Skip to main content
Log in

Generalized thermo-elastic waves propagating in bars with a rectangular cross-section

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

With the rapid development and application of the laser ultrasonic technology in nondestructive testing in recent years, thermo-elastic waves in diverse waveguides have captured a multitude of attention. However, they are mainly focused on one-dimensional and half-space structures. In engineering, there are also a lot of two-dimensional structures, such as joist steel, straight bars and rings. However, rare attention is paid on thermo-elastic waves in these structures. Accordingly, in the context of Green–Lindsay (G–L) generalized thermo-elasticity theory, a modified double orthogonal polynomial approach is exploited to investigate thermo-elastic waves in bars with a rectangular cross-section. The dispersion, attenuation and displacement curves of thermo-elastic waves are illustrated. Subsequently, influences of the cross-section size and relaxation time on wave characteristics are analyzed. Results indicate that the cross-section size and relaxation time have a significant influence on thermo-elastic waves. The phase velocity and attenuation values of thermal wave modes decrease as the relaxation time increases. These results obtained can be utilized to guide the laser ultrasonic nondestructive testing for this kind of structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Vuong, N.V., Lee, C.H.: Quasi-3D isogeometric buckling analysis method for advanced composite plates in thermal environments. Aerosp. Sci. Technol. 92, 34–54 (2019)

    Article  Google Scholar 

  2. Yu, W., Wang, X., Huang, X.: Dynamic modelling of heat transfer in thermal-acoustic fatigue tests. Aerosp. Sci. Technol. 71, 675–684 (2017)

    Article  Google Scholar 

  3. Tu, T.M., Quoc, T.H., Van, L.N.: Vibration analysis of functionally graded plates using the eight-unknown higher order shear deformation theory in thermal environments. Aerosp. Sci. Technol. 84, 698–711 (2018)

    Article  Google Scholar 

  4. Zhang, W., Wu, R.Q., Behdinan, K.: Nonlinear dynamic analysis near resonance of a beam-ring structure for modelling circular truss antenna under time-dependent thermal excitation. Aerosp. Sci. Technol. 86, 296–311 (2019)

    Article  Google Scholar 

  5. Lord, H.W., Shulman, Y.A.: Generalized dynamical theory of thermo-elasticity. J. Mech. Phys. Solids 15, 299–309 (1967)

    Article  Google Scholar 

  6. Green, A.E., Lindsay, K.A.: Thermo-elasticity. J. Elast. 2(1), 1–7 (1972)

    Article  Google Scholar 

  7. Green, A.E., Naghdi, P.M.: On undamped heat waves in an elastic solid. J. Therm. Stresses 15(2), 253–264 (1992)

    Article  MathSciNet  Google Scholar 

  8. Yu, J.G., Zhang, X.M., Xue, T.L.: Generalized thermo-elastic waves in functionally graded plates without energy dissipation. Compos. Struct. 93(1), 32–39 (2010)

    Article  Google Scholar 

  9. Wang, X.H., Li, F.L., Zhang, X.M., et al.: Thermoelastic guided wave in fractional order functionally graded plates: an analytical integration Legendre polynomial approach. Composite Struct. 256, 112997 (1–11) (2021)

  10. Wang, X., Li, F.L., Zhang, B., et al.: Wave propagation in thermoelastic inhomogeneous hollow cylinders by analytical integration orthogonal polynomial approach. Appl. Math. Model. 99(7), 57–80 (2021)

    Article  MathSciNet  Google Scholar 

  11. Li, Y.Q., Wei, P.J.: Reflection and transmission of thermo-elastic waves without energy dissipation at the interface of two dipolar gradient elastic solids. J. Acoust. Soc. Am. 143(1), 550–562 (2018)

    Article  Google Scholar 

  12. Li, Y.Q., Wei, P.J.: Propagation of thermo-elastic waves at several typical interfaces based on the theory of dipolar gradient elasticity. Acta Mech. Solida Sin. 31(02), 105–118 (2018)

    Google Scholar 

  13. Abbas, I.A., Abdalla, A., Alzahrani, F.S., et al.: Wave propagation in a generalized thermo-elastic plate using eigenvalue approach. J. Therm. Stresses 39(11), 1367–1377 (2016)

    Article  Google Scholar 

  14. Pal, P., Kanoria, M.: Thermo-elastic wave propagation in a transversely isotropic thick plate under Greena Naghdi theory due to gravitational field. J. Therm. Stresses 40(4), 470–485 (2016)

    Article  Google Scholar 

  15. Verma, K.L.: Thermo-elastic waves in anisotropic plates using normal mode expansion method with thermal relaxation time. Int. J. Mech. Syst. Sci. Eng. 2(2), 86–93 (2013)

    Google Scholar 

  16. Verma, K.L.: Thermo-elastic wave propagation in laminated composites plates. Appl. Comput. Mech. 6(2), 197–208 (2012)

    Google Scholar 

  17. Hsu, S.M., Yin, C.C.: Numerical study of characteristic equations of thermo-elastic waves propagating in a uniaxial prestressed isotropic plate. Isrn Appl. Math. 2011, 532–547 (2013)

    Google Scholar 

  18. Kumar, R., Garg, S.K., Ahuja, S.: Propagation of plane waves at the interface of an elastic solid half-space and a microstretch thermo-elastic diffusion solid half-space. Latin Am. J. Solids Struct. 10(6), 1081–1108 (2013)

    Article  Google Scholar 

  19. Sharma, M.D.: Propagation and attenuation of Rayleigh waves in generalized thermo-elastic media. J. Seismolog. 18(1), 61–79 (2014)

    Article  Google Scholar 

  20. Bayones, F., Abd-Alla, A., Alfatta, R., et al.: Propagation of thermoelastic wave in a half-space of a homogeneous isotropic material subjected to the effect of rotation and initial stress. Comput. Mater. Contin. 61(3), 551–567 (2020)

    Article  Google Scholar 

  21. Abd-Alla, A.M., Abo-Dahab, S.M., Bayones, F.S.: Propagation of Rayleigh waves in magneto-thermo-elastic half-space of a homogeneous orthotropic material under the effect of rotation, initial stress and gravity field. J. Vib. Control 19(9), 1395–1420 (2013)

    Article  MathSciNet  Google Scholar 

  22. Othman, M., Khan, A., Jahangir, R., et al.: Analysis on plane waves throughmagneto-thermoelastic microstretch rotating medium with temperature dependentelastic properties. Appl. Math. Model. 65, 535–548 (2019)

    Article  MathSciNet  Google Scholar 

  23. Nigro, N.J.: Wave Propagation in anisotropic bars of rectangular cross section. Part I. Longitudinal wave propagation. J. Acoust. Soc. Am. 43(5), 958–965 (1968)

    Article  Google Scholar 

  24. Fraser, W.B.: Stress wave propagation in rectangular bars. Int. J. Solids Struct. 5(4), 379–397 (1969)

    Article  Google Scholar 

  25. Vasudeva, R.Y., Bhaskara, R.K.: Wave motion in micropolar elastic bars with rectangular cross section. Int. J. Eng. Sci. 17(8), 965–971 (1979)

    Article  Google Scholar 

  26. Yu, J.G., Lefebvre, J.E., Zhang, C., et al.: Dispersion curves of 2D rods with complex cross-sections: double orthogonal polynomial approach. Meccanica 50(1), 109–117 (2015)

    Article  Google Scholar 

  27. Liu, Y., Han, Q., Huang, H., et al.: Computation of dispersion relations of functionally graded rectangular bars. Compos. Struct. 133(98), 31–38 (2015)

    Article  Google Scholar 

  28. Krushynska, A.A., Meleshko, V.V.: Normal waves in elastic bars of rectangular cross section. J. Acoust. Soc. Am. 129(3), 1324–1335 (2011)

    Article  Google Scholar 

  29. Serey, V., Quaegebeur, N., Renier, M., et al.: Selective generation of ultrasonic guided waves for damage detection in rectangular bars. Struct. Health Monit. 20(3), 1156–1168 (2021)

    Article  Google Scholar 

  30. Zhang, B., Yu, J.G., Zhang, X.M., et al.: Complex guided waves in functionally graded piezoelectric cylindrical structures with sectorial cross-section. Appl. Math. Model. 63, 288–302 (2018)

    Article  MathSciNet  Google Scholar 

  31. Sharma, J.N., Singh, D., Kumar, R.: Generalized thermo-elastic waves in homogeneous isotropic plates. J. Acoust. Soc. Am. 2(108), 848–851 (2000)

    Article  Google Scholar 

  32. Lefebvre, J.E., Yu, J.G., Ratolojanahary, F.E., et al.: Mapped orthogonal functions method applied to acoustic waves-based devices. Aip Adv 6(6), 065307 (2016)

    Article  Google Scholar 

  33. Othmani, C., Njeh, A., Ghozlen, M.H.B.: Influences of anisotropic fiber-reinforced composite media properties on fundamental guided wave mode behavior: a Legendre polynomial approach. Aerosp. Sci. Technol. 78, 377–386 (2018)

    Article  Google Scholar 

  34. Li, Z., Yu, J.G., Zhang, X.M., et al.: Guided wave propagation in functionally graded fractional viscoelastic plates: a quadrature-free Legendre polynomial method. Mech. Adv. Mater. Struct. (2020). https://doi.org/10.1080/15376494.2020.1860273

    Article  Google Scholar 

  35. Al-Qahtani, H., Datta, S.K.: Thermoelastic waves in an anisotropic infinite plate. J. Appl. Phys. 96(7), 3645–3658 (2004)

    Article  Google Scholar 

  36. Loveday, P.W.: Numerical comparison of patch and sandwich piezoelectric transducers for transmitting ultrasonic waves. In: Smart Structures and Materials 2006: Modeling, Signal Processing and Control, Proceedings of SPIE, 6166, pp. 1–8

  37. Khadrawi, A.F., Al-Nimr, M.A., Hammad, M.: Thermal behavior of perfect and imperfect contact composite slabs under the effect of the hyperbolic heat conduction model. Int. J. Thermophys. 23(2), 581–598 (2002)

    Article  Google Scholar 

  38. Chester, M.: Second sound in solids. Phys. Rev. 131(5), 2013–2015 (1963)

    Article  Google Scholar 

  39. Zhang, B., Wang, X.H., Elmaimouni, L., et al.: Axial guided wave characteristics in functionally graded one-dimensional hexagonal piezoelectric quasi-crystal cylinders. Math. Mech. Solids (2021). https://doi.org/10.1177/10812865211013458

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support by the National Natural Science Foundation of China (No. U1804134 and No. 12102131) and Research Fund for the Doctoral Program of Henan Polytechnic University(B2021-32).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. J. Li.

Ethics declarations

Conflict of interest

The authors have declared that no competing interests exist.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The explicit expressions for matrix elements are detailed as follows:

$$ \begin{gathered} A_{{11}}^{{n,p,j,m}} = - u[n,p,j,m,0,0], \hfill \\ A_{{12}}^{{n,p,j,m}} = A_{{13}}^{{n,p,j,m}} = A_{{14}}^{{n,p,j,m}} = A_{{21}}^{{n,p,j,m}} = A_{{23}}^{{n,p,j,m}} = A_{{24}}^{{n,p,j,m}} = 0, \hfill \\ \end{gathered} $$
$$ \begin{gathered} A_{{22}}^{{n,p,j,m}} {\text{ }}\; = \; - \;c_{8} \times u[n,p,j,m,0,0],\;A_{{31}}^{{n,p,j,m}} = A_{{32}}^{{n,p,j,m}} = A_{{34}}^{{n,p,j,m}} = A_{{41}}^{{n,p,j,m}} = A_{{42}}^{{n,p,j,m}} = A_{{43}}^{{n,p,j,m}} = 0, \hfill \\ A_{{33}}^{{n,p,j,m}} \; = \; - \;c_{7} \times u[n,p,j,m,0,0],\;A_{{44}}^{{n,p,j,m}} \; = \; - \;u[n,p,j,m,0,0], \hfill \\ \end{gathered} $$
$$ B_{11}^{n,p,j,m}\,=\,B_{22}^{n,p,j,m}\,=\,B_{23}^{n,p,j,m}\,=\,B_{24}^{n,p,j,m} \,= \,B_{32}^{n,p,j,m}\,=\,B_{33}^{n,p,j,m}\, =\, B_{34}^{n,p,j,m} \,=\,0, $$
$$ \begin{gathered} B_{{42}}^{{n,p,j,m}} = B_{{43}}^{{n,p,j,m}} = B_{{44}}^{{n,p,j,m}} = 0, \hfill \\ B_{{12}}^{{n,p,j,m}} {\text{ }} = i \times \left( {c_{1} + c_{8} } \right) \times u[n,p,j,m,1,0] + i \times c_{8} \times K_{y} [n,p,j,m,0,0], \hfill \\ B_{{13}}^{{n,p,j,m}} {\text{ }} = i \times \left( {c_{3} + c_{7} } \right) \times u[n,p,j,m,0,1] + i \times c_{7} \times K_{z} [n,p,j,m,0,0], \hfill \\ B_{{14}}^{{n,p,j,m}} {\text{ }} = - \left( {i + t_{1}^{*} \times \omega } \right) \times u[n,p,j,m,0,0], \hfill \\ B_{{21}}^{{n,p,j,m}} {\text{ }} = i \times \left( {c_{1} + c_{8} } \right) \times u[n,p,j,m,1,0] + i \times c_{1} \times K_{y} [n,p,j,m,0,0], \hfill \\ B_{{31}}^{{n,p,j,m}} {\text{ }} = i \times \left( {c_{3} + c_{7} } \right) \times u[n,p,j,m,0,1] + i \times c_{3} \times K_{z} [n,p,j,m,0,0], \hfill \\ B_{{41}}^{{n,p,j,m}} {\text{ }} = - \eta \times \omega \times u[n,p,j,m,0,0], \hfill \\ \end{gathered} $$
$$ \begin{gathered} C_{11}^{n,p,j,m} { = }c_{8} \times u[n,p,j,m,2,0] + c_{7} \times u[n,p,j,m,0,2] \hfill \\ + c_{8} \times K_{y} [n,p,j,m,1,0] + c_{7} \times K_{z} [n,p,j,m,0,1], \hfill \\ \end{gathered} $$
$$ \begin{gathered} C_{{12}}^{{n,p,j,m}} {\text{ }} = C_{{13}}^{{n,p,j,m}} {\text{ }} = C_{{14}}^{{n,p,j,m}} C_{{22}}^{{n,p,j,m}} {\text{ }} = c_{2} \times u[n,p,j,m,2,0] + c_{6} \times u[n,p,j,m,0,2] \hfill \\ + c_{2} \times K_{y} [n,p,j,m,1,0] + c_{6} \times K_{z} [n,p,j,m,0,1],{\text{ }} = C_{{21}}^{{n,p,m,j}} {\text{ }} = C_{{31}}^{{n,p,m,j}} = C_{{41}}^{{n,p,m,j}} = 0, \hfill \\ C_{{23}}^{{n,p,j,m}} {\text{ }} = \left( {c_{4} + c_{6} } \right) \times u[n,p,j,m,1,1] + c_{4} \times K_{y} [n,p,j,m,0,1] + c_{6} \times K_{z} [n,p,j,m,1,0], \hfill \\ C_{{24}}^{{n,p,j,m}} {\text{ }} = - \lambda _{1} \times \left( {1 - i \times t_{1}^{*} \times \omega } \right) \times u[n,p,j,m,1,0] - \lambda _{1} \times \left( {1 - i \times t_{1}^{*} \times \omega } \right) \times K_{y} [n,p,j,m,0,0], \hfill \\ C_{{32}}^{{n,p,j,m}} {\text{ }} = \left( {c_{4} + c_{6} } \right) \times u[n,p,j,m,1,1] + c_{6} \times K_{y} [n,p,j,m,0,1] + c_{4} \times K_{z} [n,p,j,m,1,0], \hfill \\ C_{{33}}^{{n,p,j,m}} {\text{ }} = c_{6} \times u[n,p,j,m,2,0] + c_{5} \times u[n,p,j,m,0,2] + c_{6} \times K_{y} [n,p,j,m,1,0] + c_{5} \times K_{z} [n,p,j,m,0,1], \hfill \\ C_{{34}}^{{n,p,j,m}} {\text{ }} = - \;\lambda _{2} \times \left( {1 - i \times t_{1}^{*} \times \omega } \right) \times u[n,p,j,m,1,0] - \;\lambda _{2} \times \left( {1 - i \times t_{1}^{*} \times \omega } \right) \times K_{z} [n,p,j,m,0,0], \hfill \\ C_{{42}}^{{n,p,j,m}} {\text{ }} = \eta \times \lambda _{1} \times i \times \omega \times u[n,p,j,m,1,0],\;C_{{43}}^{{n,p,j,m}} {\text{ }} = \eta \times \lambda _{2} \times i \times \omega \times u[n,p,j,m,0,1], \hfill \\ C_{{44}}^{{n,p,j,m}} {\text{ }} = \alpha _{1} \times u[n,p,j,m,2,0] + \alpha _{2} \times u[n,p,j,m,0,2]\end{gathered} $$
$$ M_{n,p,j,m} = -\omega^{2} \times u[n,p,j,m,0,0], \quad T_{n,p,j,m} = - \left( {i \times \omega + t_{0}^{*} \times \omega^{2} } \right) \times u[n,p,j,m,0,0], $$

where

$$ u[n,p,j,m,g,q]{\text{ = }}\int_{0}^{h} {\int_{0}^{d} {I(y,z) \times Q_{n} (z) \times Q_{p} (y) \times } } \frac{{\partial ^{g} Q_{j} (y)}}{{\partial y^{g} }} \times \frac{{\partial ^{q} Q_{m} (z)}}{{\partial z^{q} }}dydz,$$
$$ K_{y} [n,p,j,m,g,q]{\text{ = }}\int_{0}^{h} {\int_{0}^{d} {\frac{{\partial I(y,z)}}{{\partial y}} \times Q_{p} (y) \times Q_{n} (z) \times } } \frac{{\partial ^{g} Q_{j} (y)}}{{\partial y^{g} }} \times \frac{{\partial ^{q} Q_{m} (z)}}{{\partial z^{q} }}dydz, $$
$$ K_{z} [n,p,j,m,g,q]{\text{ = }}\int_{0}^{h} {\int_{0}^{d} {\frac{{\partial I(y,z)}}{{\partial z}} \times Q_{n} (z) \times Q_{p} (y) \times } } \frac{{\partial ^{g} Q_{j} (y)}}{{\partial y^{g} }} \times \frac{{\partial ^{q} Q_{m} (z)}}{{\partial z^{q} }}dydz. $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Li, L.J., Yu, J.G. et al. Generalized thermo-elastic waves propagating in bars with a rectangular cross-section. Arch Appl Mech 92, 785–799 (2022). https://doi.org/10.1007/s00419-021-02072-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-021-02072-3

Keywords

Navigation