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Abstract TheMullins effect is a characteristic property of filled rubber materials whose accurate and efficient
modelling is still a challenging task. Innumerable constitutive models for elastomers are described in the
literature. Therefore, this contribution gives a review on somewidely used approaches, presents a classification,
proves their thermodynamic consistency, and discusses reasonable modifications. To reduce the wide range of
models, the choice is restricted to thosewhich reproduce the idealised, discontinuousMullins effect. Apart from
the theoretical considerations, two compounds were produced and tested under cyclic uniaxial and equibiaxial
tension as well as pure shear. Based on this experimental data, a benchmark that compares the fitting quality
of the discussed models is compiled and favourable approaches are identified. The results are a sound basis
for establishing novel or improving existing rubber models.

Keywords Rubber materials · Experimental validation · Material modeling · Mullins effect

1 Introduction

Many modelling approaches in finite strain continuum mechanics are motivated by the complex behaviour
of polymers. In particular, reproducing the characteristic stress response of elastomers—including strong
nonlinearity, permanent set, equilibrium hysteresis, material softening (also known as Mullins effect), rate and
temperature dependence—is a challenging task. Earliest constitutive models for rubber materials which are
suitable for large deformation and three-dimensional analyses date back to the 1940s, cf. Mooney-Rivlin and
Neo-Hooke model. Since then, many authors invested in more realistic and sophisticated models, see [6] for an
overview. Though, to the best of our knowledge, no existing model is able to capture all these effects accurately
and efficiently in a thermodynamically consistent and numerically robust way. However, a promising attempt
is made for example by [35].

This paper takes a step back and focuses on models that reproduce damage according to the idealised
Mullins effect. Idealised denotes, that these models consider neither permanent set nor equilibrium hysteresis.
Moreover, only discontinuous softening is reproduced, see Fig. 1. Of course, this is a strong simplification such
that these models are not sufficient to reproduce all material effects discussed above without further effort.
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(a) (b)

Fig. 1 Idealised Mullins effect: a cyclic input data, b stress response according to the idealised Mullins effect (→ and ↔ denote
the virgin loading and un-/reloading, respectively)

Instead, these models should be considered as a starting point of more complex approaches. For instance,
[4] proposed a model based on such an idealised softening and added a rate-independent, plastic contribution
which generates equilibriumhysteresis and permanent set. Also the derivation of the elastoplasticmodel by [27]
which was extended to viscoelastoplasticity by [36] starts from an idealised softening. Further, [19] presented
a viscoelastic model whose equilibrium stress is affected by idealised softening.

In spite of the limitations, Mullins-type damage models on their own are a reliable alternative for approx-
imating the behaviour of filled rubber in certain applications. Since the choice of models is always a trade-off
between numerical effort and the realism of their behaviour, the simulation purpose must be kept in mind.
Here, a good prediction of the structural stiffness depending on themaximum load thematerial has experienced
so far can be obtained. For instance, the structural stiffness is of crucial importance for damping components
that either experience softening in use or are prestretched within the production process. Another example are
seals whose closing pressure may be affected by the material softening. Moreover, the static behaviour after
cyclic loading, e.g., interrupted fatigue tests can be estimated by damage models.

The present paper conducts a benchmark of the aforementioned damage models. Lists or rankings of
rubber models have indeed been compiled in the recent years for example by [10], [28] or [39]. However,
these publications deal with purely elastic models only. Looking for more sophisticated models, comparative
reviews typically deal with two or three particular models only. For example, [17] compared only two damage
approaches each combined with the polynomial strain energy function by [43]. In contrast, this paper pursues
a more general comparison and takes fifteen approaches into account. In addition, four modifications are
presented and included in the comparison.

Aiming for the best fit quality, each approach is tested with several hyperelastic models, see Sect. 3.1.
Therefore, discontinuous damage models that can be added to an arbitrary, isotropic hyperelastic strain energy
functionΨ0 suitable for large deformations are taken into account. Moreover, models with increased numerical
effort, e.g., numerical integration, sums over material/chain directions, numerical methods for differential
equations or split of the deformation gradient which separates the damage kinematics are excluded. Finally,
we restrict ourselves to isochoric damage since experimental findings indicate that the volumetric part can be
treated as nearly perfectly elastic, see for example [16] or [37]. Summing up, this contribution aims for a
comparison and discussion of numerical efficient, generalisable, isotropic, discontinuousmodelling approaches
for isochoric Mullins-type damage.

The paper is organised as follows: Sect. 2 provides the required basics and thermodynamics of damage
models as well as an introduction to the fitting procedure. The theories and constitutive equations of the damage
models and the basic hyperelastic models are briefly summed up in Sect. 3. After describing the experimental
procedure in Sect. 4, the results are discussed in detail in Sect. 5.
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2 General considerations

2.1 Basic kinematics

Considering a material point with the position vector X in the reference configuration and position vector x in
the current configuration, the according deformation gradient and the right Cauchy-Green tensor are given by

F = ∂x
∂X

and C = FT · F, (1)

respectively, where FT is the transposed deformation gradient. The square-root of the eigenvalues of C are
called principal stretches and are denoted by λx , λy and λz . However, the deformation can be multiplicatively
decomposed into a volumetric and an isochoric part

F̂ = J
1
3 I with J = det(F) and

F̄ = F

J
1
3

with det
(
F̄

) = 1,
(2)

respectively, where I and det( · ) denote the unit tensor and the determinant. The isochoric right Cauchy-Green
tensor and its principal invariants are defined as

C̄ = F̄
T · F̄ and Ī1 = tr

(
C̄

)
, Ī2 = tr

(
C̄

−1) (3)

with the inverse isochoric right Cauchy-Green tensor C̄
−1

and the trace tr ( · ). Accordingly, the square-root
of the eigenvalues of C̄ are called isochoric stretches λ̄x , λ̄y and λ̄z .

2.2 Thermodynamics

The local, isothermal Clausius-Planck inequality per unit reference volume in terms of the Helmholtz free
energy density1 is given by

Dm = 1

2
S : Ċ − Ψ̇ ≥ 0 (4)

with S : Ċ = Sab Ċab (sum over a and b), see for instance [18]. Basically, this inequality demands that for
thermodynamic consistency the dissipation rate Dm must be non-negative at any deformation state. Dm is
equal to the mechanical stress power 1

2 S : Ċ less the change of the free energy Ψ̇ . Herein, S denotes the 2nd
Piola-Kirchhoff stress and Ċ the material time derivative of C.

Assuming the free energy to be a function of C and a scalar history variable Γ , the derivative of the free
energy with respect to time reads Ψ̇ = ∂Ψ

∂C : Ċ + ∂Ψ
∂Γ

Γ̇ leading to

Dm =
(
1

2
S − ∂Ψ

∂C

)
: Ċ − ∂Ψ

∂
Γ̇ ≥ 0. (5)

Following the standard argumentation of [9], this inequality can be fulfilled for arbitrary deformations by
defining

S = 2
∂Ψ

∂C
(6)

and ensuring

Dm = −∂Ψ

∂
˙≥ 0. (7)

Equation (6) defines the 2nd Piola-Kirchhoff stress, whereas Eq. (7) is a restriction on the damage model.

1 For the sake of readability, the Helmholtz free energy density is briefly referred to as free energy.
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The idealised Mullins effect is commonly modelled by introducing a scalar measure of the maximum
load Γ as a history variable. This measure is typically chosen to be an invariant of a deformation tensor or the
basic strain energy itself. Moreover, all considered models introduce an internal state variable whose evolution
is a function of this measure. Depending on the type of the internal state variable, the models may be classified
into three groups: models with

1. a virgin state variable η,
2. a damage variable d ,
3. an amplification variable X .

However, as we assume that the damage affects the isochoric behaviour only, the free energy is additively split
into an isochoric and a volumetric part Ψ = Ψiso + Ψvol such that Eqs. (6) and (7) can be rewritten as

S = Siso + Svol where Siso = 2
∂Ψiso

∂C
, Svol = 2

∂Ψvol

∂C
(8)

and

Dm = −∂Ψiso

∂Γ
Γ̇ = −∂Ψiso

∂m

∂m

∂Γ
Γ̇ = −∂Ψiso

∂m
ṁ ≥ 0 (9)

with Ψiso = Ψiso
(
C̄,m(Γ )

)
and Ψvol = Ψvol(J ). Here, m(Γ ) can be replaced formally by η(Γ ), d(Γ )

or X(Γ ).

2.3 Parameter fitting

To find the best sets of parameters for the tested models in terms of the least mean squared error, a standard
Trust-Region algorithm is used for the model calibration. The error is defined as the normalized deviation
between the model and the experimental 1st Piola-Kirchhoff stress P = F · S in loading direction x , viz.
between Pxx,mod = λx Sxx,mod and Pxx,exp. That leads to a minimisation problem with the following cost
function

F
(
p j

) = 1

2

( mux∑

i=1

r 2
i

mux
+

mps∑

i=1

r 2
i

mps
+

mbx∑

i=1

r 2
i

mbx

)
→ min

with ri = Pxx,mod,i − Pxx,exp,i
max

(
Pxx,exp,i

)

and Pxx,mod,i = λx,i Sxx,mod
(
Fexp,i , i − 1, p1, . . . , pn

)
(10)

mux, mps, mbx are the number of experimental observations, viz. the load increments, considered for fitting.
i − 1 and i refer to the beginning and the end, respectively, of the i-th increment. The abbreviations ux, ps and
bx stand for the tested loading modes: uniaxial tension, pure shear and equibiaxial tension, cf. Sect. 4. The
normalisation is carried out with respect to the maximum stress in the fitting range of each experiment. The
division of the squared residuals r2i by the number of experimental data points ensures an equal weight of all
loading modes. n is the number of parameters. The model stress Sxx,mod,i is a function of the parameters p j
( j = 1, . . . , n), the history variable at the beginning of the current load step Γi−1 (which must be updated
to Γi ) and the measured stretches. The stretches are turned into a corresponding deformation gradient Fexp,i
under the assumption of perfect incompressibility. This assumption is a good and pragmatic approximation
for filled, technical elastomers up to moderate strains, see for example [26]. Due to the incompressibility, the
volumetric stress contribution in Eq. (8) is not anymore computed from the volumetric free energy Ψvol as

Svol = 2
∂Ψvol

∂C
= −pJC−1 with p = −∂Ψvol

∂ J
(11)

but is given by

Svol = − p̄ JC−1 (12)

where the hydrostatic pressure p̄ stems from the stress-free condition in lateral direction.
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To speed up the fitting procedure, an exact Jacobian is used within the least squares method. For material
models with a history variable, it is obtained as

Ji j = dSxx,mod,i

dp j
= ∂Sxx,mod,i

∂p j
+ ∂Sxx,mod,i

∂i−1

di−1

dp j
. (13)

Hence, at each time increment i , the history variable Γi as well as its derivatives with respect to the material
parameters

dΓi

dp j
= ∂Γi

∂p j
+ ∂Γi

∂Γi−1

dΓi−1

dp j
(14)

must be updated and stored.
As the Trust-Region algorithm is only locally convergent, the whole fitting procedure is repeated ten times

with different, randomly generated initial guesses according to the Latin hypercube sampling. More precisely,
for each parameter of a model, an initial guess range is prescribed which is equally divided into ten intervals. In
each interval a random number is drawn from a uniform distribution. These values are then randomly combined
to ten different sets of parameters which serve as the initial guesses for the fitting procedure.

2.4 Root mean squared error and correlation matrix

Since the normalized residual of the minimisation problem (10) is not very descriptive, the root mean squared
error (RMSE) with respect to the absolute error

RMSE =
(

1

mall

( mux∑

i=1

r̄ 2
i +

mps∑

i=1

r̄ 2
i +

mbx∑

i=1

r̄ 2
i

))1
2

where r̄i =Pxx,mod,i − Pxx,exp,i
mall =mux + mps + mbx

(15)

is used for the discussion of the results. As explained in Sect. 5, not all experimental data points are considered
for the fitting procedure. Instead, the data outside of the fitting range (i.e., inside the predicting range) is used
to evaluate the predictivity of the models. For this purpose, Eq. (15) is applied analogously to the data in the
predicting range yielding the root mean square prediction error (RMSPE).

One desirable property of material models is a low correlation between the parameters. The Pearson
correlation matrix

[
ρi j

]
is obtained from the covariance matrix

[
Di j

]
as

ρi j =
∣
∣∣
∣∣

Di j√
Dii D j j

∣
∣∣
∣∣
. (16)

In case of least square methods, the covariance matrix can be computed from the approximated Hessian
[
Hi j

]
,

i.e., the 2nd derivative of the cost function F
(
p j

)
and the scaled mean square error

Di j ≈ (RMSE)2

mux + mps + mbx
H −1
i j , (17)

see for example [14]. The correlation matrix component ρi j ∈ [0, 1] describes the correlation between the i-th
and j-th parameter. Thematrix

[
ρi j

]
is symmetric and ρi i = 1 ∀i . Values close to 0 represent a low correlation.

Whereas values close to 1 indicate a high correlation stemming from either an overparameterised model or
from an improper experiment which provides insufficient information about the material behaviour.
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3 Damage models

3.1 Choice of basic hyperelastic models

As described in Sect. 1, the considered damage models must be combined with a basic hyperelastic model
defined by its strain energy function Ψ0. To obtain a purely isochoric damage, Ψ0 must be defined in terms
of the isochoric right Cauchy-Green tensor C̄. Due to the endless list of proposed strain energy functions, we
restrict ourselves to three promising models:

(a) Thepolynomial approachwith termsup to 6th order of deformation, i.e., up to λ̄6 where Ī1 ∝ λ̄2 and Ī2 ∝ λ̄4

[20] reads

Ψ0 = c10
(
Ī1 − 3

) + c20
(
Ī1 − 3

)2 + c30
(
Ī1 − 3

)3 + c01
(
Ī2 − 3

) + c11
(
Ī1 − 3

) (
Ī2 − 3

)
(18)

with five parameters c10, c20, c30, c01, c11 ∈ [0,∞). The initial shear modulus is given by G0 =
2 (c10 + c01). All material parameters units are shown in Table 6.

(b) Alternatively, the invariants themselves can be exponentiated, see [40]. This approach leads to

Ψ0 = 3

2

(
A1

α1

((
Ī1
3

)α1

− 1

)

+ A2

α2

((
Ī1
3

)α2

− 1

)

+ B1

β1

((
Ī2
3

)β1

− 1

))
(19)

using six parameters A1, A2, B1 ∈ [0, ∞) and α1, α2, β1 ∈ (0,∞). The initial shear modulus is obtained
asG0 = A1+A2+B1. Similar to [40], the exponents are fixed to certain values rather than fitted because the
Trust Region algorithm mostly tends to push them to very high or low values. This may lead to numerical
problems and high parameter correlations. Here, the exponents are fixed according to the approach of
[7]: α1 = 1, α2 = 4, β1 = 1

2 .
(c) A simplified version of the extended non-affine tube model from [21] was proposed by [35]:

Ψ0 = Gc

2

(
Ī1 − 3

)

1 − 1
n

(
Ī1 − 3

) + 3Ge

⎛

⎝
(
Ī2
3

)1
2

− 1

⎞

⎠ (20)

with Gc, Ge ∈ [0,∞), 1
n ∈ [0, 1] and G0 = Gc + Ge.

The criteria for the choice of these three models are as follows: The strain energy function must be formulated
in a closed-form and in terms of elementary functions since some damage models use the basic strain energy as
measure of maximum load. For this reason, the models by [1] as well as [25], among others, are not included
here. The stress computationmust not depend on numerical integrationmethods tominimize the computational
effort. Therefore, the micro-sphere model by [30] is not considered here.

The following Sects. 3.2 to 3.4 explain in detail the three classes of damage models given in Sect. 2.2. In
each of the sections, suitable model formulations from the literature are introduced which will be used for the
comparison thereafter. To point out the different motivations of the model classes, Fig. 2 depicts qualitatively
their behaviour.

3.2 Damage models with virgin state variable

The first group of damage models assumes that the basic strain energy function Ψ0 describes the virgin state
curve. For this purpose, a virgin state variable η ∈ [0, 1] is introduced, such that

Siso = η S0 with S0 = 2
∂Ψ0

∂C
(21)

where η = 1 indicates a primary loading and η 
= 1 an un- or reloading. [33] coined the name pseudo-
elasticity for this model type. The idea was first described by [11] and generalised by [32]. Furthermore, the
latter authors proved that the only feasible choice for the scalar measure of maximum load is the basic strain
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Fig. 2 Comparison of the three damage model classes: stress response to the input data from Fig. 1a of different damage models
combined with the same basic hyperelastic model (for this illustration, a Neo-Hooke model is used which is obtained from strain
energy function (b) with α1 = 1, A2 = 0, B1 = 0)

energy:Γ = Ψ0,max = maxt̄∈[0,t]
(
Ψ0

(
t̄
))
, i.e., the maximum value of the basic strain energywithin the loading

history. The total free energy reads

Ψiso
(
Ψ0

(
C̄

)
, Ψ0,max

) =
Ψ0∫

0

η
(
Ψ̄0, Ψ0,max

)
dΨ̄0 (22)

such that

Siso = 2
∂Ψiso

∂C
= 2

∂Ψiso

∂Ψ0

∂Ψ0

∂C
= η S0 (23)

and

Dm = − ∂Ψiso

∂Ψ0,max
Ψ̇0,max = −Ψ̇0,max

Ψ0∫

0

∂η

∂Ψ0,max
dΨ̄0 ≥ 0. (24)

To define the function η
(
Ψ0, Ψ0,max

)
, two general approaches are presented in the literature. On the one

hand, one can define η = η
(

Ψ0
Ψ0,max

)
with η : [0, 1] → [0, 1] and η(1) = 1. Here, the basic strain energy

function must be restricted to Ψ0 ≥ 0 to ensure Ψ0
Ψ0,max

∈ [0, 1]. Demanding η to be a monotonically increasing

function ∂η

∂
(

Ψ0
Ψ0,max

) > 0 is sufficient to fulfil inequality (24). This approach includes the model by [11]:

Model 1.1 [11] η = a tan
(
b Ψ0

Ψ0,max
− c

)
+ d

Unfortunately, the authors did not give an explicit formula for η but plots instead, see their Figs. 1 and 7. Thus,
the function given above is a reconstructed approximation reproducing these plots. To ensure η(1) = 1 and to
consider only the principal branch of the tangent, following three fitting parameters are defined: c ∈ (

0, π
2

)
,

Δb = b − c ∈ (
0, π

2

)
and ηmin = η(Ψ0 = 0) ∈ [0, 1) such that

a = 1 − ηmin

tan(Δb) + tan(c)
b = c + Δb

d = a tan(c) + ηmin.

(25)
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(a) (b)

Fig. 3 Evolution of the virgin state variable η using a the approach η
(
Ψ0/Ψ0,max

)
according to model 1.1 with two different

parameter sets such that Figs. 1 and 7 from [11] are qualitatively reproduced and b the approach η
(
Ψ0,max − Ψ0

)
according to

models 1.2 to 1.6 with r = 1 and m such that η(5) = 0.2

To prove the capability of the presented approximation, Fig. 3a depicts the reconstructed plots from [11].

The second general approach defines η = η
(
Ψ0,max − Ψ0

)
with η : [0, ∞) → [0, 1] and η(0) = 1.

Then, ∂η

∂(Ψ0,max−Ψ0)
< 0 is sufficient to fulfill inequality (24), see [32]. A discrepancy between these demands

for monotonicity and experimental findings are discussed by [22]. Based on uniaxial tension tests with η =
(Sxx−Svol,xx)

S0,xx
, they showed that η is in general non-monotonic. The second approach is applied for instance by

model 1.2 [13] η = 1 − r tanh
(
m

(
Ψ0,max − Ψ0

))

model 1.3 [33] η = 1 − r erf
(
m

(
Ψ0,max − Ψ0

))

model 1.4 [42] η = 1 − r tanh
(
m

(
Ψ0,max − Ψ0

))q

model 1.5 [5]

η = 1 − r tanh
(
m (Ψ0,max−Ψ0)

(1+q Ψ0,max)

)

model 1.6 [15] η = exp
(
−

√
m

(
Ψ0,max − Ψ0

))

model 1.4* [42] modified2

η = 1 − r
√
tanh

(
m

(
Ψ0,max − Ψ0

))

Model 1.6* [15] modified3

η = 1 − r
(
1 − exp

(
−

√
m

(
Ψ0,max − Ψ0

)))

The material parameters are r ∈ [0, 1] and m, q ∈ [0, ∞) and the units of all parameters are given in Table 6.
The evolution equations are compared in Fig. 3b. Models that do not fulfil ∂η

∂(Ψ0,max−Ψ0)
< 0 are not considered,

for instance [41].

2 The parameter q = 1
2 is fixed to reduce the number of fitting parameters. Note that modified evolution equations will be

indicated by an asterisk.
3 The parameter r is introduced in the present paper to improve the model capability.
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(a) (b)

Fig. 4 Evolution of a the damage variable d according to models 2.1 to 2.6 with β = 1 and α such that d(5) = 0.8 and b
the amplification variables X and Xmax according to models 3.1a/3.1b and 3.2/3.2* with X0 = 10, X∞ = 1, and γ such that
X (5) = 3 and Xmax(5) = 3, respectively

3.3 Damage models with damage variable

The second class of damage models, as given in Sect. 2.2, introduces a damage variable which depends on the
scalar measure of maximum load d = d(Γ ). The desired stress response is

Siso = (1 − d) S0 where S0 = 2
∂Ψ0

∂C
. (26)

Here, d = 0 denotes the virgin state and d = 1 a totally damaged material. The basic stress response S0 acts
as an upper limit (if d → 0). The corresponding damage evolution maps d : [0,∞) → [0, 1] with d(0) = 0
and the free energy is given by

Ψiso = (1 − d) Ψ0
(
C̄

)
(27)

with the dissipation rate

Dm = −∂Ψiso

∂d
ḋ = Ψ0

∂d

∂Γ
˙≥ 0. (28)

Since Γ̇ ≥ 0, the restriction Ψ0
∂d
∂Γ

≥ 0 has to hold true for any deformation to fulfil inequality (28). This
requirement cannot be satisfied without further restrictions on the basic strain energy because any constant
term can be added to Ψ0 without affecting the stress-deformation relation Eq. (9) but the extent and sign of
dissipation. Thus, equal conditions are enforced by demandingΨ0(I) to be a global minimumwithΨ0(I) = 0.
The restriction reduces then to ∂d

∂Γ
≥ 0, i.e., d has to be a monotonically increasing function.

In contrast to the models using a virgin state variable, the measure of maximum load is not restricted to
the basic strain energy and, hence, can be chosen more arbitrarily. The following list compiles the considered
models along with the measure of maximum load and the damage evolution (cf. Fig 4a):

model 2.1 [38] Γ = Ψ0,max,

d(Γ ) = β

(

1 −
(
1−exp

(√
α Γ

))

(√
α Γ

)

)

model 2.2 [29] Γ = Ψ0,max,

d(Γ ) = β (1 − exp(−α Γ ))
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model 2.3 [8] Γ =
√

Ī1,max
3 − 1,

d(Γ ) = β (1 − exp(−α Γ ))

model 2.4 [4]4 Γ = C̄ 2
T,max,

d(Γ ) = β
(
1 − 1√

1+α Γ

)

model 2.5 [2]5 Γ = ‖C̄‖max√
3

− 1,

d(Γ ) = β (1 − exp(−α Γ ))

model 2.6 [24]6 Γ = λ̄max − 1,

d(Γ ) = β (1 − exp(−α Γ ))

model 2.4* [4] modified7 Γ = C̄ 2
vM,max,

d(Γ ) = β
(
1 − 1√

1+α Γ

)

The material parameters are α ∈ [0,∞) and β ∈ [0, 1]. See Table 6 for the parameter units.

3.4 Damage models with amplification variable

The previous two model classes are phenomenologically motivated. In contrast, the third class (cf. Sect. 2.2) is
based on the physical concept of strain amplification. Due to the presence of rigid filler particles, an inhomo-
geneous deformation field and a locally amplified strain of the polymer chains is assumed. The introduction
of an amplification variable X seems likely such that

(
λ̄ − 1

) = X
(
λ̄0 − 1

)
(29)

with the macroscopic stretch λ̄0, see [31]. Moreover, a deformation of the rubber will lead to a breakdown of
filler clusters and to a debonding of polymer chains from the filler particles, see for instance [12] for physical
interpretations of the Mullins effect. The ruptured filler particles have a less amplifying effect on the polymer
network, i.e., X decreases. Note that the considered approaches do not model the filler stress response itself,
that is, the filler network has no load-bearing capacity (for a counterexample see [35] who added a filler
contribution to the basic strain energy). Hence, the basic hyperelastic response S0 = 2 ∂Ψ0

∂C can be interpreted
as the response of an unfilled rubber which is equivalent to a totally damaged state containing broken filler
clusters only. Thus, S0 is a lower limit for X → 1.

From a numerical point of view, the strain amplification described above is unattractive since an eigenvalue
computation is required for every model. Therefore, a more practicable amplification of the principle invariants
is introduced. In contrast to [3] who presented an invariant amplification restricted to the Neo-Hooke model,
a more general approach suitable for many invariant-based strain energy functions is proposed here. Noting
that Ī1 ∝ λ̄2 and Ī2 ∝ λ̄4, a feasible, consistent amplification is given by following replacements

(
Ī1 − 3

)k → Xk (
Ī1 − 3

)k

(
Ī2 − 3

)k → X2k (
Ī2 − 3

)k (30)

4 C̄T = max
(
λ̄ 2
x − λ̄ 2

y , λ̄ 2
y − λ̄ 2

z , λ̄ 2
z − λ̄ 2

x

)
denotes the Tresca invariant of the isochoric right Cauchy-Green tensor.

5 ‖ · ‖ denotes the Frobenius norm.
6 λ̄max denotes the maximum isochoric stretch.
7 C̄vM =

√
−3 I2

(
C̄

D)
with C̄

D = C̄ − tr
(
C̄

)

3 I denotes the von Mises invariant of the isochoric right Cauchy-Green tensor. In
contrast to the Tresca invariant of the original model 2.4, the computation of eigenvalues is avoided.
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and
((

Ī1
3

)k
− 1

)

→ Xk

((
Ī1
3

)k
− 1

)

((
Ī2
3

)k
− 1

)

→ X2k

((
Ī2
3

)k
− 1

)

.

(31)

The former replacement Eq. (30) is applicable to the basic strain energy function (a) from Sect. 3.1, whereas
the latter replacement Eq. (31) is suitable for strain energy function (b). In case of (c), Eq. (30) is used for
the Ī1-part and Eq. (31) for the Ī2-part. Amplified strain energy functions that are obtained by applying the
replacements Eq. (30) or (31) to a basic strain energy functions Ψ0 will be denoted by Ψ ∗

0

(
X, Ī1, Ī2

)
.

Since the limitations pointed out in Sect. 1 lead to narrow confines of the paper’s scope, a lot of highly
specialised approaches are not considered here. Thus, besides the amplification concept, no further physically
or micro-mechanically motivated models are discussed. For an overview of such sophisticated models, the
reader is referred to [12].

The principle of strain amplification was considered for instance by [23]. Originally, they applied the
strain amplification according to Eq. (29) to a generalized tube model. However, the more convenient invariant
amplification (cf. Eqs. (30) and (31)) is used here such that

Ψiso = Ψ ∗
0 . (32)

[23] proposed two evolution equations reading

model 3.1a [34] Γ = λ̄max − 1,
X(Γ ) = (X0 − X∞) exp(−γ Γ ) + X∞

model 3.1b [34] Γ = λ̄max − 1,
X(Γ ) = (X0 − X∞) (Γ + 1)−γ + X∞

with the material parameters ΔX0 = (X0 − X∞) ∈ [0, ∞), X∞ ∈ [1,∞) and γ ∈ [0, ∞). Noting that Ẋ =
∂X
∂Γ

Γ̇ ≤ 0 and Γ̇ ≥ 0, the inequality

Dm = −∂Ψiso

∂X

∂X

∂Γ
Γ̇ ≥ 0 (33)

can be satisfied by ∂Ψiso
∂X ≥ 0 and ∂X

∂Γ
≤ 0. The former inequality is fulfilled if Ψ0 is a monotonic function w.r.t.

the principal invariants and an amplification according to Eq. (30) or Eq. (31) is assumed. Whereas the latter
inequality demands a monotonically decreasing evolution equation X(Γ ).

Another generalisable model is outlined by [34]. They assumed a non-uniform distribution of strain ampli-
fying filler domains on the micro-mechanical scale and presented a mathematical homogenisation to obtain
a representative, macroscopic free energy function. Transferring their approach to arbitrary strain energy
functions in terms of principal invariants, one obtains

Ψiso
(
Xmax, Ī1, Ī2

) =
Xmax∫

1

P(X, Xmax) Ψ ∗
0

(
X, Ī1, Ī2

)
dX (34)

where P denotes the distribution of the local amplification X which can be represented as

P(X, Xmax) = p(X) n(Xmax) with

p(X) > 0 ∀X and n(Xmax) =
⎛

⎝
Xmax∫

1

p(X) dX

⎞

⎠

−1

.
(35)

The integration limits 1 and Xmax represent the range from non-amplified to the maximum amplified domains.
[34] suggested a power law distribution

p(X) = X−χ ⇒ n(Xmax) = χ − 1

1 − X 1−χ
max

. (36)

Their evolution equation and the measure of maximum load read
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model 3.2 [34] Γ = Ī1,max − 3,

Xmax(Γ ) = max
(
Xmax,∞,

Xmax,0
(γ Γ +1)

)

model 3.2* [34] modified8 Γ = Ī1,max − 3,

Xmax(Γ ) = (Xmax,0−Xmax,∞)
(γ Γ +1)+ Xmax,∞

Note that the parameters Xmax,0 = Xmax(0) = 1000 and Xmax,∞ = Xmax(Γ → ∞) = 1 are fixed to
minimize the number of fitting parameters and their correlation. The remaining parameters are χ ∈ [1,∞)
and γ ∈ [0,∞).

The mechanical dissipation rate is obtained by

Dm = − ∂Ψiso

∂Xmax

∂Xmax

∂
˙≥ 0. (37)

Since − ∂Xmax
∂Γ

≥ 0 and Γ̇ ≥ 0 by construction, ∂Ψiso
∂Xmax

≥ 0 has to be proven:

∂Ψiso

∂Xmax
= ∂n(Xmax)

∂Xmax

Xmax∫

1

p(X) Ψ ∗
0

(
X, Ī1, Ī2

)
dX + n(Xmax) p(Xmax) Ψ ∗

0

(
Xmax, Ī1, Ī2

) ≥ 0. (38)

Using Eq. (35)3, this is equivalent to

Ψ ∗
0

(
Xmax, Ī1, Ī2

)
Xmax∫

1

p(X) dX ≥
Xmax∫

1

p(X) Ψ ∗
0

(
X, Ī1, Ī2

)
dX . (39)

The first mean value theorem states, ∃k ∈ [1, Xmax] such that

Xmax∫

1

p(X) Ψ ∗
0

(
X, Ī1, Ī2

)
dX = Ψ ∗

0

(
k, Ī1, Ī2

)
Xmax∫

1

p(X) dX (40)

and, hence,

Ψ ∗
0

(
Xmax, Ī1, Ī2

)
Xmax∫

1

p(X) dX ≥ Ψ ∗
0

(
k, Ī1, Ī2

)
Xmax∫

1

p(X) dX . (41)

Note that, if
∂Ψ ∗

0(X, Ī1, Ī2)
∂X ≥ 0, then Ψ ∗

0(Xmax, Ī1, Ī2) ≥ Ψ ∗
0(k, Ī1, Ī2)∀k ∈ [1, Xmax] holds true and Eq. (41) is

fulfilled for any k. Thus, similar to the approach by [23], an amplification according to Eq. (30) or Eq. (31)
along with a monotonically increasing function Ψ ∗

0 w.r.t. the principal invariants are sufficient conditions for
thermodynamic consistency.

4 Experiments

For illustration of the applicability of damage models, two filled elastomers possessing different mechanical
behaviour are experimentally tested: a highly silica filled, sulphur-linked solution-styrene butadiene rubber
(S-SBR, referred to as stiff compound, see Fig. 5a) and a lowly carbon black filled, sulphur-linked polybuta-
dien/polyisoprene blend which tends to strain-induced crystallisation (BR/IR, referred to as soft compound,
see Fig. 5b). Herein and in the following, quantities without indices refer to the loading direction.

For each material, quasi-static (λ̇ = 0.011
s ) multihysteresis experiments were conducted under uniaxial,

planar (pure shear) and equibiaxial tension. For this purpose, the material was loaded in a cyclic manner with

8 This modification provides a continuously differentiable evolution equation.
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(a) (b)

Fig. 5 Experimental data of the a stiff compound and b soft compound (the transparent cycles are not considered for fitting but
employed to investigate the predictivity of the models)

Table 1 Strain amplitudes (engineering strain in %) of the multihysteresis experiments

No. Uniaxial Planar Equibiaxial

1 21.48 18.36 10.22
2 47.58 40.13 21.48
3 79.28 65.99 33.90
4 117.79 96.76 47.58
5 164.58 133.47 62.66
6 221.41 177.35 79.28
7 290.45 229.89 97.60
8 374.33 292.94 117.79
9 476.22 368.71 140.05
10 600.00 459.93 164.58

three cycles per amplitude. Here, the amplitude levels for the uniaxial case were spaced logarithmically in
the stretch domain because the extend of softening increases approximately logarithmically. The amplitudes
are given in Table 1. To find equivalent strain amplitudes for the planar and equibiaxial deformation which
generate a similar extend of softening, the concept of the invariant radius Īr is introduced. For this purpose,
the principle invariants are plotted in a parametric representation for each loading mode, see Fig. 6. Then,
circles with the center (3, 3) are drawn in the invariant plane. The circle’s radii are defined by the uniaxial
amplitude levels, viz. Ī 2r = (

Ī1,ux −3
)2+(

Ī2,ux −3
)2. The intersection with the planar and equibiaxial curves

provide the corresponding amplitudes of these deformation modes. The obtained data of the multihysteresis
experiments are used for the parameter fitting whose results are discussed in the following section.

5 Results and discussion

5.1 Stiff compound

For the stiff compound, the first three amplitude levels of all three deformation modes were considered for
fitting. The fourth amplitude levels of the uniaxial and planar tension test were used to prove the predictivity of
the models. Fig. 7a and Table 2 show the ranking of all damage models sorted by the cost function value (10).
Only the best combinations regarding the hyperelastic model are considered for the ranking.

Studying the effect of the basic model in Fig. 7a, two general things can be stated: The choice of the
basic hyperelastic model is related to the model class of the damage model, e.g., all models using a damage
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(a)
(b)

Fig. 6 a Principal invariants as a function of the stretch for the uniaxial, planar and equibiaxial tension test and b the corresponding
parametric representations with iso-stretch curves (dashed, black lines) and invariant radii (solid, black lines)

Table 2 Ranking of the damage models regarding the stiff compound sorted by the cost function value, cf. Eq. (10)

Mod. No. Reference Basic Mod. Parameters Cost function RMSE RMSPE Mean correlation Mod. Calls

1.6* [15] modified (b) 2+3 0.1204 0.4180 0.5911 0.3963 18
3.2 [34] (c) 2+3 0.1205 0.4185 0.4449 0.8034 67
1.4 [42] (b) 3+3 0.1205 0.4186 0.5757 0.3435 18
1.6 [15] (b) 1+3 0.1206 0.4188 0.6337 0.4586 16
1.4* [42] modified (b) 2+3 0.1222 0.4245 0.5684 0.3968 20
3.2* [34] modified (c) 2+3 0.1235 0.4291 0.6571 0.6232 60
1.1 [11] (b) 3+3 0.1242 0.4316 0.4930 0.3716 20
1.5 [5] (b) 3+3 0.1268 0.4407 0.4983 0.3710 23
1.2 [13] (c) 2+3 0.1316 0.4570 0.5881 0.3801 20
1.3 [33] (c) 2+3 0.1332 0.4627 0.5891 0.3752 22
2.3 [8] (a) 2+5 0.1427 0.4949 2.0293 0.3810 25
2.1 [38] (a) 2+5 0.1460 0.5064 0.6444 0.4112 32
2.5 [2] (a) 2+5 0.1497 0.5191 2.6650 0.4099 22
2.2 [29] (a) 2+5 0.1519 0.5268 2.9646 0.4323 40
2.4 [4] (a) 2+5 0.1696 0.5889 0.6908 0.3626 43
2.4* [4] modified (a) 2+5 0.1696 0.5889 0.6908 0.3627 72
3.1b [23] (a) 3+5 0.1911 0.6620 1.3833 0.5436 25
2.6 [24] (a) 2+5 0.1914 0.6646 1.5092 0.3957 38
3.1a [23] (b) 3+3 0.1927 0.6691 1.3027 0.5624 44

variable provide the best results if combined with the hyperelastic approach (a) by [20]. Generally, the basic
hyperelastic model (a) is a reasonable overall choice for the stiff compound. However, the virgin state variable
models are less sensitive to the employed basic model and tend slightly to prefer strain energy function (b).
The models 3.1a/b are insensitive to the basic model, too, whereas the combination of models 3.2/3.2* with
strain energy function (b) should be avoided. A second conclusion is that those models with a virgin state
variable and models 3.2/3.2* are clearly the better choice for this material. However, note that the approach 2.4
by [4] is just one part of a more sophisticated model and, for sure, yields better results taking the full model
into account.

Notably is also the difference between the performance of the damage models with an amplification
variable. Apparently, the simpler amplification approach 3.1a/b is not sufficient to reproduce the complex
softening behaviour of the tested materials. In contrast, model 3.2 provides a good trade-off between fitting
quality and number of parameters. Though, the high number ofmodel calls needed to find optimal parameter set
and their quite high correlations are a slight drawback. The reader should keep in mind that the models 3.1a/b
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(a) (b)(a) (b)

Fig. 7 Cost function values of all models with optimised parameters for a the stiff compound and b the soft compound

and 3.2 are tailor-made for tube models and needed slight modifications to make them generalisable to other
hyperelastic models, see Sect. 3.4.

Remarkably, the RMSPE of all models do not show a clear trend, cf. Table 2. In case of models using
a virgin state variable, it can be explained by the provided data. For these models, the basic strain energy
describes the virgin curve, see Fig. 2. Since the virgin curve of the stiff compound does not include an upturn,
see Fig. 5a, all parameters related to the upturn are indeterminate to some extent.

We like to point out another property of the virgin state variable models which does not appear in the
ranking. In contrast to the remaining approaches, these models provide a pretty small correlation between the
parameters stemming from the basic strain energy and from the damage model itself, see also Fig. 8d. That
is, there is no undesired coupling which may lead to physically unlikely or unforeseen behaviour. Moreover,
the η-functions of the best ranked virgin-state variable models 1.6 and 1.4 (as well as their modifications) are
defined via a square root and an exponent q < 1, respectively, leading to an infinite slope forΨ0 → Ψ0,max, cf.
Fig. 3b. This behaviour seems to be essential for good fitting results since it represents the steep stress decrease
after the turning point between a virgin loading and an unloading. Though, a slight drawback is to be expected
considering a finite element implementation that requires a material tangent, i.e., the second derivative of the
free energy with respect to the deformation. Since the derivative of η is indeterminate due to the infinite slope,
a special numerical treatment is needed.

The proposed modifications indicated by an asterisk seem to be reasonable. The extended model 1.6* with
only two parameters ranked first. The reduced model 1.4* lowers the parameter correlations and the RMSPE
compared tomodel 1.4without affecting the cost function value significantly. Also the result ofmodel 3.2*with
a continuously differentiable evolution equation is negligibly different to the original formulation. Model 2.4*
avoids the computation of eigenvalues by replacing the Tresca invariant of model 2.4 by the vonMises invariant
which has no impact on the fitting result. These conclusions for the presented modifications are affirmed by
the results of the second compound, see Fig. 7b.

All fitted parameters are given in Table 4. The results of the best ranked model 1.6* are depicted in Fig. 8.
One should keep in mind that each amplitude was cycled three times. Therefore, a much higher weight is given
to un- and reloading curves in comparison with the virgin load.

5.2 Soft compound

Seven amplitude levels of each of the equibiaxial, planar, and uniaxial tests were considered for the fitting
with the soft compound. The data of the eighth amplitude of the uniaxial and planar tension test provide an
insight into the predictivity. Comparing the ranking regarding the soft compound in Fig. 7b and Table 3 with
the results from the stiff compound, the much smaller RMSE of all models is conspicuous. This is related to
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Table 3 Ranking of the damage models regarding the soft compound sorted by the cost function value, cf. Eq. (10)

Mod. No. Reference Basic Mod. Parameters Cost Function RMSE RMSPE Mean Correlation Mod. Calls

1.4 [42] (b) 3+3 0.0379 0.0964 0.4382 0.3989 108
1.4* [42] (b) 2+3 0.0380 0.0965 0.4413 0.4506 27
1.6* [15] modified (b) 2+3 0.0381 0.0974 0.4260 0.4229 33
1.6 [15] (b) 1+3 0.0388 0.1010 0.3950 0.5623 20
3.2 [34] (c) 2+3 0.0389 0.0988 0.3081 0.6043 38
3.2* [34] modified (c) 2+3 0.0394 0.1026 0.3361 0.7258 38
1.2 [13] (b) 2+3 0.0396 0.1010 0.4741 0.4448 28
1.3 [33] (b) 2+3 0.0398 0.1016 0.4766 0.4462 31
1.5 [5] (b) 3+3 0.0398 0.1016 0.4766 0.3987 34
1.1 [11] (b) 3+3 0.0460 0.1233 0.5032 0.3609 43
2.3 [8] (a) 2+5 0.0468 0.1287 0.5013 0.4818 104
2.2 [29] (c) 2+3 0.0474 0.1317 0.3954 0.3501 67
3.1a [23] (a) 3+5 0.0486 0.1316 0.4578 0.5520 382
2.1 [38] (c) 2+3 0.0487 0.1360 0.4740 0.4163 115
2.5 [2] (c) 2+3 0.0501 0.1371 0.5648 0.3664 17
2.6 [24] (c) 2+3 0.0508 0.1412 0.4876 0.4030 90
2.4 [4] (c) 2+3 0.0510 0.1385 0.4866 0.3800 116
2.4* [4] modified (c) 2+3 0.0510 0.1385 0.4866 0.3800 129
3.1b [23] (a) 3+5 0.0517 0.1454 0.5665 0.5826 77

the fact, that the soft material is dominated by strain-induced crystallization rather than the Mullins effect. As
a consequence, the permanent set which cannot be reproduced by the idealized damage models, cf. Fig. 1, is
less pronounced, cf. Fig. 5b. Hence, better fits will be obtained for this material.

Like for the stiff compound, the virgin state variable models 1.4/1.4* [42] and 1.6/1.6* [15] combined with
the strain energy function (b) by [40] achieved top rankings. They also show a quite low RMSPE indicating a
good predictivity. The other virgin state variable models, except model 1.1, provide sound fitting quality, too.

In contrast to the stiff compound, strain energy function (c) is a good overall choice of the basic hyperelastic
model. However, the virgin state variable models are again largely insensitive to the basic model and tend to
better results if combined with strain energy function (b).

The model 3.2 by [34] in combination with basic model (c) shows also remarkable performance and is
placed closely behind model 1.6. The results are depicted in Fig. 9. It is a promising alternative to the models
with a virgin state variable. Note that in general models 3.2/3.2* should be preferably combined with strain
energy function (c), cf. Fig. 7.

Models with a damage variable are less satisfactory again. However, in contrast to the stiff compound
results, they are not far behind the models with a virgin state variable and may also be combined with basic
model (c). Comparingmodels 2.2, 2.3, 2.5, 2.6 which use the same exponential evolution equation but different

measures of maximum load, the approach 2.3 by [8] with Γ =
√

Ī1,max
3 − 1 seems to be the better choice.

Further, the comparison between model 2.1 and 2.2 which both define Γ = Ψ0,max but employ different
evolution equations indicates that an exponential evolution as used by model 2.2 is probably not the best
choice.

6 Conclusion

Fifteen common approaches to model the characteristic Mullins-effect of rubber materials in a discontinuous
waywere analysed. After discussing the possible range of applications, thesemodels were classified by the type
of their internal variable, proven to be thermodynamically consistent, and reasonablemodification are proposed.
Then, their ability for reproducing multihysteresis experiments of two different filled rubber compounds,
referred to as stiff and soft compound, were tested. For this purpose, each damage model was combined with
three different basic hyperelastic models and fitted to the experimental data. Thus, 19 × 3 × 2 = 114 fittings
were conducted. Rankings for both the soft and stiff compound sorted by the fitting quality were compiled.
Moreover, the root mean square prediction error (RMSPE), parameter correlations, number of parameters as
well as the number of model calls needed for the fitting procedure were discussed.

For the presented materials, the damage models with a virgin state variable in combination with the
hyperelastic function by [40] referred to as basic model (b) seem to be a good overall choice. In particular, the
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models by [15] and [42] (as well as their modifications) ranked in the top five for both materials. An alternative
to the models with a virgin state variable is the approach by [34] based on the concept of strain amplification.
Its combination with the simplified tube model by [35] referred to as basic model (c) provides sound fitting
results. Models based on a damage variable lead to less satisfactory fits. In summary, even if several aspects
of the complex mechanical material behaviour of elastomers are neglected, the considered damage models
offer quick insights and a reasonable predictability for certain applications at low numerical costs. Moreover,
the presented investigations may be used as a starting point for improving more complex models for rubber
materials.
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Appendix:A Fitted parameters

Table 4 Fitted parameters of the damage models for the stiff compound (see Table 6 for the parameter units)

Mod. Damage Basic Hyperelastic
No. Parameters Mod. Parameters

1.1 c = Δb = ηmin = (b) A1 = A2 = B1 =
1.2484 1.3258 0.0 1.5388 0.0 1.0743

1.2 m = r = (c) Gc = Ge = 1/n =
3.5432 0.6223 1.4377 0.9469 0.0446

1.3 m = r = (c) Gc = Ge = 1/n =
3.0020 0.6132 1.4197 0.9813 0.0585

1.4 m = r = q = (b) A1 = A2 = B1 =
0.8571 0.7750 0.3570 1.4277 0.0772 1.0883

1.4* m = r = (b) A1 = A2 = B1 =
1.6622 0.6948 1.4499 0.0647 1.0188

1.5 m = r = q = (b) A1 = A2 = B1 =
7.7733 0.6431 1.8281 1.5235 0.0 0.9538

1.6 m = (b) A1 = A2 = B1 =
1.3336 1.4555 0.0599 1.0570

1.6* m = r = (b) A1 = A2 = B1 =
1.8599 0.9078 1.4412 0.0720 1.0672

2.1 α = β = (a) c10 = c20 = c30 = c01 = c11 =
7.1114 0.9999 0.0 5.4091 0.04.38 3.9729 7.5252

2.2 α = β = (a) c10 = c20 = c30 = c01 = c11 =
1.2961 0.8322 0.0 0.0 0.4367 0.9630 1.2714

2.3 α = β = (a) c10 = c20 = c30 = c01 = c11 =
19.2526 0.9368 0.4187 1.4479 0.8491 0.6718 1.1938

2.4 α = β = (a) c10 = c20 = c30 = c01 = c11 =
72.0576 0.9999 3.9482 5.7364 0.0 0.5334 0.0768

2.4* α = β = (a) c10 = c20 = c30 = c01 = c11 =
71.6160 0.9999 3.9369 5.7184 0.0 0.5317 0.0764

2.5 α = β = (a) c10 = c20 = c30 = c01 = c11 =
1.0468 0.9589 1.9690 3.8691 1.4843 0.1506 0.2763

2.6* α = β = (a) c10 = c20 = c30 = c01 = c11 =
3.9236 0.8843 1.4738 1.0424 0.2772 0.0 0.0

3.1a ΔX0 = X∞ = γ = (b) A1 = A2 = B1 =
1.7946 2.4279 2.4162 0.0 0.0108 0.0

3.1b ΔX0 = X∞ = γ = (a) c10 = c20 = c30 = c01 = c11 =
7.7384 1.3980 7.4574 0.1789 0.0947 0.00171 0.0 0.0

3.2 χ = γ = (a) Gc = Ge = 1/n =
1.8395 11.6253 0.1549 0.1317 0.099

3.2* χ = γ = (a) Gc = Ge = 1/n =
1.6776 50.5140 0.1024 0.0776 0.0422
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Table 5 Fitted parameters of the damage models for the soft compound (see Table 6 for the parameter units)

Mod. damage Basic hyperelastic
No. parameters Mod. parameters

1.1 c = Δb = ηmin = (b) A1 = A2 = B1 =
0.0 1.3983 0.8035 0.6198 = 0.00077 0.0697

1.2 m = r = (b) A1 = A2 = B1 =
1.0143 0.2019 0.6159 0.00094 0.0463

1.3 m = r = (b) A1 = A2 = B1 =
0.8575 0.1978 0.6146 0.00094 0.0460

1.4 m = r = q = (b) A1 = A2 = B1 =
0.4104 0.2575 0.4376 0.6360 = 0.00094 0.0485

1.4* m = r = (b) A1 = A2 = B1 =
0.4977 0.2462 0.6328 = 0.00094 0.0475

1.5 m = r = q = (b) A1 = A2 = B1 =
0.8573 0.1978 0.0 0.6146 = 0.00094 0.0460

1.6 m = (b) A1 = A2 = B1 =
0.0280 0.6316 = 0.00091 0.0446

1.6* m = r = (b) A1 = A2 = B1 =
0.5768 0.3062 0.6364 = 0.00095 0.0487

2.1 α = β = (c) Gc = Ge = 1/n =
0.4496 0.9999 0.6617 = 0.6518 0.0193

2.2 α = β = (c) Gc = Ge = 1/n =
0.1380 0.6534 0.5815 = 0.0494 0.0203

2.3 α = β = (a) c10 = c20 = c30 = c01 = c11 =
0.3164 0.9999 0.3372 = 0.0 0.00038 0.0034 0.0017

2.4 α = β = (c) Gc = Ge = 1/n =
0.0151 0.6282 0.6172 = 0.0 0.0180

2.4* α = β = (c) Gc = Ge = 1/n =
0.0151 0.6282 0.6172 = 0.0 0.0180

2.5 α = β = (c) Gc = Ge = 1/n =
0.0126 0.4031 0.5984 = 0.0157 0.0188

2.6 α = β = (c) Gc = Ge = 1/n =
0.1558 0.9999 0.6735 = 0.0 0.0174

3.1a ΔX0 = X∞ = γ = (a) c10 = c20 = c30 = c01 = c11 =
2.9250 1.0326 0.2082 0.0868 = 0.00009 0.00001 0.0 0.00001

3.1b ΔX0 = X∞ = γ = (a) c10 = c20 = c30 = c01 = c11 =
3.0986 1.0164 0.4388 0.0880 = 0.00010 0.00001 0.0 0.00002

3.2 χ = γ = (c) Gc = Ge = 1/n =
3.0899 26.4669 0.3043 = 0.0237 0.0154

3.2* χ = γ = (c) Gc = Ge = 1/n =
2.6181 8.1740 0.2224 = 0.0214 0.0053

Table 6 Units of the fitting parameters

Mod. No. Parameters and units

(a) c10 MPa c20 MPa c30 MPa c01 MPa c11 MPa
(b) A1 MPa A2 MPa B1 MPa
(c) Gc MPa Ge MPa 1/n –
1.1 c – Δb – ηmin –

1.2 m mm3

Nmm r –

1.3 m mm3

Nmm r –

1.4/1.4* m mm3

Nmm r – q –

1.5 m mm3

Nmm r – q mm3

Nmm

1.6/1.6* m mm3

Nmm r –

2.1 α mm3

Nmm β –

2.2 α mm3

Nmm β –
2.3 α – β –
2.4/2.4* α – β –
2.5 α – β –
2.6 α – β –
3.1a/b ΔX0 – X∞ – γ –
3.2/3.2* χ – γ –
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B Fitting results

(a) (b)

(c) (d)

Fig. 8 Fitting results for the stiff compound of the model 1.6* ( [15] modified) combined with the strain energy function (b) from
[40]: (a-c) Stress vs. stretch for uniaxial, pure shear and equibiaxial loading (the small drop in stress in the virgin load of the pure
shear experiment (b) at λ = 1.4 stems from an outlier in the experimental data), d parameter correlation matrix
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(a) (b)

(c) (d)

Fig. 9 Fitting results for the soft compound of the model 3.2 by [34] combined with the strain energy function (c) from [35]:
(a–c) Stress vs. stretch for uniaxial, pure shear and equibiaxial loading, d parameter correlation matrix
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