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Abstract Thermodynamicmodeling of the development of non-spherical inclusions as precipitates in alloys is
an important topic in computational materials science. The precipitates may havemarkedly different properties
compared to the matrix. Both the elastic contrast and the misfit eigenstrain may yield a remarkable generation
of elastic strain energy which immediately influences the kinetics of the developing precipitates. The relevant
thermodynamic framework has been mostly based on spherical precipitates. However, the shapes of actual
particles are often not spherical. The energetics of such precipitates can bemet by adapting the spherical energy
terms with shape factors. The well-established Eshelby framework is used to evaluate the elastic strain energy
of inclusions with ellipsoidal shapes (described by the axes a, b, and c) that are subjected to a volumetric
transformation strain. The outcome of the study is two shape factors, one for the elastic strain energy and the
other for the interface energy. Both quantities are provided in the form of easy-to-use diagrams. Furthermore,
threshold elastic contrasts yielding strain energy shape factors with the value 1.0 for any ellipsoidal shape are
studied.

Keywords Precipitation ·Misfit strain energy · Interface energy · Shape factors ·Modeling thermodynamics

1 Introduction and motivation

The authors outlined in detail [1] how the strain energies of spheroidal inclusions can be obtained from the
spherical case by shape factors. Understanding both the positive or negative roles of precipitates is an important
topic in materials research; see, e.g., the pertinent chapter in the well-established book on kinetics of materials
by Balluffi et al. [2] or exact engineering treatments such as [3]. The authors and associated researchers have
provided in [4–7] essentially all kinetic relations, including also the mechanical terms, particularly the elastic
strain energy contributions, derived for spherical inclusions. This established concept can now be adapted by
the so-called shape factors in order to deal with non-spherical shapes of inclusions.
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Generally, one can observe that research on the behavior of transforming inclusions is still in progress; see,
e.g., the recent work on circular (cylindrical) inclusions with a non-uniform eigenstrain [8, 9] in this journal.
In the present study, particle shapes are represented by ellipsoids. This basic assumption offers two features:

• Three geometrical parameters, the principal axes a, b, c of the ellipsoid, are available; the aspect ratio, h, is
chosen as h � c/

√
ab for compatibility with spheroidal shapes,

• The stress and strain fields in the inclusions are homogeneous, and the well-established “Eshelby concept”
can be applied.

With respect to the above assumption, the following parameters are considered for a single inclusion
embedded in an infinite matrix:

• The elastic properties (Ei , νi , Em, νm) of the inclusion (superscript “i“) and the matrix
(superscript “m”) are each homogeneous and isotropic but, in general, different,

• The eigenstrain tensor is considered to be volumetric (ε̃1 � ε̃2 � ε̃3) and spatially constant in the inclusion.

We are aware of the problem that the interaction of several inclusions may perturb the uniform stress inside
an inclusion to some extent. Here, we refer to the recent research by Schiavone et al.; see, e.g., [10].

2 Strain energy density and Eshelby tensor

As outlined in [1], the elastic strain energy density V SEh(i.e., the total elastic strain energy per unit volume)
of a mutually non-interacting homogeneous inclusion (Ei � Em), or inhomogeneous inclusion (Ei �� Em)
(see Eq. (1)), subjected to a volumetric eigenstrain, can be expressed on the basis of the Eshelby framework as

V SEh � −1

2
ε̃T Em(S − I)

[(
Ei − Em

)
S + Em

]−1
Ei ε̃. (1)

The superscript “h” refers to the aspect ratio h. The tensors Em and Ei stand for the elasticity tensors of
the matrix and the inclusion, S for the Eshelby tensor, I for the unit tensor, and the vector ε̃ for the volumetric
eigenstrain. Restriction to the latter allows the use of a “reduced” 3×3 notation, compared to [1].With suitable
expressions for the Eshelby tensor, this approach holds for general ellipsoidal inclusions and for general elastic
properties of matrix and inclusion.

Whereas the Eshelby tensors of spheroids, embedded in an isotropic matrix, can be given in closed form,
for general ellipsoids they involve incomplete elliptic integrals of the first and second kinds (see the Appendix),
which have to be evaluated numerically. For the present work, this was done by the efficient and accurate algo-
rithms of Fukushima [11, 12]. As an alternative, surface integration in Fourier space by numerical quadrature
[13] was implemented, allowing to handle matrices of general elastic symmetry.

3 The shape factor H(h) for the strain energy

The shape factor for the strain energy density is defined as

H (h) � V SEh/V SE . (2)

Here, the quantity V SE denotes the elastic strain energy density of a spherical inclusion with the same
volume and the same elastic properties as the actual ellipsoidal inclusion as specified in Sect. 1.

Figure 1 shows the shape factor, obtained this way for a matrix Poisson ratio of νm � 0.3, and for inclusion
Poisson ratios of νi � 0.1, 0.3, and 0.4999, and elastic contrasts, Ẽ � Ei/Em � 1/3, 1, and 3. For each
of these material combinations, H(h) was evaluated as a function of the aspect ratio h for the geometrical
parameters a/b � 1, 2, and 3. For these moderate elastic contrasts and geometrical parameters a/b, the results
predicted for the ellipsoids are qualitatively similar to the ones for the corresponding spheroids, a/b � 1; for
details on the latter, see [1] (Figs. 1 and 2). The quantitative differences of the strain energies of spheroids and
ellipsoids are also not significantly pronounced. The geometrical parameters a/b give identical results as b/a.
Accordingly, for this regime, the shape factors for the strain energy density of spheroidal inclusions given in
[1] can be viewed as reasonable approximations for ellipsoids.

Qualitatively and quantitatively similar results on H(h) were obtained for a nearly incompressible matrix,
νm � 0.49999; see Fig. 2. All other parameters are set to be identical to those used in Fig. 1.
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Fig. 1 Dependence of the shape factor H(h) for elastic contrasts Ẽ � 1/3, 1, 3, νm � 0.3 and geometrical parameters a/b � 1,
2, 3 for νi � 0.1 (left), 0.3 (center), and 0.49999 (right)
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Fig. 2 Dependence of the shape factor H(h) for elastic contrasts Ẽ � 1/3, 1, 3, νm � 0.49999 and geometrical parameters a/b
� 1, 2, 3 for νi � 0.1 (left), 0.3 (center), and 0.49999 (right)

Three types of behavior of H(h) are evident in Figs. 1 and 2: The red, yellow, and orange curves pertaining
to Ẽ � 3 show absolute minima Hmin ≥ 1 at or slightly below h� 1. The green and cyan curves describe cases
with Ẽ � 1/3 and show absolutemaxima Hmax ≤ 1.However, the blue and purple curves in Fig. 1 (center) and
Fig. 2 (right), i.e., the curves pertaining to homogeneous inclusions, are constant with H � 1. Such a behavior
was previously noted for spheroidal inclusions in [1], where homogeneous and inhomogeneous configurations
withH � 1 were found to be associated with threshold elastic contrasts Ẽth . The latter quantities, which follow
Eq. (3), were evaluated numerically and are shown in Fig. 3 in [1]. The presence of a minimum of H(h) is
indicated by Ẽ > Ẽth and that of a maximum by Ẽ < Ẽth . The rather simple expression

Ẽth �
(
1 + νi

)
/
(
1 + νm

)
(3)
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Fig. 3 Dependence of the shape factor H(h) for elastic contrasts Ẽ � 1/6, 1, 6, νm � 0.3 and geometrical parameters a/b � 1,
6, 12 for νi � 0.1 (left), 0.3 (center), and 0.49999 (right)

can be obtained for the threshold contrast of spheroidal inhomogeneities by requiring that the sum of the matrix
elements of the top left 3×3 submatrix of the inverse term in square brackets in Eq. (1) is independent of a,
b, and c. Equation (3) implies that Ẽth are associated with configurations where matrix and precipitates have
identical shear moduli,Gi � Gm . Homogeneous inclusions givingH(h)� 1, [14], are a special case of Eq. (3).
Numerical experiments strongly indicate that Eq. (3) also holds for general ellipsoids.

If the elastic contrast Ẽ is increased and/or the ellipsoidal shapes differ more strongly from spheroids, the
shape factors H(h) for ellipsoids deviate in a more pronounced way from the results obtained for spheroids.
This is evident in Fig. 3, where the elastic contrasts take values of Ei/Em � 1/6, 1, and 6 and the geometrical
parameters are chosen as a/b � 1, 6, and 12. The role of the threshold elastic contrasts, Ẽth , is not affected
by such benign conditions. However, on the one hand, the minima of H(h) for Ẽ > Ẽth markedly exceed the
value of unity associated with spheroids, and the maxima of H(h) for Ẽ < Ẽth fall clearly below unity. On the
other hand, these minima and maxima are shifted to aspect ratios h < 1. For such cases, the shape factors of
the spheroids can no longer serve as approximations and, therefore, Eqs. (1) and (2) must be evaluated with
the appropriate parameters.

4 The shape factor F(h) for the interface energy

The shape factor for the interface energy of an ellipsoidal inclusion is given by F(h) � Ah/A, where Ah

represents the surface area of the ellipsoid and A that of a sphere with the same volume as the ellipsoid.
A closed expression for the surface of an ellipsoid does not exist. However, Ah is very well approximated

by 4π
[

(ab)n+(ac)n+(bc)n

3

] 1
n
with n � 8/5, known as Knud Thomsen’s formula [15]. The resulting behavior of

F(h) is displayed in Fig. 4 with ε � 1 − b/a, b ≤ a as parameter.
In order to facilitate obtaining estimates of H(h) andF(h) for given values of Ẽ , νi and a/b by interpolation,

high-resolution versions of Figs. 1, 2, 3, and 4 are provided as supplementary information.

5 Conclusion

The role of mechanical energy terms has become increasingly important in modeling evolvingmicrostructures,
compared to, for example, the application of the microscopic phase-field model [16]. The present contribution
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Fig. 4 Dependence of the shape factor of F(h) on the aspect ratio h and the parameter ε � 1 − b/a

provides diagrams that allow accounting for the effects of the inclusion shape on both the elastic strain energy
and the surface energy. On this basis, the mechanical part of the Gibbs energy, required for modeling the
transformation kinetics, can be evaluated more accurately than previously, when simplified approximations
had to be used.
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Appendix

Eshelby tensor for ellipsoidal inclusions

Within the “reduced” 3×3 notation sufficient for handling volumetric strains, the components of the Eshelby
tensor S for general ellipsoidal inclusions, required for evaluating Eq. (1), can be adapted to the present notation
from [14] to take the form

S(1, 1) � 1

8π(1 − νm)

[
3c2 I11 +

(
1 − 2νm

)
I1

]

S(1, 2) � 1

8π(1 − νm)

[
a2 I12 +

(
1 − 2νm

)
I1

]

S(1, 3) � 1

8π(1 − νm)

[
b2 I13 +

(
1 − 2νm

)
I1

]

http://creativecommons.org/licenses/by/4.0/
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S(2, 1) � 1

8π(1 − νm)

[
c2 I12 +

(
1 − 2νm

)
I2

]

S(2, 2) � 1

8π(1 − νm)

[
3a2 I22 +

(
1 − 2νm

)
I2

]

S(2, 3) � 1

8π(1 − νm)

[
b2 I23 +

(
1 − 2νm

)
I2

]

S(3, 1) � 1

8π(1 − νm)

[
c2 I13 +

(
1 − 2νm

)
I3

]

S(3, 2) � 1

8π(1 − νm)

[
a2 I23 +

(
1 − 2νm

)
I3

]

S(3, 3) � 1

8π(1 − νm)

[
3b2 I33 +

(
1 − 2νm

)
I3

]
(A1)

The quantity νm stands for the Poisson ratio of the matrix. Equation (A1) uses the assumption c > a > b,
and the 1-direction is associated with c, the 2-direction with a and the 3-direction with b. The terms I j and
I jk are defined as

I1 � 4πabc(
c2 − a2

)√
c2 − b2

[F(θ, k) − E(θ, k)]

I2 � I1 − I3

I3 � 4πabc(
a2 − b2

)√
c2 − b2

[
a
√
c2 − b2

cb
− E(θ, k)

]

I11 � 1

3

(
4π

c2
− I12 − I13

)

I12 � (I2 − I1)/c
2 − a2)

I13 � (I3 − I1)/c
2 − b2)

I22 � 1

3

(
4π

a2
− I12 − I23

)

I23 � (I3 − I2)/(a
2 − b2)

I33 � 1

3

(
4π

b2
− I13 − I23

)
(A2)

E(θ, k) and F(θ, k) are the incomplete elliptic integrals of the first and second kinds, defined as

E(θ, k) � θ∫
0

(
1 − k2sin2ω

)−1/2
dω

F(θ, k) � θ∫
0

(
1 − k2sin2ω

)1/2
dω (A3)

with

θ � sin−1

⎛
⎝

√
1 − b2

c2

⎞
⎠

k2 � c2 − a2

c2 − b2
(A4)
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