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Abstract This paper deals with the Saint-Venant torsion of elastic, cylindrically orthotropic bar whose cross
section is a sector of a circular ring shaped bar. The cylindrically orthotropic homogeneous elastic wedge-
shaped bar strengthened by on its curved boundary surfaces by thin isotropic elastic shells. An analytical
method is presented to obtain the Prandtl’s stress function, torsion function, torsional rigidity and shearing
stresses. A numerical example illustrates the application of the developed analytical method.

Keywords Saint-Venant torsion · Cylindrical orthotropic · Wedge-shape bar · Elastic shell · Prandtl’s stress
function · Torsion function · Torsional rigidity

1 Introduction

The Saint-Venant torsion of anisotropic linearly elastic bars has been the subject of several works from both
theoretical and numerical viewpoints. Books by Lekhnitskii [5,6], Milne-Thomson [8], Arutjujan and Abram-
jan [1], Sokolnikoff [13], Sadd [10], Sarkisyan [11,12], Rand and Rovenski [9], Chabanjan [2] give the detailed
analysis of Saint-Venant torsion of anisotropic and orthotropic bars. The books mentioned above deal with
mainly the Saint-Venant torsion of Cartesian anisotropic and orthotropic bars. The torsion problem of cylin-
drically anisotropic and orthotropic bars is studied in books by Lekhnitskii [5,6], Rand and Rovenski [9] and
papers by Soós [14] and Ecsedi et al [4]. In paper [3], by the use of principle of minimum of potential energy
and principle of minimum of complementary energy, approximate analytical solutions are derived for the
torsion function and for the Prandtl’s stress function of the uniform torsion of cylindrically orthotropic solid
elliptical cross section.

Present paper deals with the Saint-Venant torsion of cylindrically orthotropic bar whose cross section
is a sector of hollow circle. The considered cylindrically orthotropic homogeneous elastic annular wedge-
shaped bar strengthened on its curved boundary parts by thin isotropic elastic shells. An analytical solution is
formulated to solve the Saint-Venant’s torsion problem for the cylindrically orthotropic bar which is reinforced
by thin isotropic elastic shells on its curved boundary surfaces. The developed solution gives the Prandtl’s stress
function, torsion function and the torsional rigidity of the compound cross section which consists of one solid
cross section and two open thin walled cross section.

2 Governing equations

At first, we consider the Saint-Venant torsion of the compound linear elastic bar which is constructed from
three cylindrical orthotropic beam components whose cross section is shown in Fig. 1.
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Fig. 1 Cylindrically orthotropic compound cross section

The cylindrical coordinate system Orϕz has been used to formulate the governing equations of the uniform
torsion problem of compound annular wedge-shape bar. The cross section A can be divided into three parts as
A = A1 ∪ A2 ∪ A3, where

A1 = {(r, ϕ)|R0 ≤ r ≤ R1, 0 ≤ ϕ ≤ α} (1)

A2 = {(r, ϕ)|R1 ≤ r ≤ R2, 0 ≤ ϕ ≤ α} (2)

A3 = {(r, ϕ)|R2 ≤ r ≤ R3, 0 ≤ ϕ ≤ α} (3)

There are perfect connections between the beam components whose cross sections are A1, A2 and A3.
From this fact it follows that axial displacement and radial shearing stress field are continuous on the whole
cross section A. The length of the compound bar is denoted by L . The material of the beam component
Bi = Ai × (0, L) (i = 1, 2, 3) is cylindrically orthotropic with shear modulus Gir , Giϕ (i = 1, 2, 3). In the
present problem the Prandtl’s stress function formulation of the considered Saint-Venant torsion leads to the
next coupled boundary-value problem [2,4–6,9,11,12]

∂2U1

∂r2
+ 1

r

∂U1

∂r
+ g21

r2
∂2U1

∂ϕ2 = −2G1ϕ g1 =
√
G1ϕ

G1r
in A1 (4)

U1 = 0 R0 ≤ r ≤ R1 ϕ = 0 and ϕ = α (5)

∂2U2

∂r2
+ 1

r

∂U2

∂r
+ g22

r2
∂2U2

∂ϕ2 = −2G2ϕ g2 =
√
G2ϕ

G2r
in A2 (6)

U2 = 0 R1 ≤ r ≤ R2 ϕ = 0 and ϕ = α (7)

∂2U3

∂r2
+ 1

r

∂U3

∂r
+ g23

r2
∂2U3

∂ϕ2 = −2G3ϕ g3 =
√
G3ϕ

G3r
in A3 (8)

U3 = 0 R2 ≤ r ≤ R3 ϕ = 0 and ϕ = α (9)

U1(R0, ϕ) = 0 0 ≤ ϕ ≤ α (10)

U3(R3, ϕ) = 0 0 ≤ ϕ ≤ α (11)

U1(R1, ϕ) = U2(R1, ϕ) 0 ≤ ϕ ≤ α (12)

U2(R2, ϕ) = U3(R2, ϕ) 0 ≤ ϕ ≤ α (13)
1

G1ϕ

∂U1

∂r
= 1

G2ϕ

∂U2

∂r
r = R1 0 ≤ ϕ ≤ α (14)

1

G2ϕ

∂U2

∂r
= 1

G3ϕ

∂U3

∂r
r = R2 0 ≤ ϕ ≤ α (15)

Equations (4), (6) and (8) formulate the strain compatibility conditions in terms of stress function Ui =
Ui (r, ϕ) (i = 1, 2, 3). The boundary conditions (5), (7), (9), (10) and (11) express that the whole boundary
contour of cross section A is traction free. The continuity conditions of radial shearing stresses on the common
boundary curve of A1 and A2 on the common boundary curve of A2 and A3 are formulated by Eqs. (12) and
(13). Equations (14) and (15) provide the continuity of the axial displacement over the whole cross section
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A. The relation between the Prandtl’s stress functions Ui = Ui (r, ϕ) and torsion function ωi = ωi (r, ϕ) are
described by the following systems of equations [2,5,6,9,11,12]

Gir
∂ωi

∂r
= 1

r

∂Ui

∂ϕ
, Giϕ

∂ωi

∂ϕ
= −r

∂Ui

∂r
− Giϕr

2 (r, ϕ) ∈ Ai (i = 1, 2, 3) (16)

Equation (16) is based on formulae of shearing stresses τir z = τir z(r, ϕ) and τiϕz = τiϕz(r, ϕ) expressed in
terms of Ui = Ui (r, ϕ) and ωi = ωi (r, ϕ) (i = 1, 2, 3) which are as follows

τir z

ϑ
= Gir

∂ωi

∂r
= 1

r

∂Ui

∂ϕ
(i = 1, 2, 3) (17)

τiϕz

ϑ
= Giϕ

(
1

r

∂ωi

∂ϕ
+ r

)
= −∂Ui

∂r
(i = 1, 2, 3) (18)

In Eqs. (14), (15) ϑ denotes the rate of twist with respect to the axial coordinate z [5,6,8]. The relation
between the applied torque T and ϑ is as follows

T = ϑS (19)

where S is the torsional rigidity of the compound cross section A. According to Prandtl’s formulation of
uniform torsion we have [5,6,11,12]

S = 2

⎛
⎜⎝∫
A1

U1 dA +
∫
A2

U2 dA +
∫
A3

U3 dA

⎞
⎟⎠ . (20)

Here, we note for isotropic beam component the shear modulus in radial and circumferential direction is
the same, that is

Gr = Gϕ = G (21)

3 Cross section reinforced by thin elastic shells

Figure 2 shows the elastic cylindrically orthotropic cross section which is reinforced by thin isotropic elastic
shells on its curved boundary. In the present problem

A1 = {(r, ϕ)|R0 ≤ r ≤ R1 = R0 + t1 0 ≤ ϕ ≤ α} (22)

A3 = {(r, ϕ)|R2 ≤ r ≤ R3 = R2 + t2 0 ≤ ϕ ≤ α} (23)

The thickness ti (i = 1, 2) are small in comparison with R0. Following Arutyunjan and Abramyan [1]
and Chabanjan [2] we assume that the stress function Ui = Ui (r, ϕ) (i = 1, 3) is a linear function of the
radial coordinate r and satisfies the boundary conditions (10), (11), and the continuity conditions formulated
by Eqs. (12) and (13). According to the above-mentioned requirements we have

U1(r, ϕ) = U (R1, ϕ)

t1
(r − R0) (r, ϕ) ∈ A1 (24)

U2(r, ϕ) = −U (R2, ϕ)

t2
(r − R3) (r, ϕ) ∈ A3 (25)

Here, we introduce the next designation U2(r, ϕ) = U (r, ϕ). Denote Gi (i = 1, 3) the shear modulus of the
thin isotropic elastic shell whose thickness is ti (i = 1, 2). The shear modulus in radial and tangential direction
of cylindrically orthotropic cross section A2 are represented by Gr and Gϕ . From Eqs. (14) and (15) we obtain
the next boundary conditions for U = U (r, ϕ) [1,2]

U (R1, ϕ) − μ1
∂U

∂r

∣∣∣∣
r=R1

= 0 0 ≤ ϕ ≤ α (26)

U (R2, ϕ) + μ2
∂U

∂r

∣∣∣∣
r=R2

= 0 0 ≤ ϕ ≤ α (27)
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Fig. 2 Orthotropic cross section reinforced by thin shells

Here

μ1 = t1
G1

Gϕ

, μ2 = t2
G3

Gϕ

0 ≤ ϕ ≤ α (28)

The solution of Saint-Venant’s torsion of cylindrically orthotropic annular wedge-shaped bar strengthened
by on its curved boundary surfaces by thin isotropic elastic shells is obtained from the next boundary value
problem

∂2U

∂r2
+ 1

r

∂2U

∂r2
+ g2

r2
∂2U

∂ϕ2 = −2Gϕ g2 = Gϕ

Gr
(r, ϕ) ∈ A2 (29)

U (r, 0) = U (r, α) = 0 R1 ≤ r ≤ R2 (30)

U (r, ϕ) − μ1
∂U

∂r
= 0 r = R1 0 ≤ ϕ ≤ α (31)

U (r, ϕ) + μ2
∂U

∂r
= 0 r = R2 0 ≤ ϕ ≤ α. (32)

We look for the solution of the boundary value problem formulated by Eqs. (29)–(32) in the next form

U (r, ϕ) =
∞∑
k=1

uk(r) sin λkϕ λk = (2k − 1)
π

α
(33)

It is evidentU = U (r, ϕ) satisfies the boundary conditions (30). In order to obtain the expression of uk = uk(r)
we will use the next Fourier’s series representation of −2Gϕ

−2Gϕ = −8Gϕ

α

∞∑
k=1

sin λkϕ

λk
(34)

Substitution of Eq. (33) into Eq. (29) we obtain

d2uk
dr2

+ 1

r

duk
dr

− p2k
r2

uk = −8Gϕ

αλk
pk = gλk (k = 1, 2, . . . ) (35)

The general solution of the ordinary differential equation (35) is as follows

uk(r) = akr
pk + bkr

−pk + ckr
2 ck = − 8Gϕ

αλk(4 − p2k )
(k = 1, 2, . . . ) (36)
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The constants ak and bk can be computed from the boundary conditions (31) and (32). A detailed computation
gives

ak = ck
h1k
hk

bk = −ck
h2k
hk

(k = 1, 2, . . . ) (37)

hk = μ1μ2 p
2
k R

2pk
1 + μ2 pk R

2pk+1
1 + μ1 pk R2R

2pk
1 − R2R

2pk+1
1

+μ1μ2 p
2
k R

2pk
2 + μ2 pk R

2pk
2 R1 + μ1 pk R

2pk+1
2 + R2pk+1

2 R1 (38)

h1k = −μ2 pk R
pk+3
1 + R2R

pk+3
1 − 2μ1R2R

pk+2
1 + 2μ1μ2 pk R

pk+2
1 − Rpk+3

2 R1

−2μ2R
pk+2
2 R1 − μ1 pk R

pk+3
2 − 2μ1μ2 pk R

k+2
2 (39)

h2k = 2μ2μ1 pk R
pk+2
2 R2pk

1 − 2μ2R
pk+2
2 R2pk+1

1 + μ1 pk R
pk+3
2 R2pk

1 − Rpk+3
2 R2pk+1

1

−2μ1μ2 pk R
2pk
2 Rpk+2

1 + μ2 pk R
2pk
2 Rpk+3

1 − 2μ1R
2pk+1
2 Rpk+1

1 + R2pk+1
2 Rpk+3

1 (40)

The determination of the torsional function of the cylindrically orthotropic cross section A2 is based on the
coupled system of partial differential equations (17) and (18). In this section we use the next designation
ω2 = ω. According to Eqs. (17) and (18) we have

∂ω

∂r
= 1

rGr

∂U

∂ϕ

∂ω

∂ϕ
= − r

Gϕ

∂U

∂r
− r2 (41)

The solution of system of partial differential equation for ω = ω(r, ϕ) is as follows

ω(r, ϕ) =
∞∑
k=1

(
ak
g
r pk − bk

g
r−pk + ckλk

2
r2

)
cos λkϕ (42)

This solution is vanishes on the axis of symmetry of the cross section A2 (ϕ = α/2). Since the size of
thickness of shell-like cross-sectional component is very small we assume that ωi = ωi (r, ϕ) (i = 1, 3) can
be represented as

ω1(r, ϕ) = ω(R1, ϕ) (r, ϕ) ∈ A1 ω3(r, ϕ) = ω(R2, ϕ) (r, ϕ) ∈ A3 (43)

The torsional rigidity of the compound cross section is obtained by the application of Eq. (20). A simple
computation gives the next results for S

S = S1 + S2 + S3 (44)

where

S1 = 2

R1∫
R0

α∫
0

rU1(r, ϕ)drdϕ

=
∞∑
k=1

2t1
3λk

(
ak R

pk
1 + bk R

−pk
1 + ck R

2
1

)
(3R0 + 2t1) sin

2 λkα

2
(45)

S2 = 2

R2∫
R1

α∫
0

rU2(r, ϕ)drdϕ = 4
∞∑
k=1

[
ak

R pk+2
2 − Rpk+2

1

λk(pk + 2)

+bk
R−pk+2
2 − R−pk+2

1

λk(−pk + 2)
+ ck

4λk

(
R4
2 − R4

1

)]
sin2

λkα

2
(46)

S3 = 2

R3∫
R2

α∫
0

rU3(r, ϕ)drdϕ

=
∞∑
k=1

2t2
3λk

(
ak R

pk
2 + bk R

−pk
2 + ck R

2
2

)
(3R2 + 2t2) sin

2 αλk

2
(47)
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Fig. 3 Prandtl’s stress function as a function of radial coordinate

Fig. 4 Shearing stress τϕz for five different values of polar angle

The analytical solution of isotropic homogeneous elastic wedge-shaped bar which was given by Madhavi A
and Madhavi Y [7] is recovered from the solution of Saint-Venant torsion problem presented in Sect. 3 of this
paper if

R0 = R1, R2 = R3, G1 = G2 = 0, μ1 = μ2 = 0, Gr = Gϕ = G. (48)

4 Numerical example

The following data are used in the numerical example which illustrates the application of formulae of Sect. 3

R1 = 0.03m t1 = 0.0008m R2 = 0.05m t2 = 0.0008m α = π

4
(49)

G1 = 4.5 × 109 Pa G3 = 7.5 × 109 Pa (50)

Gr = 3 × 108 Pa Gϕ = 6 × 108 Pa ϑ = 10−2 rad/m (51)

The plots of the Prandtl’s stress function as a function of radial coordinate for five different values of polar
angle are shown in Fig. 3.

The plots of the shearing stress τϕz for five different values of polar angle against radial coordinate are
presented in Fig. 4.

The illustration of the shearing stresses τr z as a function of radial coordinate for five different values of
polar angle are given in Fig. 5.

The contour lines of the Prandtl’s stress function are shown in Fig. 6.
The plots of the torsional function for five different values of polar angle against radial coordinate r are

presented in Fig. 7.
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Fig. 5 Shearing stress τr z for five different values of polar angle

Fig. 6 Contour lines of Prandtl’s stress function

Fig. 7 Torsional function for five different values of polar angle
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Fig. 8 Contour lines of the torsion function

Table 1 Comparison of approximate solution presented in this paper with the exact analytical results

t = 0.0008m

S1 = 0.580 641 224 2Nm2 S1 = 0.580 641 534 4Nm2

S2 = 52.119 295 730Nm2 S2 = 52.119 287 530Nm2

S3 = 1.254 489 661Nm2 S3 = 1.254 461 320Nm2

S = 53.954 426 61Nm2 S = 53.954 390 38Nm2

V = 6.505 579 875 × 104 N V = 6.505 579 700 × 104 N
t = 0.008m
S1 = 50.124 423 18Nm2 S1 = 50.124 423 82Nm2

S2 = 34.793 060 94Nm2 S2 = 34.790 606 30Nm2

S3 = 81.627 664Nm2 S3 = 81.627 726Nm2

S = 166.545 149Nm2 S = 166.545 210Nm2

V = 1.826 756 944 × 105N V = 1.826 546 927 × 105 N
t = 0.015m
S1 = 104.029 283 2Nm42 S1 = 104.029 280 8Nm2

S2 = 16.757 482 98Nm2 S2 = 16.557 478 73Nm2

S3 = 220.061 291Nm2 S3 = 220.061 215Nm2

S = 340.848 057Nm2 S = 340.647 974Nm2

V = 5.430 432 283 × 105 N V = 5.430 431 167 × 105 N

The contour lines of the torsion function are shown in Fig. 8. The torsional rigidity of the beam components
B1, B2, B3 and the whole compound cross section are as follows

S1 = 0.3635213Nm2 S3 = 0.9494349Nm2 S2 = 43.47721Nm2 (52)

S = 44.79005Nm2 (53)

5 Comparison of approximate solution with exact analytical solution

Table 1 shows the effect of the thickness of outer and inner shell-layers to the accuracy of the solution given by
this paper. The accuracy of the solution ismeasured by the torsional rigidities S1, S2 and S3 of the cross-sectional
components and a one value of Prandtl’s stress function

V = U

(
R1 + R2

2
,
α

2

)
. (54)
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The first column of Table 1 are derived from the solution of boundary value problem formulated by Eqs.
(29–32). The second column of Table 1 contains the results of exact analytical solutions of torsional problem
which satisfy Eqs. (4–15).

The following data are used for calculation of the results for Table 1

R0 = 0.035m R3 = 0.055m t1 = t2 = t α = π

4
(55)

G1 = 4.5 × 109 Pa G3 = 7.5 × 109 Pa (56)

Gr = 3 × 108 Pa Gϕ = 6 × 108 Pa (57)

6 Conclusion

In the present paper, the Saint-Venant torsion of the compound cylindrically orthotropic wedge-shaped bar
has been studied. An analytical solution is given for the uniform torsion of the cylindrical orthotropic annular
wedge shaped bar whose curved boundary segments are strengthened by thin isotropic elastic shells. The
presented solution is valid for the vertex angle of compound cross section between 0 and 2π . Closed form
formulae are derived for the Prandtl’s stress function, torsion function, shearing stresses and torsional rigidity.
Example illustrates the applications of the presented formulae.
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