Skip to main content
Log in

A topology optimization method and experimental verification of piezoelectric stick–slip actuator with flexure hinge mechanism

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

This paper presents a topology optimization method to design the piezoelectric stick–slip actuator. In particular, the vertical input displacement can be converted to the oblique displacement by the flexure hinge driving mechanism, and the large-stroke motion is realized. Based on the solid isotropic material with penalization (SIMP) model and combined with the motion characteristics of the stick–slip actuator, in order to obtain a larger output displacement and limit the parasitic displacement, the ratio of output displacement to input displacement is maximized as the objective function, and the relationship between parasitic displacement and output displacement is considered as a constraint condition. The method of moving asymptotes (MMA) is used to solve the optimization problem, and the driving mechanism structure is designed by the topology optimization result. The feasibility and reliability of the driving mechanism are verified by finite element analysis (FEA), then the prototype is fabricated. Experimental test results indicate that the velocity of the actuator reaches 15.25 mm/s under the locking force of 1 N and frequency of 650 Hz, and the resolution of 96 nm is achieved. This work shows that the topology optimization method can be used to improve the performance of the actuator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Huang, H., Zhao, H.W., Fan, Z.Q., Zhang, H., Ma, Z.C., Yang, Z.J.: Analysis and experiments of a novel and compact 3-DOF precision positioning platform. J. Mech. Sci. Technol. 27(11), 3347–3356 (2013)

    Article  Google Scholar 

  2. Hunstig, M.: Piezoelectric inertia motors: a critical review of history, concepts, design, applications, and perspectives. Actuators 6(1), 7 (2017)

    Article  Google Scholar 

  3. Kang, D., Lee, M.G., Gweon, D.: Development of compact high precision linear piezoelectric stepping positioner with nanometer accuracy and large travel range. Rev. Sci. Instrum. 78(7), 075112 (2007)

    Article  Google Scholar 

  4. Wang, S.P., Rong, W.B., Wang, L.F., Pei, Z.C., Sun, L.N.: Design, analysis and experimental performance of a novel stick-slip type piezoelectric rotary actuator based on variable force couple driving. Smart Mater. Struct. 26(5), 055005 (2017)

    Article  Google Scholar 

  5. Bhowmick, S., Hintsala, E., Stauffer, D., Syed Asif, S.A.: In-situ SEM and TEM nanomechanical study of wear and failure mechanisms. Microsc. Microanal. 24(S1), 1934–1935 (2018)

    Article  Google Scholar 

  6. Breguet, J. M., Driesen, W., Kaegi, F., Cimprich, T.: Applications of piezo-actuated micro-robots in micro-biology and material science. In: IEEE International Conference on Mechatronics and Automation, pp. 57–62. IEEE (2007)

  7. Liu, Y.X., Wang, L., Gu, Z.Z., Quan, Q.Q., Deng, J.: Development of a two-dimensional linear piezoelectric stepping platform using longitudinal-bending hybrid actuators. IEEE Trans. Ind. Electron. 66(4), 3030–3040 (2019)

    Article  Google Scholar 

  8. Tian, Y., Zhang, D., Shirinzadeh, B.: Dynamic modelling of a flexure-based mechanism for ultra-precision grinding operation. Precis. Eng. 35(4), 554–565 (2001)

    Article  Google Scholar 

  9. Cherepanov, V., Coenen, P., Voigtländer, B.: A nano-positioner for scanning probe microscopy: the KoalaDrive. Rev. Sci. Instrum. 83(2), 023703 (2012)

    Article  Google Scholar 

  10. Kratochvil, B.E., Dong, L.X., Nelson, B.J.: Real time rigid-body visual tracking in a scanning electron microscope. Int. J. Robot. Res. 28(4), 498–511 (2009)

    Article  Google Scholar 

  11. Claeyssen, F., Letty, R.L., Barillot, F., Sosnicki, O.: Amplified piezoelectric actuators: static and dynamic applications. Ferroelectrics 351(1), 3–14 (2007)

    Article  Google Scholar 

  12. Liu, Y.T., Higuchi, T., Fung, R.F.: A novel precision positioning table utilizing impact force of spring-mounted piezoelectric actuator—part II: theoretical analysis. Precis. Eng. 27(1), 22–31 (2003)

    Article  Google Scholar 

  13. Mohith, S., Upadhya, A.R., Navin, K.P., Kulkarni, S.M., Rao, M.: Recent trends in piezoelectric actuators for precision motion and their applications: a review. Smart Mater. Struct. 30(1), 013002 (2021)

    Article  Google Scholar 

  14. Wang, L., Chen, W.S., Liu, J.K., Deng, J., Liu, Y.X.: A review of recent studies on non-resonant piezoelectric actuators. Mech. Syst. Signal Process. 133, 106254 (2019)

    Article  Google Scholar 

  15. Hunstig, M., Hemsel, T., Sextro, W.: Stick–slip and slip–slip operation of piezoelectric inertia drives. Part I: ideal excitation. Sens. Actuator A Phys. 200, 90–100 (2013)

    Article  Google Scholar 

  16. Li, J.P., Huang, H., Morita, T.: Stepping piezoelectric actuators with large working stroke for nano-positioning systems: a review. Sens. Actuator A Phys. 292, 39–51 (2019)

    Article  Google Scholar 

  17. Wang, L., Chen, D., Cheng, T.H., He, P., Lu, X.H., Zhao, H.W.: A friction regulation hybrid driving method for backward motion restraint of the smooth impact drive mechanism. Smart Mater. Struct. 25(8), 085033 (2017)

    Article  Google Scholar 

  18. Iqbal, S., Malik, A.: A review on MEMS based micro displacement amplification mechanisms. Sens. Actuator A Phys. 300, 111666 (2019)

    Article  Google Scholar 

  19. Kim, J.H., Kim, S.H., Kwak, Y.K.: Development of a piezoelectric actuator using a three-dimensional bridge-type hinge mechanism. Rev. Sci. Instrum. 74(5), 32918–32924 (2003)

    Article  Google Scholar 

  20. Lee, H.J., Kim, H.C., Kim, H.Y., Gweon, D.G.: Optimal design and experiment of a three-axis out-of-plane nano positioning stage using a new compact bridge-type displacement amplifier. Rev. Sci. Instrum. 84(11), 115103 (2013)

    Article  Google Scholar 

  21. Ling, M.X., Cao, J.Y., Zeng, M.H., Lin, J., Inman, D.J.: Enhanced mathematical modeling of the displacement amplification ratio for piezoelectric compliant mechanisms. Smart Mater. Struct. 25(7), 075022 (2016)

    Article  Google Scholar 

  22. Ueda, J., Secord, T.W., Asada, H.H.: Large effective-strain piezoelectric actuators using nested cellular architecture with exponential strain amplification mechanisms. IEEE/ASME Trans. Mechatron. 15(5), 770–782 (2010)

    Article  Google Scholar 

  23. Li, J.P., Zhou, X.Q., Zhao, H.W., Shao, M.K., Hou, P.L., Xu, X.Q.: Design and experimental performances of a piezoelectric linear actuator by means of lateral motion. Smart Mater. Struct. 24(6), 065007 (2015)

    Article  Google Scholar 

  24. Li, J.P., Zhou, X.Q., Zhao, H.W., Shao, M.K., Li, N., Zhang, S.Z., Du, Y.M.: Development of a novel parasitic-type piezoelectric actuator. IEEE/ASME Trans. Mechatron. 22(1), 541–550 (2017)

    Article  Google Scholar 

  25. Cheng, T.H., He, M., Li, H.Y., Lu, X.H., Zhao, H.W., Gao, H.B.: A novel trapezoid-type stick–slip piezoelectric linear actuator using right circular flexure hinge mechanism. IEEE Trans. Ind. Electron. 64(7), 5545–5552 (2017)

    Article  Google Scholar 

  26. Li, Y.K., Li, H.Y., Cheng, T.H., Lu, X.H., Zhao, H.W., Chen, P.F.: Note: Lever-type bidirectional stick-slip piezoelectric actuator with flexible hinge. Rev. Sci. Instrum. 89(8), 086101 (2018)

    Article  Google Scholar 

  27. Qin, F., Huang, H., Wang, J.R., Zhao, H.W.: Design and performance evaluation of a novel stick-slip piezoelectric linear actuator with a centrosymmetric-type flexure hinge mechanism. Microsyst. Technol. 25(10), 3891–3898 (2019)

    Article  Google Scholar 

  28. Lu, X.H., Gao, Q., Li, Y.K., Yu, Y., Zhang, X.S., Qiao, G.D., Cheng, T.H.: A linear piezoelectric stick-slip actuator via triangular displacement amplification mechanism. IEEE Access 8, 6515–6522 (2020)

    Article  Google Scholar 

  29. Bendsøe, M.P., Kikuchi, N.: Generating optimal topologies in structural design using a homogenization method. Comput. Methods Appl. Mech. Eng. 71(2), 197–224 (1988)

    Article  MathSciNet  Google Scholar 

  30. Da, D.C.: Topology Optimization Design of Heterogeneous Materials and Structures. Wiley-ISTE, Hoboken (2019)

    Book  Google Scholar 

  31. Liu, K., Tovar, A.: An efficient 3D topology optimization code written in Matlab. Struct. Multidiscipl. Optim. 50(6), 1175–1196 (2014)

    Article  MathSciNet  Google Scholar 

  32. Sigmund, O.: On the design of compliant mechanisms using topology optimization. Mechan. Struct. Mach. 25(4), 493–524 (1997)

    Article  Google Scholar 

  33. Sigmund, O.: A 99 line topology optimization code written in Matlab. Struct. Multidiscip. Optim. 21, 120–127 (2001)

    Article  Google Scholar 

  34. Lau, G.K., Du, H.J., Guo, N.Q., Lim, M.K.: Systematic design of displacement-amplifying mechanisms for piezoelectric stacked actuators using topology optimization. J. Intell. Mater. Syst. Struct. 11(9), 685–695 (2000)

    Article  Google Scholar 

  35. Canfield, S., Frecker, M.: Topology optimization of compliant mechanical amplifiers for piezoelectric actuators. Struct. Multidiscip. Optim. 20, 269–279 (2020)

    Article  Google Scholar 

  36. Yang, S.T., Xia, X., Liu, X., Qiao, G.D., Zhang, X.S., Lu, X.H.: Improving velocity of stick-slip piezoelectric actuators with optimized flexure hinges based on SIMP method. IEEE Access 8, 213122–213129 (2020)

    Article  Google Scholar 

  37. Schlinquer, T., Mohand-Ousaid, A., Rakotondrabe, M.: Displacement amplifier mechanism for piezoelectric actuators design using SIMP topology optimization approach. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 4305–4311. IEEE (2018)

  38. Zhang, X.M., Zhu, B.L.: Topology Optimization of Compliant Mechanisms. Springer, Berlin (2018)

    Book  Google Scholar 

  39. Bendsøe, M.P., Sigmund, O.: Topology Optimization: Theory, Methods and Applications, 2nd edn. Springer, Berlin (2004)

    Book  Google Scholar 

  40. Svanberg, K.: The method of moving asymptotes—a new method for structural optimization. Int. J. Numer. Methods Eng. 24(2), 359–373 (1987)

    Article  MathSciNet  Google Scholar 

  41. Svanberg, K.: MMA and GCMMA—two methods for nonlinear optimization. https://people.kth.se/~krille/mmagcmma.pdf

Download references

Acknowledgements

The authors would like to thank K. Svanberg for providing the MATLAB code of MMA optimizer.

Funding

This work was supported by the Science and Technology Development Plan of Jilin Province (Grant numbers 20200201057JC and 20190201108JC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohui Lu.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Li, Y., Xia, X. et al. A topology optimization method and experimental verification of piezoelectric stick–slip actuator with flexure hinge mechanism. Arch Appl Mech 92, 271–285 (2022). https://doi.org/10.1007/s00419-021-02055-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-021-02055-4

Keywords

Navigation