduction

The structure of a linked rolling cylinder with springs may be one of the important applications of the principle
vibration’s sources, such as in electric engines, vibrating structures, rockets, and train motors. Therefore, it
is vital to completely comprehend its vibrational motion to offer a better design solution for reducing the
vibration utilizing a decent plan. In this way, different sorts of frequencies and mode states of this structure
are huge in the planning stage. To avoid structural familiarity, it is critical to understand where the resonance
occurs.

The dynamical motions of such vibrating systems are found inmanyworks, for example [1–10]. The spring
pendulum’s chaotic motion is explored in [1–3] for a fixed suspension point as in [1, 2] or a moving one in
a circular path [3]. The controlling non-autonomous systems of equations of motion (EOM) are reduced to
approximate autonomous systems using the technique of multiple scales (TMS) [11]. Hopf bifurcation and
a series of period-doubling bifurcations [12] are demonstrated according to the existence of these systems,
which lead to chaotic motions.

Many works, for example [4–9], investigate the behavior of several pendulums’ types as a simple and
intuitive model of a nonlinear system. The damped motion of a spring is investigated in [4] when the pivot
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point follows an elliptic path, in which some special cases have been analyzed from the obtained approximate
solutions, while the rigid body pendulum’s motion in space is investigated numerically in [5] and [6]. The
time series of the results and the corresponding diagrams of phase planes are discussed. The planar motion
of an externally activated pendulum connected with a dynamic absorber that can move transversely and
longitudinally is examined in [7]. The nonlinear dynamical vertical movement of a 2DOF vibrating system
including nonlinear spring with nonlinear damping is studied in [8]. The analytic outcomes demonstrate that
the reducing amplitude’s goal and oscillation can be achieved in view of modifying the parameters of the
system besides the stimulating frequency’s value, whereas the motion of excited forced cart pendulum is
investigated in [9]. It is noted that for dissipation with small amplitude, the hovering movements are shown
to be asymptotically stable. Recently, the same problem is investigated in the framework of its approximate
solution in [10], in which the authors classified and examined the arising resonances in light of the obtained
modulation equations. In [13], the authors have given novel research that makes use of analytical methods to
look into the nonlinear properties exhibited by diverse nonlinear events. The asymptotic method and the TMS
are proven to be a practical and clear strategy for approaching mechanics and are relevant to a wide range of
engineering and science domains.

The dynamics of a forced spring pendulum with viscous damping are studied in [14] and [15] under the
influence of applied nonstationary restrictions that act on the point of suspension to travels in a specified path.
The authors restricted the angular velocity of this point to be constant and to move along a circular trajectory
[14] and a Lissajous curve [15]. A damped spring with linear and nonlinear stiffness is used to explore the
motion of a linked rigid body pendulum in [16, 17] and [18, 19] to generalize the works in [4] and [15],
respectively. The uniformly approximate solutions are obtained utilizing the TMS, in which three different
time scales are used. The external and parametric resonance cases have been examined simultaneously.

The vibration of a sliding pendulum with clearances without considering its horizontal motion is investi-
gated in [20]. Two models that would simulate the system’s clearances with 2DOF and 3DOF are developed
using nonlinear springs and dampers. Based on the obtained solutions, internal and primary resonances are
studied. A controlled electromagnetic seismic damper was used to investigate the ability to dampen vibrations
in a nonlinear gravitational vibratory system in [21], while the free motion of a coupled slip absorber to the
motion of carrying body over a hinged roller is explored in [22].

The behavior of a nonlinear mechanical system of 3DOF double pendulum is examined in [23], in which
the authors focused their study on the vibrations in the neighborhood of simultaneous internal and exterior
resonances. Using the TMS, the implicit form of the resonance response functions, as well as the equations
governing the modulation of amplitudes and phases, was established. Recently in [24] and [25], the authors
investigated the rotatory planemotion of auto-parametric systemswith 3DOF to create newvibrating dynamical
motions. They comprise a primary system with a damped Duffing oscillator and a secondary one which is
a damped spring pendulum. The domains of stability and instability are studied using the Routh–Hurwitz
criterion [12], in which the system’s behavior is found to be stable across a wide range of system’s parameters.

The parametric resonances of a double pendulum exposed to vertical kinematic excitation are examined
experimentally and theoretically in [26]. Theoretically, the TMSwas used to generate differential equations for
the slow temporal development of phases and amplitudes in the presence of parametric resonances conditions.
The authors used a nonclassical strategy that included the insertion of three temporal variables proportional
to the first, second, and fourth powers of a small parameter. They performed three phases of the perturbation
technique corresponding to the odd powers of this parameter. The trigonometric functions are expanded around
the position of stable equilibrium.

The planar motion of a nonlinear damped spring with immovable point is examined in [27]. A polynomial
approximate approach is proposed in, to formulate the approximate regulating governing system of the EOM
with trigonometric nonlinearities. This approach ensures that the sine and cosine functions are accurately
approximated not only around a specific location, but also throughout a preset interval. The interval’s size is
determined in accordance with the research goals and the predicted range of the fluctuation of angle coordi-
nate. As a result, the proposed approach could be the solution that provides improved resonance responses
with geometric nonlinearities for mechanical systems. The fundamental resonance’s resonant vibrations are
analyzed, as well as the steady-state resonant responses. The approximate analytic solutions of a vibrating
motion of a cylinder in a vertical direction are investigated in [28] using the TMS up to the second order of
approximation. The stability of the fixed points at the case of steady state is examined and analyzed using the
Routh–Hurwitz nonlinear stability.

In this work, the motion of a 2DOF auto-parametric dynamical system consisting of a coupled rolling
cylinder with a damped spring, in which the other spring’s end is connected to a wall, is examined. The
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Fig. 1 The dynamical system

fundamental system of motion is derived, in the existence of an acted excited external force using Lagrange’s
equations of second type. This system has been solved analytically utilizing the TMS up to the third order
of approximation, in which the emergent secular terms are eliminated. The solvability constraints and the
equations of modulation are obtained according to the examined resonance cases. The amplitudes, adjusted
phases, and acquired solutions are depicted in time histories in certain plots to show the system’s motion at any
instant. The emerged fixed points are examined in the steady-state case. Routh–Hurwitz’s nonlinear stability
strategy is utilized to investigate the system’s stability, and the various areas of stabilities and instabilities
are portrayed and analyzed. The nonlinear amplitudes’ properties of the equations of modulation, as well as
their stabilities, are explored and presented. Based on the application of used methodology on the investigated
dynamical system, then we can regard the acquired results as novel and original.

2 The dynamical model

Consider the rolling motion of a cylinder with mass m1 and radius r without slipping, on a circular surface
of mass M and radius R with friction damping coefficient C2 between the circular surface and the cylinder
[29]. The system of these masses is attached with a damped linear elastic spring, of stiffness k and a damping
coefficient C1, in which the spring’s other end is connected to a fixed point O1 as seen in Fig. 1.

Let g denote the earth’s gravitational acceleration, x and θ be the displacement on the x direction and the
rotation angle at the center O of the circular surface. The motion is forced by an external excitation harmonic
force F(t) � F1 cos(�1 t) along x horizontal direction, in which �1 and F1 are the frequency and amplitude
of the force F , respectively. The motion is considered for a rolling cylinder without slip, in which the fraction
between the sliding block and the ground is neglected.

Based on the preceding explanation of the dynamical system, the kinetic and potential energies T and V
can be formulated as follows

T � 1

2
m1v

2 +
1

2
M ẋ2 +

1

4
m1(R − r )2θ̇2,

V � 1

2
k x2 + m1g(R − r )(1 − cosθ ), (1)

where the derivatives are considered concerning t .
The regulating EOM can be obtained utilizing the next Lagrange’s equations

d

dt

(
∂L

∂ ẋ

)
−

(
∂L

∂x

)
� F1 cos(�1 t) − C1 ẋ,

d

dt

(
∂L

∂θ̇

)
−

(
∂L

∂θ

)
� −C2θ̇ , (2)

where L � T − V is known by the Lagrangian. It must be noted that, for the viscous effects of damping and
rotation, it is assumed that the friction forces have the terms −C1 ẋ and −C2θ̇ , respectively.

Take a look at the below list of dimensionless parameters.

J � (M + m1), I � (R − r ), u � x

I
, ω2

1 � k

J
, d̃ � m1 I

J
, ω2

2 � 2g

3I
,
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s � 1

2
m1 I, m � m1

J
, f̃1 � F1

I J
, h̃ � 2s

3I
, c̃1 � C1

I J
, c̃2 � 2C2

3m1 I 2
. (3)

Therefore, the dimensionless forms of the EOM can be obtained by the substitution of (1) and (3) into (2)
as follows

ü + ω2
1u + d̃ θ̈ cos θ − s θ̇2 sin θ � f̃1 cos(�1 t) − c̃1u̇

θ̈ + ω2
2 sin θ + h̃ ü cos θ � −c̃2θ̇ .

(4)

The previous system of Eqs. (4) composing two second-order nonlinear differential equations.

3 The used methodology

The major aim of this section is to derive the analytic approximate solutions of the governing system (4)
utilizing the TMS up to the third order of approximation with a high degree of accuracy, and to investigate
the various resonance circumstances [30]. To achieve this aim, we employ Taylor expansion to represent the
functions sin θ and cos θ in expansion forms till the third order, which are valid in the nearness of static
equilibrium’s positions. As a result, Eqs. (4) can be expressed as

ü + ω2
1u − 1

2
d̃(θ2 − 2)θ̈ +

1

6
s θ θ̇2(θ2 − 6) � f̃1 cos(�1 t) − c̃1u̇,

θ̈ + ω2
2θ − h̃

2
(θ2 − 2)ü − ω2

2
θ3

6
� −c̃2θ̇ .

(5)

Now, using the new variables ξ and φ to express the generalized coordinates u and θ as follows

u(τ ) � ε ξ (τ ; ε), θ (τ ) � ε φ(τ ; ε), (6)

where 0 < ε << 1 is a small parameter. Based on the TMS, one can look to the approximate solutions of the
variables ξ and φ as follows

ξ �
3∑

k�1

εkξk(τ0, τ1, τ2) + O(ε4),

φ �
3∑

k�1

εkφk(τ0, τ1, τ2) + O(ε4). (7)

Here τn � εnt (n � 0, 1 , 2) represent the various time scales, where τ0 is the fast one, while τ1 and τ2
are the slow scales.

To deal with these scales, the following operators are used to modify the derivatives relative to t into other
ones relative to these scales

d

dt
� ∂

∂τ0
+ ε

∂

∂τ1
+ ε2

∂

∂τ2
,

d2

dt2
� ∂2

∂τ 20
+ 2ε

∂2

∂τ0∂τ1
+ ε2

(
∂2

∂τ 21
+ 2

∂2

∂τ0∂τ2

)
+ O(ε3). (8)

Terms of O(ε3) and higher are discarded due to the smallness of ε. The generalized forces, coefficients of
damping, and the related mass parameters are considered to be small. Then, we will be able to write

f̃1 � ε3 f1, c̃1 � ε2 c1, c̃2 � ε2 c2, d̃ � εd, h̃ � εh. (9)

Substituting (6)–(9) in (5) and then equalling the coefficients of similar powers of ε, then one can obtain
easily the below groups of partial differential equations (PDE).

Coefficient of (ε)

∂2ξ1

∂τ 20
+ ω2

1ξ1 � 0. (10)



The dynamical motion of a rolling cylinder and its stability analysis 3271

∂2φ1

∂τ 20
+ ω2

2φ1 � 0. (11)

Coefficient of (ε2)

∂2ξ2

∂τ 20
+ ω2

1ξ2 � −2
∂2ξ1

∂τ0∂τ1
− d

∂2φ1

∂τ 20
, (12)

∂2φ2

∂τ 20
+ ω2

2φ2 � −2
∂2φ1

∂τ0τ1
+ h

∂2ξ1

∂τ 20
. (13)

Coefficient of (ε3)

∂2ξ3

∂τ 20
+ ω2

1ξ3 � f1 cos �1 τ0 − ∂2ξ1

∂τ 21
+ φ1

(
∂φ1

∂τ0

)2

− c1
∂ξ1

∂τ0
− 2

∂2ξ1

∂τ0∂τ2

+ 2d
∂2φ1

∂τ0∂τ1
− 2

∂2ξ2

∂τ0∂τ2
+ d

∂2φ2

∂τ 20
, (14)

∂2φ3

∂τ 20
+ ω2

2φ3 � 1

6
ω2
2 φ3

1 − ∂2φ1

∂τ 21
− 2

(
∂2φ1

∂τ0∂τ2
+

∂2φ2

∂τ0∂τ1

)

+ 2h
∂2ξ1

∂τ0∂τ1
− c2

∂φ1

∂τ0
+ h

∂2ξ2

∂τ 20
. (15)

It is interesting to note that the equations of the previous systems (10)–(15) can be solved one by one. To
accomplish this, we will proceed with the general solutions of (10) and (11) as follows

ξ1 � A1e
iω1τ0 + A1e

−iω1τ0 . (16)

φ1 � A2e
iω2τ0 + A2e

−iω2τ0 , (17)

where A j ( j � 1, 2) denote the undetermined complex functions of τ j , while A j representing their complex
conjugate.

The substitution of the solutions (16) and (17) in Eqs. (12) and (13) produces secular terms. The required
conditions for removing these terms have the forms

∂A1

∂τ1
� 0,

∂A2

∂τ1
� 0, (18)

which means that A j are functions of τ2 only.
As a result, the second-order solutions become

ξ2 � − ω2
2 d A2

ω2
1 − ω2

2

eiω2τ0 + CC, (19)

φ2 � − ω1h A1

ω2
2 − ω2

1

eiω1τ0 + CC, (20)

where CC denote the complex conjugates of the previous terms.
According to the above procedure, the third approximation necessitates the elimination of terms that

produce secular ones. Therefore, the following conditions are obtained

h ω4
1A1

(ω2
2 − ω2

1)
− 2 i ω1(c1A1 +

∂A1

∂τ2
) � 0, (21)

2A2
2A2ω

2
2 − 2iω2(

∂A2

∂τ2
+ c2A2) +

h dω2
2A2

(ω2
1 − ω2

2)
� 0. (22)

Henceforth, the third-order solutions of Eqs. (14) and (15) have the forms

ξ3 � f1ei�1τ0

2(ω2
1 − �2

1)
+

2 ω2
2A2 A2

2 e
iω2τ0

ω2
1 − ω2

2

− ω2
2A

3
2e

3i ω2τ0

ω2
1 − 9ω2

2

+ CC, (23)
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φ3 � − A3
2

48
e3 i ω2τ0 + CC. (24)

The functions A j ( j � 1, 2) may be determined by using the criterion of deleting secular terms (18), (21),
and (22).

Based on the above approximate solutions, one can obtain and categorize the emerging cases of resonance
when the dominators of these solutions tend to zero [31] as follows:

The system comes to external (primary) resonance when �1 ≈ ω1 is satisfied, while we can discover the
internal resonance occurs at ω1 ≈ ω2. It should be emphasized that when any of these resonances is realized,
the dynamical behavior of the system can be challenging. On the other hand, the achieved solutions are valid
when the vibrations deviate from resonances.

4 Conditions of solvability

This section presents the stability of the investigated dynamical system when the resonance cases of external
and internal are satisfied simultaneously in accordance with the system’s solvability criteria and the equations
of modulation. Based on the previous analysis of the end part of the above section, the external resonance and
the internal one occurs when �1 ≈ ω1 and ω1 ≈ ω2, respectively. This means that �1 and ω1 are very near to
ω1 and ω2, respectively. Therefore, the detuning parameters σ j ( j � 1, 2) can be introduced according to

�1 � ω1 + σ1,

ω1 � ω2 + σ2.
(25)

These parameters may be regarded as a measure of the vibrations from the strict resonance [32]. Conse-
quently, we can express them in terms of ε as follows

σ j � ε σ̃ j ( j � 1, 2). (26)

Substitute (25) and (26) in Eqs. (12)–(15) and pay attention to the secular terms, then eliminating these
terms to gain the criteria of solvability for the second and third orders of approximation.

– For the 2nd order of approximation

∂A1

∂τ1
� 0,

∂A2

∂τ1
� 0. (27)

– For the 3rd approximation

1

2
f1 e

iτ1σ̃1 − 2 i ω1 (c1A1 +
∂A1

∂τ2
) − hω4

1A1

ω2
2 − ω2

1

� 0,

2ω2
2 A

2
2
A2 − 2iω2(

∂A2

∂τ2
+ c2A2) + 2 i

h ω1 A1

ω2
2 − ω2

1

− h d ω4
2 A2

ω2
1 − ω2

2

� 0.

(28)

Based on the above illustration, we can see that the conditions of solvability have four nonlinear PDE with
respect to the unknown functions A j . It is worthy to mention that these functions are only affected by the scale
τ2, as indicated from conditions (27). In the form of polar notation, we can express these functions as follows

A j � ã j (τ2)

2
eiψ̃ j τ2 , a j � εã j ( j � 1, 2), (29)

where ψ̃ j and ã j are real functions of the phases and amplitudes, respectively, of the solutions ξ and φ.
Referring to dependency of A j on τ2, we can write

∂A j

∂τ
� ε2

∂A j

∂τ2
( j � 1, 2). (30)

Based on these conditions, Eqs. (28) may be converted into ordinary differential equations (ODE) using
the modified phases listed below [33]

γ1(τ1, τ2) � τ1 σ̃1 − ψ1(τ2),

γ2(τ1, τ2) � τ1 σ̃2 − ψ2(τ2).
(31)
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Fig. 2 The time dependency of a1(τ ); τ ∈ [0, 500]: a when c1 � (0.5, 0.05, 0.005), b at c2 � (0.3, 0.03, 0.003), c when
ω2 � (0.467, 0.572, 0.808)

Substitute (29)–(31) into (28) and then distinguishing the real and imaginary portions to obtain directly
the following autonomous system of four first-order ODE

a1
dγ1

dτ
� f1

2ω1
cos γ1 + a1σ1 − h a1ω4

1

2ω1(ω2
2 − ω2

1)
,

da1
dτ

� f1
2ω1

sin γ1 − a1c1
2

,

a2
dγ2

dτ
� a2σ2 − ω2a32

4
− h d ω3

2 a2
ω2
1 − ω2

2

− h a1 cos γ2

ω2
,

da2
dτ

� −h a1 sinγ2

ω2
− a2c2

2
.

(32)

The solutions of this system a j and γ j describe the modulation of the amplitudes and phases regarding to
the dimensionless time τ when the examined resonances under study occur simultaneously. These solutions
are depicted graphically in Figs. 2, 3, 4 and 5 taking into considerations the values f � 10−3, c1 � 0.05 ,c2 �
0.03 , σ1 � 0.005, and σ2 � 0.01.

It would be interesting to further investigation of the curves included in parts of Fig. 2. These parts
represent the change in a1(τ ) at τ ∈ [0, 500] when c1(� 0.5, 0.05, 0.005), c2 � (0.3, 0.03, 0.003), and
ω2 � (0.467, 0.572, 0.808) as seen in portions (a), (b), and (c), respectively. These graphs have decay behaviors
with the change of time till the time interval is completed. Curves of Fig. 3 show the same variation of the
amplitude a1 with time but with a small range of the time interval, i.e., at τ ∈ [0, 30]. The reason is to go back
to see the nature of the curves’ oscillations as in Fig. 3 and to give an induction about these oscillations for a
large time scale as graphed in Fig. 2.
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Fig. 3 The time dependency of a1(τ ); τ ∈ [0, 30]: a when c1 � (0.5, 0.05, 0.005), b at c2 � (0.3, 0.03, 0.003), c when
ω2 � (0.467, 0.572, 0.808)

The temporal histories of the amplitude a2 and the phases γ1 and γ2 are drawn in parts of Figs. 4, 6, and
7 when τ ∈ [0, 500]. Figure 5 shows the same variation of the amplitude a2 with time but with a small range
of the time interval, i.e., at τ ∈ [0, 30]. The previously concluded remarks are satisfied for the plotted curves
in parts of Fig. 4. Alternatively, the time variation of γ1 and γ2 increases and decreases with time as seen in
curves of Figs. 6 and 7, respectively.

These notes are consistent with the equations of system (32), in which the good effect for the variation
of the damping parameters and frequencies on the amplitudes and their corresponding phases is evident from
drawn curves in these figures.

A closer inspection of the curves of Figs. 8, 9, 10 and 11 reveals the variation of the obtained approximate
solutions of the springe’s elongation u and the rotating angle θ with time when τ ∈ [0, 500] as drawn in Figs. 8
and 10, and τ ∈ [0, 30] as graphed in Figs. 9 and 11. These figures have been calculated in acoordance with the
used parameter previously when c1, c2, and ω2 have different values. The behavior of the presented solutions
has decay procedures with the variation of the mentioned parameters previously. Therefore, the dynamical
motion is stable during the time frame under consideration. Moreover, the amplitudes of the waves increase
with the increase in c1 and c2 values as depicted in portions (a) and (b) of these figures, while this variation
decreases when ω2 increases as graphed in parts (c) of Figs. 10 and 11.

To confirm the employed perturbation approach is accurate, the numerical solutions (NS) regarding the
original system are gained utilizing the Runge–Kutta method from the fourth order and compared with the
approximate solutions (AS). This comparison is graphed in parts of Fig. 12 to demonstrate their high consis-
tency, revealing the high reliability of the derived analytic approximate solutions. The phase diagrams when
τ ∈ [0, 500] for a1(γ1) and a2(γ2) are plotted in Figs. 13 and 15, respectively.
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Fig. 4 The time dependency of a2(τ ); τ ∈ [0, 500]: a when c1 � (0.5, 0.05, 0.005), b at c2 � (0.3, 0.03, 0.003), c when
ω2 � (0.467, 0.572, 0.808)

5 Steady-state solutions

This section’s main purpose is to look at the model’s steady-state vibrations, in which the vibrations of the
transient process vanish due to the system’s damping. In such instances, the zero derivatives of the adjusted
phases γ j ( j � 1, 2) and the amplitudes a j are used to determine the steady-state conditions [34]. Therefore,

the system of Eqs. (32) is quite useful in characterizing them. Then, we consider
dγ j
dt � da j

dt � 0 to getting the
following algebraic equations

f1
2ω1

cos γ1 + a1σ1 − h a1ω4
1

2ω1(ω2
2 − ω2

1)
� 0,

f1
2ω1

sin γ1 − a1c1
2

� 0,

a2σ2 − ω2a32
4

− h d ω3
2 a2

ω2
1 − ω2

2

− h a1 cos γ2

ω2
� 0,

h a1 sinγ2

ω2
+
a2c2
2

� 0.

(33)
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Fig. 5 The time dependency of a2(τ ); τ ∈ [0, 30]: a when c1 � (0.5, 0.05, 0.005), b at c2 � (0.3, 0.03, 0.003), c when
ω2 � (0.467, 0.572, 0.808)

If we can get rid of γ j , the below equations in terms of a j and σ j can be obtained

1

2ω2
1

f 21 � (a1σ1 − h a1 ω4
1

2ω1(ω2
2 − ω2

1)
)2 +

1

4
c21a

2
1,

h2 a21
(ω2

2 − ω2
1)

2
� (a2σ2 − ω2a32

4
− h d ω2a32

ω2
1 − ω2

2

)2 +
1

4
c22a

2
2 .

(34)

It is worthy to note that the assessment of the stability analysis of the studied system includes steady-state
vibrations. Therefore, we examine the system’s behavior in a region relatively near to the location of the fixed
points. Then we consider the substitutions [35]

a1 � a10 + a11, a2 � a20 + a21,

γ1 � γ10 + γ11, γ2 � γ20 + γ21.
(35)



The dynamical motion of a rolling cylinder and its stability analysis 3277

Fig. 6 The time dependency of γ1(τ ); τ ∈ [0, 500]: a when c1 � (0.5, 0.05, 0.005), b at c2 � (0.3, 0.03, 0.003), c when
ω2 � (0.467, 0.572, 0.808)

Here a j0 ( j � 1, 2) and γ j0 represent the unperturbed steady-state solution, whereas a j1 and γ j1 are the
corresponding small perturbations. Making use of (35) into (32) to obtain the below linearized system, we get

a10
dγ11

dτ
� f1

2ω1
sin γ10γ11 + a11σ1 − h a11ω4

1

2ω1(ω2
2 − ω2

1)
,

da11
dτ

� f1
2ω1

cos γ10γ11 − a11c1
2

,

a20
dγ21

dτ
� a21σ2 − 3ω2a320a21

4
− h d ω3

2 a21
ω2
1 − ω2

2

− h

ω2
(a10 sin γ20γ21 + a11 cos γ20),

da21
dτ

� − h

ω2
(a10 cos γ20γ21 + a11 sinγ20) − a21c2

2
.

(36)

Based on the definitions of the small perturbation a j1 and γ j1, one can formulate their solutions as a linear
combination of ks eλτ (s � 1, 2, 3, 4) in which ks are constants and λ is the eigenvalue of these perturbations.
The roots’ real parts of the below characteristic equation ought to be negative if the solutions a j0 and γ j0 are
stable asymptotically [36]

λ4 + �1λ
3 + �2λ

2 + �3λ + �4 � 0, (37)
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Fig. 7 The time dependency of γ2(τ ); τ ∈ [0, 500]: a when c1 � (0.5, 0.05, 0.005), b at c2 � (0.3, 0.03, 0.003), c when
ω2 � (0.467, 0.572, 0.808)

where �s (s � 1, 2, 3, 4) have the forms

�1 � 1

2
(c1 + c2) − f1

2 a10ω1
sin γ10 +

h a10
a20ω2
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4

−
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4
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1

2

[
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)]
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1

4
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4 ω1

)]
cos γ10,

�3 �
[(
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a10ω1
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Fig. 8 The time behavior of the solution u at τ ∈ [0, 500]: a when c1 � (0.5, 0.05, 0.005), b at c2 � (0.3, 0.03, 0.003), and
c when ω2 � (0.467, 0.572, 0.808)

Now, we may formulate the basic conditions of the stability for specific steady-state solutions in the forms
that agree with the criteria of Routh–Hurwitz [12] as follows

�1 > 0,

�1�2 − �3 > 0,

�3(�1�2 − �3) − �4�
2
1 > 0,

�4 > 0.

(39)
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Fig. 9 The time behavior of the solution u at τ ∈ [0, 30]: a when c1 � (0.5, 0.05, 0.005), b at c2 � (0.3, 0.03, 0.003), and
c when ω2 � (0.467, 0.572, 0.808)

The stability analysis of the fixed points is tested in the framework of the solutions at the steady state taking
into account the requirements of Routh–Hurwitz through various graphs of Eq. (34). The results are displayed
in Figs. 16, 17, 18 and 19 to show the variation of a2 versus a1 for different values of c1, c2, and ω2, in which
these figures are plotted based on the following data

c1(� 0.5, 0.05, 0.005), c2(� 0.3, 0.03, 0.003), ε � 0.005,

f1 � 0.001, ω2(� 0.808, 0.572, 0.467), σ1 � 0.02, σ2 � 0.02.

The intersections of the curves of these graphs give rise to so-called fixed points, as before, which define
the solutions of the equations of the system (34). These points firmly determine the axial amplitudes and the
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Fig. 10 The time behavior of the solution θ at τ ∈ [0, 500]: a when c1 � (0.5, 0.05, 0.005), b at c2 � (0.3, 0.03, 0.003), and
c when ω2 � (0.467, 0.572, 0.808)

adjusted steady-state vibration. Furthermore, vibrations in the steady state might be either stable or not. Small
pink circles indicate the stable fixed points, in which conditions (39) are satisfied, while the gray circles express
the unstable ones. An inspection of these figures shows that four fixed points are obtained when c1 � 0.5,
ω2 � 0.467 and c2 � 0.3 as seen in Fig. 16; three of them are unstable; and the latter point is stable. On
the other hand, Fig. 17 is calculated according to the same previous data at c1 � 0.05, ω2 � 0.467, and
c2 � 0.3 to yield two fixed points, and one of them is stable. To get a better overview of these points, let’s
examine the plotted curves in Figs. 18 and 19 which are drawn at (c2 � 0.03,c1 � 0.5 and ω2 � 0.467) and
(ω2 � 0.572,c1 � 0.5 and c2 � 0.3), respectively. Two fixed points were achieved, one stable and the other
is unstable.
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Fig. 11 The time behavior of the solution u at τ ∈ [0, 30]: a when c1 � (0.5, 0.05, 0.005), b at c2 � (0.3, 0.03, 0.003), and
c when ω2 � (0.467, 0.572, 0.808)

Now, we are going to examine the stability of the investigated dynamical system applying the Routh–Hur-
witz nonlinear stability criteria. Some parameters like the coefficients of damping c1, c2, the frequency ω1,
and the parameters of detuning σ1, σ2 play principal roles in the process of stabilization of this system. Specific
operations with various parameters of the system are performed to gain the stability diagram of the system
(32). The phase plane paths are used to depict the attributes of the adjusted amplitudes a1 and a2, which are
created over time in distinct parameter domains.
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Fig. 12 The deviation between the AS and the NS at ω2 � 0.808: a regarding the solution u, b regarding the solution θ

Fig. 13 The variation of the amplitude a1 via its corresponding phase γ1: a when c1 � (0.5, 0.05, 0.005), b at c2 �
(0.3, 0.03, 0.003), c when ω2 � (0.467, 0.572, 0.808) at τ ∈ [0, 500]

Variations of feasible fixed points on different detuning parameters σ1 are shown in Figs. 20, 21, 22, 23,
24, 25 and 26. Parts (a) and (b) of these figures show the response curves for the variation of the amplitudes
a1 and a2 via detuning parameter σ1, respectively. They are drawn according to the following data

c1(� 0.5, 0.05, 0.005), c2(� 0.2, 0.02, 0.002), ε � 0.005,

f1 � 0.001, ω2(� 0.808, 0.572, 0.467), σ2 � 0.01.

The inspection of the parts of Fig. 21 reveals that they are graphed at c1 � 0.5 andω2 � 0.808, in which the
system was discovered to contain only one fixed point independent on the value of σ2 over the whole domain.
In this region −1 ≤ σ1 ≤ 0.05, the fixed point is stable, whereas in 0.05 < σ1 ≤ 1 it is unstable. Moreover,
the stable fixed points for the response curves at c1 � 0.05 and c1 � 0.005 are found in Figs. 21 and 22 at the
domains of −1 ≤ σ1 ≤ 0.01 and −1 ≤ σ1 ≤ 0, respectively, when ω2 � 0.808, whereas the unstable ones
exist in the zones 0.01 < σ1 ≤ 1 and 0 < σ1 ≤ 1.
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Fig. 14 The variation of the amplitude a1 via its corresponding phase γ1: a when c1 � (0.5, 0.05, 0.005), b at c2 �
(0.3, 0.03, 0.003), c when ω2 � (0.467, 0.572, 0.808) at τ ∈ [0, 30]

The good impact of various values of c2 andω2 on the curves of frequency response is observed in Figs. 23,
24 and 25, 26, respectively. Also, the influence of the detuning parameter σ2 on the curve of frequency response
is shown in Fig. 27, in which the solid curves express the region of stable fixed point and the dashed ones
represent the unstable fixed region. These numbers show that the system still has a fixed point, which suggests
a transcritical bifurcation of the system. This implies that when the parameters change, the system mode does
not have any qualitative behavior.

Finally, Figs. 28, 29 and 30 show the projection of the modulation equations trajectories on the planes
uu′ and θθ ′, in which they are drawn when c1 � (0.5, 0.05, 0.005),c2 � (0.3, 0.03, 0.003), and ω2 �
(0.467, 0.572, 0.808), respectively. For these values of the parameters, different closed curves are obtained
which means that the considered system’s motion is steady and chaotic-free.

To show the characteristics of the nonlinear amplitude of Eq. (32) and to analyze their stability, we will
start with the next transformation [37]

A1 � (p1 + i q1)e
i σ1τ2 , A2 � (p2 + i q2)e

i σ2τ2 . (40)

Making use of (40) into (32), then separate the real and imaginary components to get

2ω1q
′
1 � h ω4

1

ω2
2 − ω2

1

p1 − 2ω1 p1σ1 − 2c1ω1q1 − f1
2

,

2ω1 p
′
1 � 2ω1q1σ1 − h ω4

1

ω2
2 − ω2

1

q1 − 2c1ω1 p1,
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Fig. 15 The variation of amplitude a2 via its corresponding phase γ2: awhen c1 � (0.5, 0.05, 0.005),b at c2 � (0.3, 0.03, 0.003),
c when ω2 � (0.467, 0.572, 0.808) at τ ∈ [0, 500]

Fig. 16 Four intersection fixed points of the amplitudes a1 and a2 at c1 � 0.5, ω2 � 0.467, and c2 � 0.3
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Fig. 17 Two intersection fixed points of the amplitudes a1 and a2 at c1 � 0.05, ω2 � 0.467, and c2 � 0.3

Fig. 18 Two intersection fixed points of the amplitudes a1 and a2 at c2 � 0.03,c1 � 0.5, and ω2 � 0.467

Fig. 19 Four intersection fixed points of the amplitudes a1 and a2 at ω2 � 0.572,c1 � 0.5, and c2 � 0.3
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Fig. 20 The frequency response when c1 � 0.5

Fig. 21 The frequency response when c1 � 0.05

Fig. 22 The frequency response when c1 � 0.005

Fig. 23 The frequency response when c2 � 0.03
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Fig. 24 Frequency response when c2 � 0.003

Fig. 25 Frequency response when ω2 � 0.467

Fig. 26 Frequency response when ω2 � 0.572

Fig. 27 The frequency response when σ2 � 0.11
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Fig. 28 The modulation equations projection at c1 � (0.5, 0.05, 0.005): a regarding the plane u u′, b regarding the plane θ θ ′

Fig. 29 The modulation equations projection at c2 � (0.3, 0.03, 0.003): a and b regarding the planes u u′ and θ θ ′, respectively

Fig. 30 Themodulation equations projection atω2 � (0.467, 0.572, 0.808):a andb regarding the planesu u′ and θ θ ′, respectively
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Fig. 31 a and b describe the variation p1 and q1 versus τ at c1(� 0.5, 0.05, 0.005), (c) explores the trajectories’ projection of
the modulation equations on p1q1 at the same values of c1

2ω2q
′
2 � h dω4

2

ω2
1 − ω2

2

p2 − 2c2ω2q2 +
2h ω1

ω2
2 − ω2

1

q2 − 2ω2 p2σ2 − 2ω2
2(p

3
2 + q22 p2),

2ω2 p
′
2 � 2ω2q2σ2 − h dω4

2

ω2
1 − ω2

2

q2 − 2c2ω2 p2 +
2h ω1

ω2
2 − ω2

1

p2 + 2ω2
2(q

3
2 + p22q2). (41)

The adjusted amplitudes are then tweaked in various parameter areas throughout time, and the attributes
of the amplitudes are displayed in phase diagram curves, as drawn in Figs. 31, 32 and 33 taking into account
the next chosen data

f1 � 0.0001, σ2 � 0.05, ε � 0.005, c1(� 0.5, 0.05, 0.005),

c2(� 0.3, 0.03, 0.003), ω1(� 0.467, 0.572, 0.808) .

Figure 31 depicts the modified phases’ variation p1 and q1 overtime τ and the projection of the modulation
equation’s route on the phase plane p1q1 at various values of c1. Parts (a) and (b) have decay curves, while
spiral curves are drawn on part (c). Then, one can conclude that the dynamical behavior of the above system of
Eq. (41) has a stable manner, in which the transformations (40) are used. The influence of different values of
c2 on the system’s behavior has a slight effect, as seen in Fig. 32, which is due to the formulations of Eqs. (41).
On the other hand, the good impact of the frequency values is evident from the plotted curves in Fig. 33. The
changed amplitudes decrease with time, eventually approaching zero, as can be seen in Figs. 31, 32 and 33. The
spiral’s path, among several other things, is a significant indicator of the stationary behavior of the dynamical
systems.

6 Conclusion

Themotion of a 2DOF auto-parametric dynamical system consisting of a linked rolling cylinder with a damped
spring has been studied. Thismotion has been considered under the influence of an excitation force. The guiding
system of motion has been constructed using Lagrange’s equations and has been solved using the TMS up
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Fig. 32 a and b describe the variation p1 and q1 versus τ at c2(� 0.003, 0.03, 0.3), (c) explores the trajectories’ projection of
the modulation equations on p1q1 at the same values of c2

Fig. 33 a and b describe the variation p1 and q1 versus τ at ω2(� 0.467, 0.572, 0.808), c explores the trajectories’ projection of
the modulation equations on p1q1 at the same values of ω2
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to third order of approximation. The equations of modulation have been constructed in the framework of the
conditions of solvability. The primary external and internal resonances have been examined simultaneously.
Routh–Hurwitz criteria have been utilized to examine the arising fixed points of the system at the steady
state, and the stability analysis, in view of the stability and instability zones, has been investigated. The
temporal variations of the amplitudes, modified phases, and obtained solutions have been drawn in a few
specific plots to indicate the influence of the system’s parameters on the motion. Moreover, the properties
of nonlinear amplitudes of the equations of modulation have been examined and reported, as well as their
stabilities. The obtained results are considered novel and original since the applied methodology is employed
on a specific dynamical system. This work is significant because it has immediate applications in the disciplines
of engineering machines like reducing the harmful vibrations in machines, tall buildings, chimneys, bridges,
television towers, and antennas.
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