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Abstract In this contribution, the two-scale analysis of residual stress states in a hot bulk formed part with
subsequent cooling in the framework of the FE2-method is presented. The induction of specific residual
stress states in order to improve a component’s properties is an area of current research. In general, residual
stresses can be induced inside a component in different ways, e.g., quenching, phase transformation in hot
forming processes or dislocation movements. It is widely known that different types of residual stresses can
be characterized based on the scale the type acts on. In addition to the macroscopic residual stress analysis,
in which residual stresses of first type are considered, this contribution specifically analyzes the microscopic
residual stress evolution as a consequence of the cooling of the component.

Keywords Residual stresses · Multiscale simulation · Austenite–martensite phase transformation ·
Cr-alloyed steel · Hot bulk forming · Cooling process · Microstresses · Multiscale analysis · FE2-method

1 Introduction

Metal-forming technologies and processes offer a variety of options to influence a product’s final properties.
The evocation and adjustment of internal stresses by calibration of forming conditions has been shown in
[7,9,39,42,48,52,78]. In particular, hot bulk forming offers the opportunity to use the interactions of thermal,
chemical and metallurgical parameters to influence residual stresses. For instance, based on specific cooling
strategies, compressive residual stresses shall be induced on the surface, which are assumed to improve the
final component’s properties, e.g., higher resistance with respect to fatigue cracking and surface abrasion.

Following the definitions in [25,40,85,86], stresses existing in a closed system in absence of outer forces
or moments but fulfill mechanical equilibrium, are called residual stresses. They are typically distinguished
into three types, which are characterized by the scale they act on. Thus, residual stresses of first type refer
to a certain macroscopic section of the component or the average of some grains, while residual stresses of
second and third type are defined on one grain or a number of atoms, respectively. As a consequence, the latter
two types can be interpreted as deviations of the stress amplitudes from the first type and are often referred
to as microscopic residual stresses. Since residual stresses of second type influence the macroscopic residual
stresses of first type, which are most important with regard to the final component’s properties, close attention
has to be paid to the microscopic residual stress evolution.

In current research, a focus is dedicated to the distinction between the different types of residual stresses
both in experiments and numerical simulations. Early experimental measurements are presented, e.g., in
[14,53], which take into account the scale separation of macroscopic and microscopic residual stresses. A
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multiscale analysis of residual stresses arising from a thermo-mechanical problem is given in [18]. More recent
works show a great variety of applications. In [22], a multiscale self-consistent model regarding the effects of
second and third type residual stresses on the Bauschinger effect at the macroscopic level is given. The work of
[23] concerns a methodology to quantify the magnitude of the microscopic residual stresses with spectroscopy
for ceramics, while [91] gives a predictivemodel formacroscopic andmicroscopic residual stresses considering
thermo-mechanical effects.Moreover, in [10], an approach for the computation ofmicroscopic residual stresses
for single-phase materials is proposed. Different attempts using multiscale models are, e.g., [89] or [60], in
which a crystal plasticity finite element model is used. [71] computes macroscopic and phase-specific residual
stresses for a deep drawing process of lean duplex steels. The consequence of microstructural residual stresses
on the mechanical behavior of additively manufactured steels is described, e.g., in [8]. For further recent
investigations in the research field of residual stresses in production technology see [84].

Residual stresses can be evoked by solid–solid phase transformation, for which different numerical models
have been discussed in the last decades. For example, in [37,72,76], volume fractions of the occurring phases
are introduced to distinguish between the kinetics of the phases. Early thermo-mechanical approaches have
been given in [15,30–33]. A description of the principles of general phase transformation can be found
in [34,35,38], among others, while [36] focuses especially on martensitic transformation. [13] proposes a
continuum mechanical formulation, whereas the work of [59] shows the experimental side, which can be
compared to simulations as done, e.g., by [3]. A phenomenological approach has been proposed in [41], and
the use of crystal plasticity has been formulated in [61]. Another possibility to describe phase transformation
is the application of the Phase-Field Theory as done for instance in [51,62–64], relying on [55,56], which
characterize the phase transformation on the atomic lattice. In order to illustrate the austenite-to-martensite
phase transformation on atomic scale, the so-called Bain groups can be applied. They describe the lattice
shearing from an initial austenitic to martensitic unit cell. The fundamental work is proposed in [1,2], and
further applications can be found in [50] or [6].

In view of the definition of residual stress of first, second and third type, the application of a multi-
scale method is reasonable to account for residual stress acting on different scales. The direct micro-macro
transition approach for computational homogenization has been in the focus of research in the last decades. The
classical description of the so-called FE2-method is proposed in [11,12,16,17,27,43,45–47,49,65,66,74,75,
81,82], in which various aspects such as suitable boundary conditions or different mathematical treatments are
discussed. The thermo-mechanical coupling in two-scale problems is presented in [57,58,68,79,80]. Further
multi-physics models, such as magnetic-, electric- or ferroelectric-mechanical coupling, are treated in, e.g.,
[28,67,88].

This contribution is based on the approach presented in [83]. Therein, macroscopic residual stresses in a hot
bulk formed part are analyzed using a two-scale model with focus on aspects of numerical simulation. In the
present contribution, a microstructural analysis is performed to describe the evolution of microscopic residual
stresses arising from the austenite-to-martensite transformation in the same process using an extended two-
scale model. The paper is structured as follows. After introduction, Sect. 2 briefly introduces the experimental
and numerical studies, which serve as input data. Afterwards, in Sect. 3, the two-scale finite element model
with the associated macroscopic and microscopic boundary value problem is presented. The application of the
proposed framework to the cooling process of the hot bulk formed part is described in Sect. 4. The results are
evaluated regarding the microscopic stress evolution in particular. The paper is concluded in Sect. 5.

2 Experimental setup and martensite transformation

In the focus of the study is a cylindrical specimen with an eccentric hole, the dimensions are defined in Fig. 1.
The eccentricity of dx = 3.5 mm is chosen in order to provoke inhomogeneous stress distributions following
[73]. This specimen is treated in a hot bulk forming process with subsequent cooling as illustrated in Fig. 2.
First, it is heated to above 1000 ◦C in a thermobox, such that full austenitization and a residual stress-free state
is achieved. After some holding time, the height is reduced by approximately 50%, still inside the thermobox.
Subsequently, the thermobox is removed and the cylinder is cooled in water down to room temperature of 20 ◦C
in 80 s. Afterwards, mechanical measurements are taken regarding the residual stresses of first type near the
surface, which can be validated using macroscopic simulations. For these simulations, the MSC.marc solver
of the commercial FE software Simufact.forming 14 is utilized to model the experimental setup numerically.
Details on the experimental processing and macroscopic material simulations can be found in [4,5].

In this contribution only the cooling process detached from forming is of interest. Required temperature-
dependent material parameters, namely bulk modulus κ , shear modulus μ, heat conduction coefficient k, heat



Residual stresses in hot bulk-formed parts 3605

Fig. 1 Dimensions of considered cylindrical specimen with eccentric hole, dx = 3.5mm, adopted from [83]

Table 1 Chemical composition of the investigated steel alloy 1.3505 used for material data generation with JMatPro

Chemical composition (wt.%) C Si Mn P S Cr Mo Fe

1.3505 (100Cr6) 0.99 0.25 0.35 0.025 0.015 1.475 0.1 Balance

Fig. 2 Schematic representation of the three process steps, namely heating, forming and cooling, adopted from [83]

expansion coefficient αT, the product of specific heat capacity and density cρ , the yield strength y and the
linear hardening parameter h, are determined using JMatPro [24] based on the chemical composition of the
considered alloy 1.3505 (100Cr6) given in Table 1. Details on the preparation of the material data are given in
Appendix A.1.

2.1 Martensite formation

The hot formed and austenitized state of the specimen is taken as the initial state, i.e., t = 0 s as illustrated in
Fig. 2. It can be considered as stress-free due to the prevalent high temperature. The considered chromium-
alloyed steel 1.3505 (100Cr6) in this state consists of a face-centered cubic austenitic lattice. Fast cooling in
water below the martensitic start temperature θMs leads to a diffusionless phase transformation to martensite,
which consists of body-centered tetragonally transformed unit cells. This rearrangement of the atomic lattice
is accompanied by a volume expansion of the unit cells, cf. [50]. In the following, a value of 2% is taken into
account following the work of [54].

For the evolution of the martensitic volume fraction cM in regions below the martensitic start temperature
θMs, the exponential form of the Koistinen–Marburger equation is evaluated, see [26,29,87]

cM = 1 − exp
(
−θMs − θ

θM0

)
. (1)

Therein, θM0 is a temperature independent material parameter, which differs for different alloy compositions.
Based on simulative data from the Institute of Forming Technology and Machines (IFUM) at LU Hannover,
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Fig. 3 Temperature evolution on outer and inner lateral surface and related martensitic volume fraction based on Eq. (1)

namely martensitic start temperature θMs = 185 ◦C and final process quantities, i.e., room temperature (RT)
θRT = 20 ◦C and the martensitic volume fraction at room temperature cMRT = 0.87, the alloy-dependent
parameter θM0 can be determined by rearranging Eq. (1), i.e.,

cMRT = 1 − exp
(
−θMs − θRT

θM0

)
⇔ θM0 = − θMs − θRT

ln(1 − cMRT)
. (2)

On the basis of the experiments and macroscopic simulations with Simufact at IFUMmentioned in Sect. 2,
the temperature evolution on the outer and inner lateral surface can be illustrated in dependence of the cooling
time, cf. Fig. 3. By evaluation of Eq. (1), the related evolution of the martensitic volume fraction on the
lateral surface can be illustrated as well. Details on the material modeling of the austenite-to-martensite phase
transformation are summarized in Appendix A.2.

3 Two-scale finite element simulation

In the case of micro-heterogeneous materials, the direct micro-macro transition approach can be utilized to
incorporate microscopic characteristics into the Finite Element Method, see, e.g., [46,47,65,66,75]. This two-
scale computational homogenization scheme takes into accountmicrostructural phenomena in order to compute
themacroscopicmaterial behavior. Thereby, thematerial law of themacroscopic boundary value problem (bvp)
is replaced by suitable averages of the solution of microscopic bvps in each macroscopic integration point.
In the following, all macroscopic quantities are marked by •̄, while microscopic quantities remain unmarked,
i.e., •.

3.1 Macroscopic boundary value problem

Considering small strains, it holds for the macroscopic body B̄ ∈ R
2 that the macroscopic strains are defined

as the symmetric gradient of the macroscopic displacements, i.e., ε̄ = ∇s ū with ∇s• = 1
2 (∇ •+∇T•). For the

solution of a thermo-mechanical bvp, the balance of momentum and the balance of energy neglecting outer
forces and acceleration terms

div σ̄ = 0 and c̄ρ
˙̄θ + θ̄ r̄ + div q̄ = 0, (3)

respectively, are taken into account. The occurring macroscopic quantities are the Cauchy stress σ̄ , the product
of specific heat capacity and density, c̄ρ , the temperature θ̄ and its rate ˙̄θ , the cumulative macroscopic heat
supply r̄ and the heat flux vector q̄. The macroscopic heat flux vector is assumed to equal q̄ = −k̄ grad θ̄ with
non-negative heat conduction coefficient k̄. Since internal heat sources or sinks are neglected, it holds r̄ = 0.
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Boundary conditions have to be defined for the macroscopic boundary value problem based on the dis-
placement vector ū, the macroscopic traction vector t̄ , the macroscopic temperature θ̄ and the heat flux on the
boundary q̄0, i.e.,

ū = ū0 on ∂B̄u, t̄ = σ̄ · n̄ on ∂B̄t ,

θ̄ = θ̄0 on ∂B̄θ , q̄0 = q̄ · n̄ on ∂B̄q .
(4)

Therein, n̄ denotes the outer normal on the macroscopic boundary ∂B̄. In general, it has to be fulfilled that

∂B̄u ∪ ∂B̄t = ∂B̄, ∂B̄u ∩ ∂B̄t = ∅,

∂B̄θ ∪ ∂B̄q = ∂B̄, ∂B̄θ ∩ ∂B̄q = ∅.
(5)

3.2 Microscopic boundary value problem

On the microscale, a two-dimensional body B ∈ R
2 is defined by a representative volume element (RVE),

see [20,21,90]. Due to the assumed scale separation of macro- and microscale, we consider a steady-state
temperature on the microscale without spatial variations within B. Thus, the microscopic temperature is
assumed to be constant in an RVE in each time step, i.e., θ = θ̄ , leading to an isothermal bvp on the microscale.
However, the temperature influences the material parameter in the microscopic constitutive equations, see
AppendixA.1, and therefore plays an important role on themicroscale.Neglecting outer forces and acceleration
terms, the balance of momentum div σ = 0 is considered the microscopic Cauchy stress tensor denoted by σ .

In order to derive microscopic boundary conditions, the Hill–Mandel condition is taken into account, see
[21]. It states that the macroscopic stress power is equivalent to the volumetric average of the microscopic
stress power, such that it holds

σ̄ : ˙̄ε = 1

VB

∫

B
σ : ε̇ dv. (6)

Therein, VB describes the microscopic volume of the bodyB, and ε̇ and ˙̄ε are the microscopic andmacroscopic
strain rate, respectively. From Eq. (6), different types of boundary conditions can be derived, see, e.g., [66]. In
this contribution, periodic boundary conditions are considered, which rely on the decomposition

u = ε̄ · x + w̃, w̃+ = w̃−, t+ = −t− (7)

withmicroscopic traction vector t and position vector x ∈ B.Moreover, •+ and •− are quantities at periodically
associated points of the boundary of the RVE. The fluctuations of the displacement field are denoted by w̃,
such that it holds that ε = ε̄+ ε̃ with ε̃ = ∇sw̃. Due to the isothermal process in the RVE, no thermal boundary
conditions have to be defined. Analogously to the additive decomposition of the strains into a homogeneous
and a fluctuation part, a split of the stress tensor can be motivated, i.e.,

σ = σ̄ + σ̃ with σ̄ = 1

V

∫

VB
σ dv. (8)

3.3 Elasto-plastic material model

For the material model describing elasto-plastic behavior, we consider the free energy function ψ which can
be divided into mechanical, namely elastic and plastic parts, a thermal and a coupling term. The free energy
depends on the elastic strain tensor εe, the strain-like variable e and the temperature θ , see [44,70],

ψ(εe, e; θ) = 1

2
κ (tr εe)2 + μ ‖ dev εe‖2

︸ ︷︷ ︸
elastic

+ 1

2
h e2

︸ ︷︷ ︸
plastic

− cρ

(
θ ln

θ

θ0
− θ + θ0

)
︸ ︷︷ ︸

thermal

− 3αT κ (θ − θ0) tr ε
e

︸ ︷︷ ︸
coupling

, (9)
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with ε = εe + εp and dev as deviatorical operator. Therein, κ denotes the bulk modulus, μ the shear modulus,
h the linear hardening parameter, cρ the product of specific heat capacity and density, θ0 the initial temperature
and αT the heat expansion coefficient. The microscopic stresses σ can be derived from the free energy function
as

σ = ∂ψ

∂εe
= κ tr εe 1 + 2μ dev εe − 3αT κ (θ − θ0)1, (10)

which considers the stress response on the microscale based on the steady temperature θ = θ̄ . Moreover, a
von Mises yield criterion

� = ‖ dev σ‖ −
√
2

3
y ≤ 0 with y = y0 + β (11)

is chosen following [69], in which y represents the yield stress, which depends on the strain-like variable e and
the temperature θ . In this context, e is to be interpreted as accumulated plastic strains defined for computation
time t in dependence of the plastic strain rate ε̇ p as

e =
∫ t

0

√
2

3
‖ε̇ p(t̂)‖ dt̂ . (12)

It holds that y is related to the initial yield stress y0 by the so-called stress-like work conjugate β = ∂eψ .
As transition frommicroscale tomacroscale, a homogenization scheme has to be applied for themechanical

variables, namely the macroscopic stresses σ̄ , the macroscopic strains ε̄ and the mechanical part C̄uu of the
macroscopic tangent moduli. These macroscopic quantities can be computed by appropriate averages over the
associated microscopic quantities, for detail see, e.g., [66].

Furthermore, the averaging scheme to obtain the macroscopic bulk modulus κ̄ , the macroscopic heat
expansion coefficient ᾱT, the macroscopic heat conduction coefficient k̄ and the product of macroscopic
specific heat capacity and macroscopic density, c̄ρ , is defined as

•̄ = cM •M (θ) + cA •A (θ), for • ∈ {κ, αT, k, cρ}. (13)

This Voigt average is interpreted as upper bound of the material parameters, while Reuss bounds serve as
lower bound. For a first setup of the computational model, the simple Voigt averaging scheme is chosen. More
physically realistic approximations are, e.g., the Mori–Tanaka model or the self-consistent method, see, e.g.,
[19].

Besides a macroscopic mechanical part based on themechanical tangent moduli C̄uu, the stiffness matrix K̄
also contains the thermo-mechanical coupling terms, i.e., K̄uθ and K̄θθ , resulting from a discretized form of
the balance of energy, cf. Eq. (3). Due to considered one-way coupled problem, the second thermo-mechanical
coupling term K̄θu is neglected. Since no mechanical outer forces are applied, its influence is diminishing.

K̄ :=

⎡
⎢⎢⎢⎢⎢⎣

K̄uu K̄uθ

K̄θu K̄θθ

⎤
⎥⎥⎥⎥⎥⎦

. (14)

4 Numerical analysis

Based on the previously presented material model and the numerical study in [83], an extended numerical
simulationmodel using the finite element analysis programFEAP, cf. [77], is established.A two-scale boundary
value problem (bvp) is defined as combination of a 2D bvp on the macroscale and a microscopic 2D bvp
attached to each macroscopic integration point, following Sect. 3, to perform an investigation regarding the
stress evolution. Due to the absence of outer forces, those stresses can be interpreted as residual stresses. On the
macroscale, the main focus lies on the tangential stress distribution since these stresses are most relevant with
respect to life time or strength of the component. On the microscale, the aim is to analyze the fluctuation part
of the microscopic stress tensor σ̃ as introduced in Eq. (8) to study the microscopic residual stress distribution.
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Fig. 4 Two-scale boundary value problem to numerically simulate the cooling process. A two-dimensional slice of the cylindrical
specimen in combination with two-dimensional boundary value problems to depict the austenite-to-martensite transformation is
considered. On the macroscale, the boundary conditions ux2 = 0 on ∂B̄u, q̄0 = 0 on ∂B̄q , t̄ = 0 on ∂B̄t and θ̄ on ∂B̄θ as given
in Fig. 3 are applied. The final phase distribution is given on the microscale with austenite in gray and martensite in red. Regions
I, II and III with microscopic investigation points are marked in green

4.1 Setup of the boundary value problem

The two-dimensional model considers a cross section of the three-dimensional geometry in Fig. 1 located at
x3 = h

2 . However, we are using the undeformed shape of the cylindrical geometry. It takes into account plane
strain conditions for the two-dimensional approximation of the associated three-dimensional problem. To set
up the two-scale boundary value problem, the symmetry of geometry and loadings concerning the x1-axis
of the considered cross section is exploited, see Fig. 1. Consequently, the displacement boundary condition
ūx2 = 0 on ∂B̄u is applied to all nodes at x2 = 0, cf. Fig. 4. The inner and outer lateral surface is in contact with
cooling medium water and hence is directly exposed to the cooling. Here, thermal boundary conditions are
applied on ∂B̄θ , which are shown in Fig. 3 for outer and inner lateral surface. Due to the symmetry, the heat flux
at x2 = 0 vanishes, i.e., boundary condition q̄0 = 0 on ∂B̄q is applied. Following the analysis of discretization
and time step size in [83], the macroscopic geometry is discretized with 20 nine-noded quadrilateral finite
elements in radial direction. Relative to that, less finite elements are chosen in circumferential direction. Later
investigations will be made for three radial regions, which are marked with I, II and III in Fig. 4, for different
wall thicknesses of the cylindrical slice. In these regions, the element size in circumferential direction is
reduced, as shown in Fig. 4.

For the underlying microstructure, the representative volume element (RVE) is chosen to be an artificial
structure, which is shown on the right side of Fig. 4. The structured finite element mesh is built of 30 × 30
four-noded quadrilateral finite elements, see [83]. Details on the modeling of phase transformation and the
consideration of the dependency of the material parameters of austenite and martensite on the temperature
can be found in Appendix A and further details in [83]. On the microscale the material modeling considers
an elasto-plastic behavior as described in Sect. 3.3. In Fig. 4, red indicates martensitic regions and gray
denotes austenitic grains. For the analysis regarding the microstructure, nine macroscopic integration points
are evaluated in detail. Those are in the middle and at both ends of regions I, II and III. Points near the outer
surface are marked by �, points near the inner surface by � and points in the middle of each region by �, see
Fig. 5a.

4.2 Evolution of phase fractions on microscale

As stated in Sect. 2.1, the fast cooling in water results in a diffusionless phase transformation from austenite
to martensite. In the two-scale simulation, the phase transformation is computed based on the macroscopic
temperature, which is passed onto the microscale in each integration point. Since the cooling is applied on the
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lateral surface and the outer lateral surface cools slightly faster than the inner one, the phase transformation
starts earlier there, cf. Fig. 5a at positions �. It can be seen that martensite already started to form, indicated
by the regions colored in red in the RVEs, in all three regions I, II and III at �, whereas at � and �, the
white-colored RVEs indicate a fully austenitic state.

With ongoing cooling process, the temperature falls below the martensitic start temperature also at the
inner lateral surface, position �, and martensite starts to form there as well, see Fig. 5b. Due to the small
wall thickness of region II relative to regions I and III, one observes a faster heat conduction to the middle
of the region, where the phase transformation has already started. Figure 6a shows a nearly homogeneous
temperature distribution on the macroscale. The martensitic volume fraction has nearly reached its final value
in all nine points. The final distribution is given in Fig. 6b.

4.3 Relation of phase transformation to stress evolution on microscale

Figure 7 analyzes region III point � with respect to the microstructural state of phases and resulting stresses.
Therefore, the microscopic mechanical pressure term p = 1

3 tr σ̃ is taken into account. One sees that with
initialization of the austenite-to-martensite phase transformation, cf. Fig. 7a, the first elements are switched
to be martensitic. In those regions, compressive stresses occur which are a consequence of the surrounding
material hindering the volumetric expansion of the martensite. With ongoing cooling process and increasing
martensitic volume fraction, more microscopic elements are switched from austenite to martensite. Thus, in
those switched martensitic elements compressive stresses evolve, while elements, which remain austenitic,
show tensile stresses, cf. Fig. 7b and c, due to the direct interaction with neighboring expanding areas. Finally
in Fig. 7d, at the end of the cooling process, the lastly switchedmartensitic elements show compressive stresses
and the remaining austenitic regions tensile stresses.

Please note that the underlyingmicrostructure is defined by a structuredmesh and the switch from austenite
to martensite is done in a random process in this computational approach. A more realistic approach, taking
into account the spatial morphology of martensite additionally, can be realized using, e.g., phase-field models.
Here, the representation based on the phase fraction properties gives a first insight to the interplay between
austenite and martensite on the microscopic level.

4.4 Quadratic measures of microscopic stress fluctuations on macroscale

In addition to the distribution of the microscopic stresses over an RVE, see Sect. 4.3, in this section we
especially consider their representation at the macroscale. According to Eq. (8), the fluctuations of the stresses
are defined as σ̃ = σ − σ̄ . By definition, the volume average of the microscopic fluctuations over the complete
RVE is equal to zero. In order to be able to show their influence on the macroscopic level, quadratic measures
〈•2〉 of the stress fluctuations, the deviatoric part of the fluctuations and the pressure term are defined. With
i, j ∈ {1, 2, 3} it holds that

〈
σ̃ 2
i j

〉
= 1

VB

∫

B
σ̃ 2
i j dv = 1

VB

∫

B
(σi j − σ̄i j )

2 dv,

〈
(dev σ̃ )2i j

〉
= 1

VB

∫

B
(dev σ̃ )2i j dv,

〈p2〉 = 1

VB

∫

B
(
1

3
tr σ̃ )2 dv (15)

with dev σ̃ = σ − 1
3 tr σ̃1 and p = 1

3 tr σ̃ . Dragging the root of the quantities in Eq. (15) results in normed
quantities, namely

‖σ̃i j‖ =
√〈

σ̃ 2
i j

〉
,

‖(dev σ̃ )i j‖ =
√〈

(dev σ̃ )2i j

〉
,

‖p‖ =
√〈

p2
〉
. (16)
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Fig. 8 Rotation of coordinate system by angle α to compute tangential fluctuation of stresses on microscale

Thus, it is possible to display and evaluate quantities related to the microscopic stress fluctuations macro-
scopically. In particular, the tangential part of residual stresses near the surfaces is a decisive issue for the
durability and wear resistance of a component. Consequently, the macroscopic representation of the tangential
part of the fluctuation measures from Eqs. (15) and (16) should be investigated. To calculate these, the angle
α is needed, which is defined by the location of the associated macroscopic integration point of interest with
respect to the x1-x2-coordinate system in Fig. 8. It describes the rotation of the original x1-x2-coordinate
system to a x ′

1-x
′
2-coordinate system, whose x ′

2-axis points in tangential direction.
Based on the angle α, a rotation matrix R for the mapping of quantities from the x1-x2-coordinate system

to the x ′
1-x

′
2-coordinate system results. The tangential part of the microscopic fluctuations σ̃tang results from

the second main diagonal entry (22) of the mapped microscopic stress fluctuation, i.e.,

σ̃tang = σ̃x ′
2x

′
2

=
(
R · σ · R T − R · σ̄ · RT

)
x ′
2x

′
2

with R =
⎛
⎝
cosα − sin α 0
sin α cosα 0
0 0 1

⎞
⎠ . (17)

By means of an additional quadratic measure, analogous to the treatment in Eqs. (15) and (16), the fluctu-
ations of the stresses can also be represented on the macroscopic level. It is defined as

‖σ̃tang‖ =
√〈

σ̃ 2
tang

〉
with

〈
σ̃ 2
tang

〉
= 1

VB

∫

B
σ̃ 2
tang dv. (18)
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Fig. 9 Macroscopic measures, namely ‖p‖, ‖σ̃11‖, ‖(dev σ̃ )11‖ and ‖σ̃tang‖ in MPa after (a) t = 9 s (b) t = 12 s, (c) t = 20 s
and (d) t = 80 s

4.4.1 Interpretation of microscopic residual stress on macroscale

Figure 9 shows the evolution of different components of the macroscopic averaged measures. In the following
the considered quantities are ‖p‖, ‖σ̃11‖, ‖(dev σ̃ )11‖ and ‖σ̃tang‖. In order to achieve better comparability,
the scales of all four plots are set to the same range. Definitions of regions I, II and III are given in Fig. 4.

It can be seen that all four plots at one fixed time t qualitatively show the same behavior. Before the
temperature steps below the martensitic start temperature, all four macroscopic quantities are equal to zero.
This resembles that no phase transformation occurs on the microscale, since this would induce microscopic
fluctuations of stress. After nine seconds of cooling time, the phase transformation has just been initiated near
the outer surface, see Fig. 9a. Thus, all four examined quantities differ from zero near the outer surface. With
ongoing cooling, the area increases in which microscopic fluctuations are measured, see Fig. 9b. After 12 s
of cooling time, the phase transformation has been initiated at the inner lateral surface as well as in region
II. The material in the bulk of regions III and I is cooled later, such that still no influence of the microscopic
fluctuations can be observed. After 20 s nearly homogeneous values for all four quantities are obtained, see
Fig. 9c. The final values at the end of the cooling process are shown in Fig. 9d. At the end of the cooling
process, the volume fractions of austenite and martensite are the same for every macroscopic integration point.
Thus, we see nearly homogeneous distributions for all four measures with a slight increase near the lateral
surfaces. Quantitatively, the deviatorical measure ‖(dev σ̃ )11‖ shows lower stress values than the fluctuation
measure ‖σ̃11‖ or ‖σ̃tang‖. Furthermore, the pressure term ‖p‖ exceeds the fluctuation measure ‖σ̃11‖ and
‖σ̃tang‖, respectively.

4.4.2 Interpretation of microscopic tangential residual stress on micro- and macroscale

As continuation of Sect. 4.4.1, in the following the focus is laid on the tangential part of the microscopic
stress fluctuations and its representation on micro- and macroscale. Therefore in the following, we consider
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the tangential part of the fluctuations of the stresses on the microscale σ̃tang and their quadratic measure ‖σ̃tang‖
on the macroscale.

On the microscale the stress evolution starts with the austenite-to-martensite phase transformation as
discussed in Sect. 4.3. The microscopic elements, which are switched to martensite, show high compressive
stresses, see Fig. 10a. On the other hand, elements in between show low values or even tensile stresses. Because
the phase transformation starts at the outer surface, only at position � microscopic fluctuations in all three
regions I, II and III can be observed. On the macroscale, the quadratic measure ‖σ̃tang‖ varies from zero in
those regions close to the outer surface. This shows that the selected fluctuation measure is able to display
information of the residual stresses of second and third type on the macroscale.

After 12 s of cooling time, cf. Fig. 10b, all examined integration points, except regions I and III at position
�, show fluctuation of stresses σ̃tang, which differ from zero. For example, if we look more closely at region
III, we see that there are no fluctuations at position �. Here, the temperature is still above the martensitic start
temperature, see Fig. 5b. At position� the phase transformation has only started. Thus, the values of the stress
fluctuations are lower than at position �. This is also confirmed by the macroscopic measure, see Fig. 10b.

Figure 11a shows that the phase transformation now takes place everywhere as indicated by the stress
development on both scales. The final distribution of ‖σ̃tang‖ on the macroscale is nearly homogeneous, since
in all macroscopic integration points the same phase fraction is present, see Fig. 11b. However, fluctuations of
the microscopic tangential residual stresses can be seen in the RVEs. All RVEs seem to have similar states of
residual stresses.

4.5 Interpretation of residual stresses of different types on macroscale

Residual stresses are known to influence the wear and fatigue behavior of a component. In order to improve its
properties, it seems reasonable to aim for compressive residual stresses near the surface. Thereby, the durability
can be enhanced and the component’s life time can be extended, e.g., in case of fatigue cracking. Thus, this
section analyzes themacroscopic tangential stress evolution σ̄tang during the cooling process. In Figs. 12 and 13
it is linked to the quadratic measure ‖σ̃tang‖ of the tangential part of the stress fluctuations, defined in Eq. (17).
Since no outer forces are applied, cf. Fig. 4, the occurring tangential stresses can be interpreted as residual
stresses of first type and the quadratic measure as a measure of the microscopic residual stress influence on
macroscale. By definition of this measure, we do not distinguish between positive and negative values of stress
fluctuations. Instead, the absolute value is taken into account, such that the averaged microscopic residual
stress amplitude is displayed.

On the macroscale, the cooling of the lateral surfaces evokes tensile stresses due to thermal contraction in
regions near the surface, see Fig. 12a. Since no phase transformation occurs on microscale, the microscopic
stress measure does not differ from zero. After the austenite-to-martensite phase transformation is initiated on
the microscale, we observe compressive stresses near the outer surface on the macroscale for σ̄tang, cf. Fig. 12b.
They result from the superposition of stresses due to thermal contraction and the volume expansion due to
phase transformation. The quadratic measure shows high values in regions where the phase transformation
occurs.

With ongoing cooling process, this behavior can still be observed as shown in Fig. 12c and d. Regions,
in which ‖σ̃tang‖ equals zero, here the bulk material in Fig. 12c, do not undergo phase transformation yet. At
t = 20 s in Fig. 12d we see that the phase transformation has been initiated in the whole component, since it
holds ‖σ̃tang‖ > 0 everywhere. At the end of the examined process, we see a nearly homogeneous distribution
of the quadratic measure ‖σ̃tang‖, cf. Fig. 13a. With different color scaling as given in Fig. 13b, you can see that
the left side shows higher values than the right side of the component. This study shows that, in contrast to the
heterogeneous distribution of themacroscopic tangential stresses σ̄tang which are related to the residual stresses
of first type, see Fig. 13, the stress fluctuations related to the other both types do not depend on their associated
macroscopic position. The final distribution of σ̄tang illustrates that tensile stress occur near the surface of the
cylindrical component. In contrast, the bulk material shows compressive stresses. Since a targeted stress state
with compressive stresses near the lateral surface is desirable to improve, e.g., the components strength, it is
inevitable to make adoptions on the cooling process, i.e., changing the cooling rate or the route itself.
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Fig. 10 Tangential part of stress fluctuations σ̃tang in MPa on microscale and their quadratic measure ‖σ̃tang‖ in MPa on the
macroscale after (a) t = 9 s and (b) t = 12 s
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Fig. 11 Tangential part of stress fluctuations σ̃tang in MPa on microscale and their quadratic measure ‖σ̃tang‖ in MPa on the
macroscale after (a) t = 20 s and (b) t = 80 s
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Fig. 12 Tangential residual stresses of first type σ̄tang inMPa andmacroscopic measure of microscopic tangential residual stresses
‖σ̃tang‖ in MPa after (a) t = 5 s, (b) t = 9 s, (c) t = 12 s and (d) t = 20 s

5 Conclusion

In this contribution, the cooling process of a hot bulk formed part has been examinedwith respect tomacro- and
microscopic residual stress evolution. Therefore, a section of a cylindrical specimen with eccentric hole has
been investigated using a two-scale finite element simulation. Aside from the macroscopic tangential stresses,
which are known to be most relevant with respect to the component’s properties such as live time or strength,
special attention has been paid to the microscale and its stress evolution. In order to enable the examination
of microscopic residual stresses and to analyze their influence on the macroscopic residual stresses, quadratic
measures have been based on the stress fluctuations. Therewith, we showed the possibility to depict the impact
of the austenite-to-martensite phase transformation on the evoked residual stress distribution on micro- and
macroscale.

The chosen quadratic measures do not account for the sign of the microscopic stress fluctuations, i.e.,
compressive and tensile stresses. In order to be able to distinguish between tension and compression, however,
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Fig. 13 (a) Tangential residual stresses of first type σ̄tang in MPa and macroscopic measure of microscopic tangential residual
stresses ‖σ̃tang‖ in MPa after t = 80 s and (b) with different color scaling

it is inevitable to consider this. This has to be adopted in future works. Furthermore, the material model should
be extended to divide the microscopic residual stresses into residual stresses of second and third type.

This publication also considers a structured mesh with a randomized phase transformation process on
the microscale. In future steps, a more physically motivated microstructure has to be considered to validate
the findings. Moreover, a three-dimensional model of the complete specimen should be combined with a
three-dimensional microstructure to study the relevance of the third dimension with respect to the stress and
temperature evolution. In order to establish compressive stresses near the surface, the cooling process itself
has to be modified. This targeted residual stress state can help to achieve higher strength and longer life time.
Thereto, additional phases such as bainite, pearlite or ferrite have to be studied and added to thematerial model,
such that the processing of different cooling routes becomes possible, since then it cannot be guaranteed that
the process itself is still diffusionless. In addition, experimental validation and calibration of the results are
essential to verify the predictive capability of the model with respect to residual stresses and to prompt any
modifications.
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A Appendix

A.1 Interpolation of microscopic material parameters

The simulative data provided by IFUM, see Sect. 2, have to be processed to be used in the proposed two-scale
finite element simulation. The temperature-dependent quantities such as bulk modulus κ , shear modulus μ,
heat conduction coefficient k, heat expansion coefficient αT and the product of specific heat capacity and
density, cρ , are suspended to a linear interpolation scheme, which has been established in [83]. In Fig. 14 the
results of the appearing phases, austenite and martensite, are illustrated.
In addition to this linear interpolation of the quantities required for thermal and elastic material behavior, the
yield stress y and the linear hardening parameter h are determined in case of plasticity. Thereto, a two-step
linear interpolation scheme has been established in [83] to determine y and h in dependence of the accumulated
plastic strains e and temperature θ , see Table 2. Its schematic representation is given in Fig. 15, and the results
can be found in Fig. 16.

A.2 Material modeling of the austenite-to-martensite phase transformation

To incorporate the characteristics of austenite-to-martensite phase transformation, an element-wise switch
is implemented in the finite element code, and the volumetric expansion of the martensitic unit cells by

(a) (b)
Fig. 14 Sampling points and piecewise linear interpolation (a) for austenite and (b) martensite: bulk modulus κ in MPa, shear
modulus μ in MPa, heat conduction coefficient k in J/(mmsK), product of specific heat capacity and density cρ in N/(Kmm2)
and heat expansion coefficient αT in 1/K, taken from [83]

Table 2 Provided data for the interpolation of yield stress y and linear hardening parameter h based on temperature θ and
accumulated plastic strain e, taken from [83]
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Fig. 15 Schematic representation of interpolation scheme, taken from [83]

(b)(a)

(d)(c)

Fig. 16 Results of interpolation of material data for austenite and martensite: (a) and (c) yield stress y(θ, e) in MPa compared to
the given data points and (b) and (d) linear hardening parameter h(θ, e) in MPa in logarithmic scale, taken from [83]
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Table 3 Algorithm for austenite-to-martensite phase transformation at time step tn+1, adopted from [83]

(I) Get macroscopic temperature θn = θ̄n ∀x ∈ B
(II) Compute volume fractions cM with Equation (1) and cA = 1 − cM

(III) Define martensitic domain BM

(i) for each element m with volume Vm
if VBM < VB then
add Vm to VBM and set volumetric expansion ε∗

vol = 0.02
else Vm /∈ VBM and ε∗

vol = 0

(IV) Get history of plastic strains ε
p
n and strain-like variable en

(V) Get material parameters by interpolation, see Appendix A.1:
κ(θn), μ(θn), k(θn), cρ(θn), αT(θn), y(en, θn), h(en, θn)

(VI) Radial Return Algorithm

(i) Compute trial elastic strains

ε
e,trial
n+1 = εn+1 − ε

p
n − 1

3 ε∗
vol1 with ε = ∇su

and deviatoric elastic trial tangent Ce,iso
n+1 = 2μ IP

with 4th-order projection tensor IP

and deviatoric trial stresses dev σ trial
n+1 = 2μ dev ε

e,trial
n+1

(ii) Compute yield criterion �trial
n+1 = ‖ dev σ trial

n+1‖ −
√

2
3 y(en, θn)

(iii) if �trial
n+1 ≤ 0 then go to (iv)

else a)Update strain-like variable en+1 = en + �en+1

with �en+1 = �trial
n+1

2μ
√

3
2 +

√
2
3 h

b) Update plastic strains ε
p
n+1 = ε

p
n + �ε

p
n+1

with �ε
p
n+1 =

√
3
2 �en+1 nn+1 , nn+1 = dev σ trial

n+1

‖ dev σ trial
n+1‖

c) Update of deviatoric stresses

dev σ n+1 = dev σ trial
n+1

(√
2
3 y(en+1,θn)

‖ dev σ trial
n+1‖

+ 10−8
)

d) Plastic modification of tangent moduli

Ciso
n+1 = Ce,iso

n+1 − 4μ2

2μ+ 2
3 h

nn+1 ⊗ nn+1

− 4μ2

2μ+ 2
3 h

�trial
n+1

‖ dev σ trial
n+1‖

(IP − nn+1 ⊗ nn+1)

(iv) Add volumetric tangent Cn+1 = Ciso
n+1 + κ1 ⊗ 1

(v) Compute stresses σ n+1 = κtrεe,ison+11 + 2μ dev εen+1

tetragonal transformation has to be considered. The complete algorithmicmodeling of themicroscopicmaterial
is presented in Table 1
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