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Abstract This paper presents a beam theory for analyzing the static response of slightly curved three-layer
beams with interlayer slip. Since the beams are supposed to be immovably supported, membrane stresses
develop even at moderately large deflections and the response becomes geometrically nonlinear. The theory
is based on a layerwise application of the Euler–Bernoulli theory and a linear elastic constitutive law for the
interlaminar displacements. In three application examples, the accuracy of this theory is shown by comparing
the results of this theory with the outcomes of a more complex finite element analysis assuming a plane stress
state. These application examples demonstrate the effect of a small initial deflection on the nonlinear response
of the considered layered structural members.

Keywords Interlayer slip · Layered beam · Nonlinear deflection · Slightly curved beam

1 Introduction

The structural members of many engineered constructions are composed of several layers of different materials
to obtain an optimal result in terms of weight, stiffness, strength, cost or appearance, etc. However, depending
on the fastener, it is not always possible to achieve a rigid bond between the layers in many of these multi-layer
constructions. Due to the flexibility of the connector, a slip occurs in these flexibly bonded structural members
under load, which fundamentally changes the load-bearing behavior. For this reason, the classical theories of
engineering mechanics can no longer be used to analyze the deformation and internal forces, and different
theories have been developed in recent decades in order to be able to compute the static response of such beam
components (see, e.g., [8,11,22]). A number of papers have extended these theories to include the effect of
second-order theory on beams with flexibly bonded layers, such as [7,10,16,21]. It should be mentioned here
only briefly that a number of papers also deal with vibrations of beams with interlayer slip (e.g., [9,12,18].
In this context, in [5,25] the damping effect at the interface of the layers on the reduction in vibrations of
multilayer beams was analyzed.

If the supports are fully immovable, significant membrane stresses develop even at moderately large
deflections and the response of such beams becomes geometrically nonlinear (see, e.g., [14,20]). The analysis
of the geometrically nonlinear response of beams with interlayer slip, on the other hand, is the subject of only a
small number of publications (e.g., [6,15]). Recently, the authors of this paper presented a theory for analyzing
the geometrically nonlinear static and dynamic response of beamswith interlayer slip, whose supports are fixed
[1,2]. A small initial deflection, intentional or due to an imperfection of the structural element, also changes
the response. In particular, if the supports are completely immovable, a slight initial deflection against the load
direction results in compressive forces that have a great impact on the load-bearing behavior. For example, the
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Fig. 1 Immovably supported slightly curved three-layer beam with partial layer interaction

phenomenon of snap-through can occur with such a structure. Consequently, several papers in the past have
presented theories for the analysis of slightly curved homogeneous or rigidly bonded composite beams without
interlayer slip (e.g., [4,19]). In many of these studies, a core element is a nonlinear axial strain–displacement
relation presented in [19]. However, to the best knowledge of the authors, apart from a preliminary study [17],
there is no beam theory to date that analyzes the moderately large static response of slightly curved layered
beams with interlayer slip. In the present study, therefore, such a theory is proposed for three-layer beams,
where an initial deflection is considered in the underlying nonlinear axial strain–displacement relation [19].
The basis for this theory is a study of the authors for beams with interlayer slip with straight beam axis [1].
The boundaries of the considered members can be either clamped, soft hinged or hard hinged.

This paper is structured as follows. After describing the assumptions and requirements, the differential
equations and boundary conditions of the present nonlinear boundary value problem are derived and its solution
is briefly discussed. Subsequently, the influence of a small initial deflection on the static response of composite
beams with interlayer slip is discussed in three application examples, and the accuracy of the presented theory
is demonstrated by the results of a comparative finite element analysis assuming a plane stress state.

2 Fundamental equations

The considered single span beams of length l under in-plane bending about the y-axis are composed of three
elastic layers, denoted from top to bottom by 1, 2 and 3, as exemplified in Fig. 1. The top and bottom layers
are identical. This implies that both the geometry (layer thickness h1 = h3 and cross-sectional area A1 = A3)
and the material parameters (Young’s modulus E1 = E3 and the slip modulus K ≡ K12 = K23) are the same,
and consequently also their bending stiffness E J1 = E J3 and axial stiffness E A1 = E A3.

A small initial deflection of the beam axis, ŵ(x), is a function of the longitudinal (horizontal) coordinate
x whose origin is at the left support, see Fig. 1. A lateral coordinate (zi , i = 1, 2, 3) is defined separately for
each layer, with the origin zi = 0 coinciding with the neutral axis of the respective layer, see also Fig. 1.

The layers are elastically bonded to each other. Therefore, when the beam is loaded by the distributed
vertical load q(x), slip occurs between the layers at the interfaces, contrary to the classical theory. The slip
between the top layer and the middle layer is referred to as Δu12 and between the middle layer and the
bottom layer as Δu23, see Fig. 2. Vertical separation of the layers is, however, not possible. The load-induced
moderately large lateral deflectionw(x), which is common to all layers (and fibers) of the beam, is superposed
to the initial deflection ŵ(x).

Since the considered structural members are assumed to be slender, the shear deformation is negligible
and the Euler–Bernoulli theory can be applied separately for each layer. Accordingly, the horizontal fiber
displacement ui in the i-th layer at distance zi from the neutral layer axis can be expressed as a function of the
axial displacement u(0)

i at zi = 0 and the deflection w as follows [12]:

ui = u(0)
i − ziw,x i = 1, 2, 3 (1)

(.),x denotes partial differentiation of (.) with respect to x . From the displacement pattern of the cross-section
at x shown in Fig. 2, it follows that the axial displacements of the upper and lower layers, u(0)

1 and u(0)
3 , are
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Fig. 2 Cross-section at x in its initial and its deformed state

related to the central axial displacement u(0)
2 , the cross-sectional rotation w,x and the interlayer slips Δu12,

Δu23 as follows [13]:

u(0)
1 = u(0)

2 + dw,x − Δu12 , u(0)
3 = u(0)

2 − dw,x + Δu23 (2)

The variable d denotes the distance between the curved central axis and the neutral axis of the top/bottom
layer. If the cross-section of the outer layers is rectangular, d = (h1 + h2)/2.

Since the considered beam is immovably supported at both ends, a moderately large lateral deflection
w(x) induces a non-negligible stretching of the central axis, resulting in a nonlinear axial strain–displacement
relation (see, e.g., [26]). For a slightly curved beam with initial deflection ŵ(x), this nonlinear relation reads
[19]

ei = u(0)
i,x + 1

2
w2

,x + w,x ŵ,x , i = 1, 2, 3 (3)

The longitudinal strain of any fiber of the beam is therefore obtained as follows:

εi = ei − ziw,xx = u(0)
i,x + 1

2
w2

,x + w,x ŵ,x − ziw,xx , i = 1, 2, 3 (4)

The composite member is stressed in its elastic deformation range, and thus, Hooke’s law applies. For the
following considerations, it is useful to write Hooke’s law in the form of the axial force Ni as well as the
bending moment Mi separately for each of the three layers (see, e.g., [26]):

Mi = −E Jiw,xx , i = 1, 2, 3 (5)

Ni = E Aiei = E Ai

(
u(0)
i,x + 1

2
w2

,x + w,x ŵ,x

)
(6)

The interlaminar shear tractions in the interface between the top and the central layer, ts12, and in the interface
between the middle and the bottom layer, ts23, are accordingly proportional to the corresponding interlayer
slip. Since the slip modulus K is the same for both interfaces, these quantities read [8]

ts12 = KΔu12 , ts23 = KΔu23 (7)

The last missing set of fundamental equations are the local equilibrium conditions, which represent the
differential relationship between the internal forces. The layerwise equilibrium of the free-body diagram of a
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Fig. 3 Free-body diagram of a deformed beam element. First order (in red) and second order (in blue) internal forces (modified
from [1])

beam element shown in Fig. 3 in the longitudinal (x-) direction leads to the relationship between the layerwise
axial forces and the interlaminar shear tractions [13]:

N1,x + ts12 = 0 (8)

N3,x − ts23 = 0 (9)

N2,x − ts12 + ts23 = 0 (10)

In a common assumption of second order analysis, in these relations the horizontal forces Si , i = 1, 2, 3, have
been replaced by the corresponding axial forces Ni , i = 1, 2, 3.

The sum of these three equations yields the local equilibrium relation for the overall normal force, N =
N1 + N2 + N3,

N,x = 0 (11)

which is also obtained directly from the equilibrium of the entire beam element in the x-direction. The overall
axial force N results only from the linear and nonlinear axial strains due to moderately large deflection, since
no external axial load is applied to the member. Equation (11) shows that N is constant along the entire beam
length l.

Equilibrium of this beam element in transverse (z-)direction and about the y-axis yields two more differ-
ential equations:

T,x = −q (12)

M,x + N
(
w,x + ŵ,x

) − T = 0 (13)

In Eq. (12), T is the transverse cross-sectional force, and in Eq. (13) M , is the overall bending moment, which
is composed of the layerwise stress resultants as follows, see Fig. 3 [12],

M =
3∑

i=1

Mi − (N1 − N3)d (14)

Finally, Eqs. (12) and (13) are combined into one equation by differentiating Eq. (13) with respect to x
and then substituting it into Eq. (12):

M,xx + N
(
w,xx + ŵ,xx

) = −q (15)
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3 Boundary value problem

3.1 Governing differential equations

The deformation of this beam problem is completely described by the four kinematic variables w, Δu12,
Δu23 and u(0)

2 and their spatial derivatives. Expressing the four local equilibrium equations Eqs (8)-(10) and
Eq. (15) by the the governing kinematic variables, the four solution equations of the slightly curved beam
with interlayer slip are obtained. The first three equations are a result from combining Eqs. (8)-(10) with the
constitutive relations Eqs (6), (7) and the kinematic relations Eqs (2):

Δu12,xx − K

E A1
Δu12 − u(0)

2,xx − w,xw,xx − w,x ŵ,xx − w,xx ŵ,x − dw,xxx = 0 (16)

Δu23,xx − K

E A1
Δu23 + u(0)

2,xx + w,xw,xx + w,x ŵ,xx + w,xx ŵ,x − dw,xxx = 0 (17)

K

E A2
(Δu23 − Δu12) + u(0)

2,xx + w,xw,xx + w,x ŵ,xx + w,xx ŵ,x = 0 (18)

Before the fourth governing differential equation can be established, it is necessary to first express the
overall bending moment M as a function of the kinematic variables. Inserting Eqs. (5) and (6) into Eq. (14)
and then replacing u(0)

1,x and u(0)
3,x by Eq. (2) differentiated with respect to x yield

M = −E J∞w,xx + E A1d
(
Δu12,x + Δu23,x

)
(19)

where

E J∞ = E J0 + 2d2E A1 (20)

is the bending stiffness of the beam with rigidly bonded layers and

E J0 = 2E J1 + E J2 (21)

denotes the bending stiffness of the non-composite member, i.e., K = 0.
Equation (19) is two-times differentiated with respect to x and inserted into Eq. (15). The result is the

fourth governing equation:

D{w(x),Δu12(x),Δu23(x), u
(0)
2 (x)}

= −E J∞w,xxxx + E A1d
(
Δu12,xxx + Δu23,xxx

) + N
(
w,xx + ŵ,xx

) + q = 0 (22)

The overall axial force N that appears in this equation must also be expressed by the kinematic variables,
which is achieved when the axial forces in the layers according to Eq. (6) are totaled, and then, u(0)

1,x and u(0)
3,x

are replaced by the kinematic relations Eq. (2) differentiated by x :

N = E Ae

(
u(0)
2,x + 1

2
w2

,x + w,x ŵ,x

)
+ E A1(Δu23,x − Δu12,x ) (23)

E Ae = 2E A1 + E A2 (24)

According to Eq. (11), N is constant over the axis x . Therefore, N can also be written in the form of the
following integral expression, which has proved to be advantageous for the analytical solution of the boundary
value problem:

N = E Ae

l

∫ l

0

(
u(0)
2,x + 1

2
w2

,x + w,x ŵ,x

)
dx + E A1

l

∫ l

0
(Δu23,x − Δu12,x )dx (25)

As an alternative to one of the three equilibrium conditions Eqs. (16)–(18), the following equilibrium
condition can be used:
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E Ae

(
u(0)
2,xx + w,xw,xx + w,x ŵ,xx + w,xx ŵ,x

)
+ E A1(Δu23,xx − Δu12,xx ) = 0 (26)

which is obtained by substituting Eq. (23) into Eq. (11).
In the computations, it has been found that Eqs. (16) and (17) are unfavorable for solving the boundary

value problem, as they couple all four kinematic variables. An alternative equation is obtained by adding
Eqs. (16) and (17):

Δu23,xx + Δu12,xx − K

E A1
(Δu23 + Δu12) − 2dw,xxx = 0 (27)

Subtracting Eq. (16) from Eq. (17) and using Eq. (26) to eliminate the terms with u(0)
2 , w and ŵ yield a second

alternative equation:

Δu23,xx − Δu12,xx − K E Ae

E A1E A2
(Δu23 − Δu12) = 0 (28)

In Eqs. (27) and (28), u(0)
2 and ŵ no longer occur. Only the variables Δu12 and Δu23 appear in Eq. (28).

3.2 Boundary conditions

To solve the coupled set of governing equations, Eqs. (27), (28), (18) and (22), five boundary conditions at
each beam end need to be specified. Three different beam ends are considered, i.e., a hinged support without
shear restraints, a hard hinged support and a clamped end. These support conditions have in common that the
lateral deflection is zero:

wb = 0 (29)

The subscript b indicates that w at a boundary (i.e., x = 0 or x = l) is considered.
Additionally, the central axis of the considered composite members is immovably supported at both ends,

i.e.,
(
u(0)
2

)
b

= 0 (30)

A free beam end is not discussed because a member with such boundary condition does not develop
significant membrane stresses and thus, no overall axial force N at moderately large deflection, making the
geometrically nonlinear response and the geometrically linear one virtually identical.
Hinged support without shear restraints (soft hinged support)

A hinged support yields the overall bending moment at the boundary zero, i.e., Mb = 0. At a soft hinged
support, the slip between the layers is not constrained, and consequently, in the actual symmetric three-
layer configuration the layerwise axial force in the upper and lower layer is zero as well, i.e., (N1)b = 0 and
(N3)b = 0.With these three boundary conditions, it follows from Eq. (14) that the layerwise bending moments
are zero, i.e., (Mi )b = 0, i = 1, 2, 3, or expressed in terms of the kinematic variable w, compare with Eq. (5),

(w,xx )b = 0 (31)

If the difference (N1)b − (N3)b is formed, which must be zero at the boundary according to the above,
(N1)b − (N3)b = 0, together with Eqs. (6) (for i = 1 and 3) and (31), leads to another boundary condition in
the kinematic variables:

(
Δu12,x + Δu23,x

)
b = 0 (32)

The third boundary condition in the kinematic variables is obtained from the sum of (N1)b and (N3)b,
which is zero at the boundary, (N1)b + (N3)b = 0:

(
Δu23,x − Δu12,x

)
b + 2

(
u(0)
2,x + 1

2
w2

,x + w,x ŵ,x

)
b

= 0 (33)
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As observed, Eq. (33) couples all kinematic variables of the problem. This boundary condition is equivalent to
the fact that at the boundaries the total normal force induced by the horizontally immovable supports is fully
transferred into the middle layer, i.e., (N2)b = Nb.
Hard hinged support

A hinged support where the interlayer slips are fully constrained by, for instance, a rigid end plate, i.e.,

(Δu12)b = (Δu23)b = 0 (34)

is referred to as hard hinged support. Consequently, the shear tractions of the interlayers also vanish, (ts12)b =
(ts23)b = 0.

Combining Mb = 0 with Eq. (19) yields a further boundary condition:

− E J∞
(
w,xx

)
b + E A1d

(
Δu12,x + Δu23,x

)
b = 0 (35)

Rigidly clamped end
At a rigidly clamped end, the slope of the lateral deflection is zero:

(w,x )b = 0 (36)

Additionally, the interlayer slip at both interfaces vanishes:

(Δu12)b = (Δu23)b = 0 (37)

4 Solution of the governing equations

The boundary value problem at hand is solved using Galerkin’s procedure [26]. The basis is the approximation
of the deflection w(x) (denoted as w∗(x)) by a finite series in the sense of a Ritz approach [26],

w(x) ≈ w∗(x) =
n∑

i=1

γiΦi (x) (38)

where the n shape functions Φi (x), i = 1, . . . , n, satisfy the boundary conditions in w. For example, the
eigenfunctions of the associated geometric linear straight beam (i.e., without initial deflection) with interlayer
slip may serve as suitable shape functions. For the three following examples, the choice of the shape functions
is discussed in more detail. In this manner, the governing partial differential equations are transformed into a
set of n algebraic equations in the unknown weighting coefficients γi .

Equally, it may be advantageous to also express the initial deflection ŵ(x) as a series:

ŵ(x) =
n∑

i=1

ŵ(i)
a Ψi (x) (39)

where the shape functions Ψi (x) satisfy the boundary conditions of ŵ(x). Ψi (x) can be different or the same
as Φi (x). However, since ŵ(x) (as opposed to w) is a known quantity, the associated weighting coefficients
ŵ

(i)
a are known quantities.
In a first step, the series expansions ofw and ŵ, Eqs. (38) and (39), are inserted into the differential equations

Eqs. (27), (28) and (18), which are then solved in combination with the current boundary conditions for the
three remaining kinematic variables Δu12, Δu23 and u(0)

2 as a function of the unknowns γi , i = 1, . . . , n.
These variables are substituted into the equation for the axial force N , Eq. (25), which thus also becomes

a function of γi , i = 1, . . . , n. The resulting expression and Eqs. (38), (39) are now substituted into the fourth
solution equation Eq. (22). This equation is then multiplied successively by the n shape functions Φi and
integrated over the beam length l according to Galerkin’s rule [26]:∫

l

D{w∗(x), Δu∗
12(x), Δu∗

23(x), u
(0)
2

∗
(x)}Φi (x)dx = 0 , i = 1, . . . , n (40)

This results in n equations for the unknown coefficients γi , which are nonlinearly coupled due to the effect of
the normal force. These equations can then be solved for γi , i = 1, . . . , n, using a standard solver for nonlinear
equations.
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Fig. 4 Example 1: simply supported beam with initial deflection according to a half-sine subjected to a half-sine load

5 Application examples

5.1 Simply supported beam with half-sine initial deflection subjected to half-sine load

In the first example, a fully restrained simply supported three-layer beam with interlayer slip is considered,
which has an initial deflection in the form of a sine half-wave:

ŵ(x) = ŵa sin (λx) , λ = π

l
(41)

This member shown in Fig. 4 is subjected to the half-sine distributed load

q(x) = q0 sin (λx) (42)

Since the deflection wl of the corresponding linear straight three-layer beam with interlayer slip due to
this load is also sine half-wave distributed [1],

wl(x) = q0
k̄

sin (λx) , k̄ = λ4
(
λ2 + α2) (

α2

E J∞
+ λ2

E J0

)−1

(43)

and furthermore, the small initial deflection ŵ(x) also follows a half-sine wave; it is reasonable to assume that
the nonlinear deflection w(x) of the beam under consideration can be approximated by a sine half-wave. The
series approximation of w(x) according to Eq. (38) thus degenerates to

w∗(x) = γ sin (λx) (44)

with the only unknown weighting factor γ . The parameter α2 in Eq. (43) [12],

α =
(

E J∞K

E A1E J0

)1/2

(45)

which is proportional to the slip modulus K , defines the degree of bonding in the lateral direction [10].
Equation (44) as well as the initial deflection ŵ according to Eq. (41) is inserted into the coupled differential

equations Eqs. (27), (28) and (18), which are subsequently solved in combination with the six soft hinged
boundary conditions Eqs. (30), (32), (33) at x = 0 and x = l, respectively, for Δu12, Δu23, u

(0)
2 ,

Δu12(x) = λ2γ

4

(
4dλ cos (λx)

λ2 + K
E A1

− β(x)
(
γ + 2ŵa

))
(46)

Δu23(x) = λ2γ

4

(
4dλ cos (λx)

λ2 + K
E A1

+ β(x)
(
γ + 2ŵa

))
(47)

u(0)
2 (x) = λ2γ

4

(
− 1

2λ
sin (2λx) + θ(x)

) (
γ + 2ŵa

)
(48)
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with

β(x) = E Ael sinh
( 1
2δ (l − 2x)

)
4E A1 sinh

(
δl
2

) + E A2δl cosh
(

δl
2

) , δ =
(

E AeK

E A1E A2

)1/2

,

θ(x) = 2E A1
(
(l − 2x) sinh

(
δl
2

) − l sinh
( 1
2δ (l − 2x)

))
4E A1 sinh

(
δl
2

) + E A2δl cosh
(

δl
2

) (49)

In the present case, the solution was found with the software suite Mathematica v 12.2 [24]. Substituting these
expressions into Eq. (25), the overall normal force is obtained as a function of γ ,

N = λ2ψ

4
γ

(
γ + 2ŵa

)
(50)

with

ψ = E AeE A2δl cosh
(

δl
2

)
4E A1 sinh

(
δl
2

) + E A2δl cosh
(

δl
2

) (51)

Finally, applying Galerkin’s rule to Eq. (22) yields in combination with Eqs. (41), (42), (44), (46), (47),
(50), the following cubic equation for γ ,

1

4
ψλ4γ

3 + 3

4
ψλ4ŵaγ

2 + 1

2
ψλ4ŵ2

aγ + k̄γ = q0 (52)

which is solved taking into account the current beam parameters.
In the following, a three-layer beamwith a rectangular cross-section is considered, which has the following

dimensions: span l = 1.0 m, layer thickness h1 = h3 = 0.01 m, h2 = 0.0102 m, width b = 0.1 m. The
structural member has an upward initial deformation of the beam axis whose amplitude ŵa is 1% of the span
l, i.e., ŵa = −0.01 m. The initial deflection is therefore oriented against the positive z-coordinate and the
load direction. The material parameters are given as E1 = E3 = 7.0 · 1010 N/m2, E2 = 1.0 · 1010 N/m2,
K = 1.0 · 109 N/m2. These material parameters together with the dimension of the cross-section yield for
the layer interaction parameter α (Eq. (45)) times l the value αl = 13.3, which corresponds to a moderate
interaction of the layers [10]. A load amplitude of q0 = 1.0 · 104 N/m is chosen. For these parameters, the
nonlinear equation Eq. (52) has only one real solution, which is γ = 0.010672. Therefore, no snap-through
occurs.

To examine the accuracy of the beam theory presented, its solution is compared with the results of a
computationally much more expensive finite element (FE) analysis in the software suite Abaqus [23]. The FE
analysis is based on the assumption of a plane stress state. Therefore, it does not include the Euler–Bernoulli
hypothesis and is consequently of higher accuracy than the proposed beam theory. In contrast with the beam
model, where the thickness of the interlayers is zero, in the FE model the interlayers are represented by very
thin cohesive zones with a thickness of 0.1 mm, i.e., h1/100. In turn, the thickness of the middle layer is
reduced twice by this value (i.e., h2 = 0.01 m), to keep the overall height of the structural member unchanged.
The three layers are discretized by quadrilateral plane stress elements with eight nodes per element, while
linear cohesive elements with four nodes per element are used for the cohesive zones. The tangential stiffness
of the cohesive elements corresponds to the slip modulus K of the beam theory, while 10, 000 times K is set
for their normal stiffness, since the normal stiffness is infinite in the beam model. The soft-hinged supports
are each realized by a kinematic coupling of the outer surfaces of the central layer at an additional node. In
total, the FE model has approximately 48, 000 degrees of freedom, compared to one degree of freedom of the
single-term Ritz approximation used to solve the beam equations.

The first result shown in Fig. 5 is the deflection of the slightly curved member along its span, normalized
by the midspan deflection wre f of the corresponding linear beam with straight beam axis, where one support
can move horizontally. The reference deflection wre f over span l is wre f / l = 0.0106 [1]. The outcome of the
beam theory is illustrated by a black solid line; the black circular markers refer to the solution of the FE model.
It can be seen that the nonlinear deflection of both models is virtually identical, with a difference of less than
1%. This result confirms both the proposed beam theory and the chosen Ritz approximation for the deflection
with a single shape function for the problem at hand.

Additionally, this figure also shows the normalized deflection of both the nonlinear beam and linear beam
(where one support is horizontally movable) with straight axis, i.e., ŵa = 0, by a solid red line and a solid
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Fig. 5 Normalized deflection of a nonlinear slightly curved, a nonlinear straight and a linear straight simply supported beam with
interlayer slip subjected to half-sine load

Fig. 6 Normalized midspan deflection of a nonlinear slightly curved simply supported beam subjected to half-sine load as a
function of the normalized amplitude of the initial deflection

blue line, respectively. The midspan deflection of the nonlinear straight beam is 11% smaller than that of the
nonlinear slightly curvedone,which showshow important it is to include the very small initial deformation (here
1% of the beam span) in the nonlinear strain–displacement relations when the supports are fully restrained.
The response of the linear straight beam is larger than that of the nonlinear straight member and, in the
present problem, almost equal to that of the slightly curved nonlinear beam. In order to better understand
the latter result, which is surprising at first glance, Fig. 6 represents the midspan deflection w(l/2) divided
by wre f as a function of the normalized amplitude of the initial curvature ŵa /l. This graph shows that at
ŵa/ l = −0.01 the ratio w(l/2)/wre f is one, i.e., the nonlinear and linear deflection are equal. In the range
−0.01 < ŵa/ l < −0.005, the midspan deflection of the curved beam is even slightly larger than that of the
linear beam with one horizontally movable support. For ŵa/ l < −0.01 and ŵa/ l > −0.005 (i.e., also for
straight nonlinear beam ŵa/ l = 0), the deflection of the nonlinear member is smaller than that of the linear
one. For instance, if ŵa is 10% of the span (i.e. ŵa/ l = ±0.1), the nonlinear midspan deflection is only 4%
of the linear one.

Figure 7 shows the normalized interlayer slips Δu12 (solid lines) and Δu23 (dashed lines) over x/ l for
the same cases, (i) slightly curved nonlinear beam (black lines), (ii) nonlinear beam with straight axis (red
lines), and (iii) linear beam with straight axis (blue line). For case (i), the solution of the FE plane model is
shown with markers. These deformation quantities are normalized with wre f . First, the excellent agreement
between the solutions for the slightly curved nonlinear member from the proposed beam theory and the FE
model is pointed out. Furthermore, the grave effect of geometric nonlinearities on the interlayer slip becomes
obvious. While for the linear straight beam the two interlayer slips are equal and have the largest value at
the left support, for the nonlinear members (i) and (ii) the deviation between Δu12 and Δu23 becomes larger
toward the supports. At x/ l = 0, Δu12 of the slightly curved beam is larger than the linear response, while
Δu23 is below the linear solution. In contrast, for the straight nonlinear memberΔu12 is smaller than the linear
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Fig. 7 Normalized interlayer slips of a nonlinear slightly curved, a nonlinear straight and a linear straight simply supported beam
subjected to half-sine load

Fig. 8 Normalized longitudinal displacement of the central axis of a nonlinear slightly curved, a nonlinear straight and a linear
straight simply supported beam with interlayer slip subjected to half-sine load

response, Δu23 is above it. The interlayer slips also demonstrates how crucial it is to take the initial curvature
into account when calculating the response.

Figure 8 shows the result for the fourth kinematic variable, which is the longitudinal displacement of the
central axis u(0)

2 divided by wre f , as a function of x/ l. It can be seen that the shape of u(0)
2 over x/ l of the

nonlinear curved beam (black solid line) is the mirror image of u(0)
2 of the straight nonlinear beam (red solid

line). This illustrates the effect of the small initial deflection also on this response variable. u(0)
2 from the

proposed beam theory and from the FE model is again virtually the same. Note that u(0)
2 is identically zero for

the linear straight member.
Figure 9 shows the overall normal force N and the layerwise normal forces N1, N2 and N3 of the slightly

curved (black lines) as well as the straight nonlinear beam (red lines). These quantities are normalized to the
maximum normal force in the bottom layer of the geometric linear beam, Nref = N3(l)(x/ l = 0.5). It can
be seen that the small initial deflection of ŵa/ l = −0.01 changes the sign of the overall normal force N
(solid lines). While in the straight beam N is a tensile force, in the curved beam it is a compressive force.
Furthermore, it can be seen that at the boundaries the normal force in the middle layer N2 coincides with N
according to the corresponding boundary condition Eq. (33), which then decays to almost zero toward the
center of the beam. Since in the beam with initial deflection N is a compressive force, the axial force in the
upper layer over Nref at midspan is N1(x/ l = 0.5)/Nref < −1, while in the straight beam the tensile force
N causes N1(x/ l = 0.5)/Nref > −1.

The overall bending moment M and the moments in the individual layers M1, M2, M3, shown in Fig. 10
by black lines for the nonlinear curved beam and by red lines for the nonlinear straight beam, are normalized
to the maximum overall bending moment of the linear beam, i.e., Mref = M(l)(x = l/2). The most important
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Fig. 9 Overall and layerwise normalized axial forces of a nonlinear slightly curved and a nonlinear straight simply supported
beam subjected to half-sine load

Fig. 10 Overall and layerwise normalized bending moments of a nonlinear slightly curved and a nonlinear straight simply
supported beam subjected to half-sine load

observation is that due to the small initial curvature ŵa/ l = −0.01, the maximum overall moment M becomes
slightly larger than in the linear straight beam, while it is 11% smaller in the straight nonlinear beam.

Finally, the effect of the interlayer slip on the moderately large response of the slightly curved beam is
investigated based on this example. To this end, Fig. 11 compares the deflection ratio of the considered curved
member (with αl = 13.3; black line) with the deflection of the rigidly bonded beam (αl = ∞; blue line)
and the beam without bond (αl = 0; red line). As expected, the deflection of the beam without horizontal
layer interaction is the largest (i.e., 3.6 times larger than for the flexibly bonded beam), and the beam with
full bonding is the smallest (i.e., 1.8 times smaller than for the flexibly bonded beam). Figure 12 displays the
normalized interlayer slips Δu12/wre f and Δu23/wre f for αl = 13.3 and αl = 0. By definition this quantity
is zero for the rigidly bonded beam without slip. Lastly, for the longitudinal displacement of the central axis
u(0)
2 /wre f , the behavior is similar, as Fig. 13 shows.

5.2 Slightly curved simply supported beam subjected to non-symmetric load

In the second example, again a simply supported beam is considered, but with an arbitrarily distributed initial
deflection and under an arbitrarily distributed load. In this case, the nonlinear response as well as the initial
curvature is approximated by a finite series expansion according to Eqs (38) and (39) based on the following
shape functions,
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Fig. 11 Normalized deflection of three nonlinear slightly curved simply supported beams with different interlayer stiffness
subjected to half-sine load

Fig. 12 Normalized interlayer slips of three nonlinear slightly curved simply supported beams with different interlayer stiffness
subjected to half-sine load

Fig. 13 Normalized longitudinal displacement of the the central axis of three nonlinear slightly curved simply supported beams
with different interlayer stiffness subjected to half-sine load
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Φi (x) = Ψi (x) = sin (λi x) , λi = iπ

l
, i = 1, . . . , n (53)

These shape functions correspond to the eigenfunctions of the linear beamwith interlayer slip (see, e.g., [3]) and
thus satisfy the boundary conditions in the deflectionw. Following the steps explained in detail in the previous
example, the series expansions Eqs. (38) and (39) and Eq. (53) are inserted into the governing equations
Eqs (27), (28) and (18), which are then solved in combination with the soft-hinged boundary conditions
Eqs. (30), (32), (33) at x = 0 and x = l using the software suite Mathematica v. 12.2 [24]. This yields the
following analytical expressions for the interlayer slips Δu12 and Δu23 and the horizontal displacement u(0)

2
as a function of the unknown weighting coefficients γi , i = 1, . . . , n,

Δu12(x) = 1

4

n∑
i=1

λ2i γi

(
4dλi cos (λi x)

λ2i + K
E A1

− β(x)
(
γi + 2ŵ(i)

a

))
(54)

Δu23(x) = 1

4

n∑
i=1

λ2i γi

(
4dλi cos (λi x)

λ2i + K
E A1

+ β(x)
(
γi + 2ŵ(i)

a

))
(55)

u(0)
2 (x) = −1

4

n∑
i=1

n∑
j=1

λiλ j

(
1

λ j−i + δ j i
sin

(
λ j−i x

) + 1

λi+ j
sin

(
λi+ j x

))

·
(
γiγ j + γi ŵ

( j)
a + γ j ŵ

(i)
a

)
+ θ(x)

4

n∑
i=1

λ2i γi

(
γi + 2ŵ(i)

a

) (56)

Note that δi j in Eq. (56) denotes the Kronecker delta introduced to avoid an undetermined expression when
i = j . Evaluation of Eq. (25) with these expressions leads to the following equation for the overall normal
force,

N = ψ

4

n∑
i=1

λ2i γi

(
γi + 2ŵ(i)

a

)
(57)

Applying Galerkin’s rule Eq. (40) then leads to the following set of nonlinear coupled equations for the
unknown coefficients γi , i = 1, . . . , n, for the present problem,

ψλ4i

4i2

(
γi + ŵ(i)

a

) n∑
j=1

j2
(
γ 2
j + 2ŵ( j)

a γ j

)
+ k̄iγi = 2

l
qi , i = 1, . . . , n (58)

with

k̄i = λ4i
(
λ2i + α2)

(
α2

E J∞
+ λ2i

E J0

)−1

, qi =
l∫

0

q(x)Φi (x)dx (59)

In the numerical application, the same beam is considered with the same configuration, geometry and
material parameters as in the previous example. The initial deflection is composed of a sine half-wave and a
sine wave,

ŵ(x) = ŵ(1)
a sin (λ1x) + ŵ(2)

a sin (λ2x) (60)

where ŵ
(1)
a = −0.02 m and ŵ

(2)
a = 0.005 m. Thus, the initial deflection in this example is oriented upwards

along the entire beam axis against the positive z-coordinate. The member shown in Fig. 14 is subjected to a
load equally distributed over the left half of the span,

q(x) = q0 (H(x) − H(x − l/2)) (61)

with H denoting the Heaviside function and, as in the previous example, the load amplitude is q0 = 1.0 ·
104 N/m.
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Fig. 14 Example 2: simply supported beam with initial deflection composed a sine half-wave and a sine wave, subjected to a
uniformly distributed load on the left half

Fig. 15 Normalized deflection of a nonlinear slightly curved, a nonlinear straight and a linear straight simply supported beam
with interlayer slip subjected to a load uniformly distributed over the left half of the member

Figure 15 shows the normalized deflection w/wre f as a function of x/ l, with wre f denoting the maximum
deflection of the corresponding straight linear beamunder the same load, i.e.,wre f (x = 0.425l) = 0.006868m.
It can be seen that with n = 3 series terms the solution of the beam theory (black solid line) is virtually identical
to the FE plane stress solution (circular markers). The deflection can also be approximated very well with two
series terms (n = 2), compare with the dashed black line. However, with one series term (n = 1), the influence
of the asymmetric initial deflection and asymmetric loading on the deflection cannot be captured, as the black
dotted line illustrates. In addition, this figure shows both the normalized deflection of the nonlinear straight
beam (solid red line) and the linear straight beam (solid line), both of which are larger than that of the slightly
curved nonlinear beam.

Figure 16 presents the normalized interlayer slips Δu12/wre f (solid lines) and Δu23/wre f (dashed lines)
of the slightly curved beam again for n = 1 (blue lines), n = 2 (red lines) and n = 3 (black lines) series terms,
respectively, as well as the corresponding results from the FE analysis. This example also shows that the two
interlayer slips Δu12/wre f and Δu23/wre f , which can be well approximated with two series terms, deviate
more and more from each other at the ends of the beam, where they have opposite curvature. The normalized
interlayer slips of the straight nonlinear beam (red lines) and the linear beam (blue line), which are depicted
in Fig. 17 additionally to the outcome of the slightly curved beam (black lines), demonstrate the influence of
the initial deflection on this response variable.

For the representation of the normalized longitudinal displacement of the central axis u(0)
2 /wre f , at least

three series terms are necessary, as Fig. 18 demonstrates (black solid line). The consideration of two series terms
(black dashed line) leads to a visible deviation from the FE solution (circular markers). The approximation
with one series term (black dotted line) does not lead to a reasonable result. The longitudinal displacement of
the nonlinear straight beam, which is also illustrated by a red solid line, shows a completely different pattern
than that of the slightly curved beam.
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Fig. 16 Normalized interlayer slips of a nonlinear slightly curved simply supported beam with interlayer slip subjected to a load
uniformly distributed over the left half of the beam. Variation in the number of series terms. Series solution based different number
of terms and FE plane stress solution

Fig. 17 Normalized interlayer slips of a nonlinear slightly curved, a nonlinear straight and a linear straight simply supported
beam with interlayer slip subjected to a load uniformly distributed over the left half of the beam

5.3 Slightly curved clamped-soft hinged beam subjected to half-sine load

The beam of the third example shown in Fig. 19 is clamped on the left end and soft-hinged supported on the
right end, and subjected to a load in the form of a sine half-wave according to Eq. (42). The initial deflection
ŵ is affine to the deflection wl of the associated linear three-layer beam with flexible bonding,

ŵ(x) = ŵa
wl(x)

max|wl(x)| (62)

where

wl(x) = q0
2E J 0λ4

(
α2 + λ2

)
E J∞

(
2 sin(λx)

(
α2E J 0 + λ2E J∞

)

− λ

αl cosh(αl)
(
E J 0

(
α2l2 − 3

) + 3E J∞
) + 3 (E J 0 − E J∞) sinh(αl)(

(E J 0 − EJ∞)
(
2l sinh(α(l − x))

(
3λ2E J∞ + α2E J 0

(
λ2l2 + 3

))

−(l − x) sinh(αl)
(
6λ2E J∞ + α2E J 0

(
λ2

(
2l2 + 2lx − x2

) + 6
)))

+α3E J 20lx
(
α2 + λ2

) (
2l2 − 3lx + x2

)
cosh(αl)

))

(63)
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Fig. 18 Normalized longitudinal displacement of the central axis of a nonlinear slightly curved, a nonlinear straight and a linear
straight simply supported beam with interlayer slip subjected to a load uniformly distributed over the left half of the beam

Fig. 19 Example 3: slightly curved clamped-soft hinged beam subjected to a half-sine load

Note that wl(x) was determined according to the procedure explained in [8].
It is therefore reasonable to assume that the shape of the deflection w(x) of the nonlinear beam is closely

affine to the deflection wl(x) of the linear beam. w(x) is consequently approximated with the following
single-term Ritz approach,

w∗(x) = γwl(x) (64)

The geometry and dimensions, as well as the three layers and the material parameters, are chosen the
same as in the two previous examples. The load amplitude is q0 = 1.0 · 104 N/m. The amplitude of the initial
deflection is negative, i.e. ŵa = −0.015 m. The initial deflection is therefore also in this example oriented
upwards against the positive z-coordinate and the load direction.

The solutions u(0)
2 (x, γ ), Δu12(x, γ ) and Δu23(x, γ ) of this boundary value problem with Eqs. (30), (37)

representing the boundary conditions at the left support and Eqs. (30), (32), (33) representing the boundary
condition at the right support, is found as described in the previous example. The resulting cubic equation for
the weighting coefficient γ has one root because the initial deflection is so small that no snap-through can
occur. Since the expressions obtained in this way are very lengthy, they cannot be presented here.

Figure 20 shows the normalized deflection w/wre f of the considered slightly curved beam along the beam
axis x/ l as a result of the presented beam theory (black solid line) aswell as from the comparativeFEplane stress
analysis (circular markers). As in the previous examples, the difference between these two results is negligible.
This outcome confirms both the theory presented and the selected shape function according to Eq. (64). Note
that also in this example the reference solution wre f is the maximum deflection of the corresponding linear
straight clamped-soft hinged beam, wre f = wlin(x = 0.545l) = 0.00661 m. To illustrate the influence of the
initial deflection and the geometric nonlinearity, the normalized deflection of the straight nonlinear beam and
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Fig. 20 Normalized deflection of a nonlinear slightly curved, a nonlinear straight and a linear straight clamped-soft hinged beam
with interlayer slip subjected to half-sine load

Fig. 21 Normalized interlayer slips of a nonlinear slightly curved, a nonlinear straight and a linear straight clamped-soft hinged
beam with interlayer slip subjected to half-sine load

the straight linear beam (with one horizontally movable support) are also shown. It can be seen that in this
example the maximum deflection of the curved beam is 25% smaller than the linear response and 21% smaller
than that of the geometrically nonlinear beam with straight axis.

The interlayer slips Δu12 and Δu23 as well as the longitudinal displacement of the central axis u(0)
2 of

the slightly curved beam agree very well with those of the FE analysis, as observed in Figs. 21 and 22. The
comparison of these quantities with the results of the geometrically nonlinear and the linear beam demonstrates
once more the great influence of the initial curvature on the response behavior. For example, the sign of u(0)

2
of the curved and the straight nonlinear beam is exactly reversed along the entire beam axis x/ l.

6 Summary and conclusions

This paper addresses the prediction of the static response of slightly curved symmetrically layered members
with flexible bond. Since the beams considered are immovably supported, moderately large deflections lead
to geometrically nonlinear behavior. Both the geometrically nonlinear effect and the interlayer slips due to
the flexible bonded layers are captured by a beam theory presented in this contribution. This theory is based
on a layerwise application of the Euler–Bernoulli theory, a linear material law for the interlaminar stresses,
and a nonlinear axial strain–displacement relation. In the resulting boundary value problem, the deflection,
the longitudinal displacement of the central axis and the two interlayer slips are coupled. The solution of this
boundary value problem was found by a Ritz-Galerkin method.

Comparative calculations have shown that for slender beams the presented theory approximates excellently
a finite element (FE) solution under the assumption of a plane stress state. The solution based on this theory
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Fig. 22 Normalized longitudinal displacement of the central axis of a nonlinear slightly curved, a nonlinear straight and a linear
straight clamped-soft hinged beam with interlayer slip subjected to half-sine load

is very efficient and less time-consuming than an FE analysis and is therefore suitable for finding reference
solutions on the one hand and for quickly estimating the response on the other. The application is, however,
limited to beams with simple geometry and boundary conditions. In three application examples, it was shown
how important it is to take into account even very small initial deflection in the analysis of moderately large
deflections of immovably supported beams with interlayer slip.
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