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Abstract In this article, several aspects ofmaterial parameter identification are addressed.We compare several
methods to identify material parameters of a constitutive model for small strain, linear elastic transverse
isotropy based on experimental data of specimens made from composite plates. These approaches range
from identifying the five material parameters from purely analytical considerations to the fully numerical
identification on the basis of finite elements and various data provided by digital image correlation (DIC). The
underlying experimental tests range from purely uniaxial tensile tests with varying fiber orientation to shear
and compression tests. A specific measuring instrument has been developed for the latter tests to obtain unique
material parameters—motivated by the concept of local identifiability. Besides, we compare the numerical
differentiation, which is the common procedure in parameter identification, with the fully analytical derivation
of sensitivities within the DIC/FEM approach.

Keywords Material parameter identification · Least-square method · Finite elements · Transverse isotropy ·
Digital image correlation

1 Introduction

One of the simplest models incorporating anisotropy is represented by transverse isotropy, where the material
has one pronounced orientation. Here, we restrict ourselves to the case of purely linear elastic material models.
This can be formulated by an invariant theory, for example [25,42,44], offering the possibility to also treat
physically and geometrically nonlinear behavior. The restriction to linear behavior can be obtained by lin-
earizing the equations so that merely quantities depending linearly on the strain tensor can be obtained. These
purely tensorial formulations, which have the advantage of being independent on the choice of the coordinate
system, can be adapted to curvilinear problems, [47] and [15], or to Cartesian coordinates. In the latter case,
it is common to reformulate tensorial expressions into matrix equations, where either the Voigt or the Kelvin
notation can be applied, see [46]. The components of the stress and strain tensors are assembled in (6×1) col-
umn vectors, and the (6×6) elasticity matrix connects both quantities. This symmetric matrix contains—in the
case of transverse isotropy—5 independent material parameters, which have to be determined by experimental
tests. Unfortunately, it is not really clear, which tests are necessary to determine the parameters more or less
uniquely. One approach is discussed in Christensen [8], where several experiments are proposed. However,
one of these experiments is very difficult to carry out or almost impossible to implement due to the boundary
conditions. These tests have the advantage that they describe homogeneous deformations so that—on the level
of matrix representation of the constitutive model—the material parameters are determinable.
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Digital image correlation (DIC) systems are amoremodern approach, where full-fieldmeasurements of the
displacements or strains on a subregion of the surface of a specimen are chosen to compare the data with finite
element simulations, [2,31]. Further papers following this concept are [4,9,26–28,38] using gradient-based
optimizationmethods. Here, a least-squaremethod is chosen tominimize the residual between the experimental
data and numerical results. For a gradient-free scheme see [17], where the numerical algorithm of Powell
[35,36] is chosen, or [23,24] applying a neural network approach. Further applications are shown, for example,
in [6,18,30,37], where indentation tests are applied. The theoretical basis of parameter identification using
finite elements and constitutive models of evolutionary type is discussed in [13] focusing on the relationship
to numerical mathematics.

In this article, we discuss the material parameter identification process for transverse isotropy using two
approaches—first assuming homogeneous deformations and then, secondly, inhomogeneous ones. For this
purpose,we carry out uniaxial tensile tests onfiber-reinforced specimens under three different fiber orientations,
a shear test, and a particular compression test. Furthermore, the concept of local identifiability, see [3,5], is
transferred to the investigation under consideration. For purely elastic materials, see the discussions in [14,20].
Several identification procedures and the reliability of the parameters obtained are discussed.

The notation in use is defined in the following manner: Geometrical vectors are symbolized by �a, second-
order tensorsA by boldfacedRoman letters, and calligraphic lettersA define fourth-order tensors. Furthermore,
we introducematrices at global level symbolized by boldfaced italic lettersA andmatrices on local level (Gauss
point level) using boldfaced Roman letters A.

2 Experimental and model considerations

2.1 Model of transverse isotropy

A common model to describe the material behavior of composites with unidirectional fiber orientation is
represented by linear elastic transverse isotropy. One model representation is given in [44]. For the case of
small strains, this model reads

T = (ΛIE + αIVE)I + 2μTE + (αIE + βIVE)M + 2(μL − μT )(EM + ME), (1)

or using T = CE, it is expressed by the fourth-order elasticity tensor

C = ΛI ⊗ I + 2μT I + α[I ⊗ M + M ⊗ I] + βM ⊗ M + 2(μL − μT )[I ⊗ M + M ⊗ I]T23 . (2)

E(x, t) = 1

2
(grad u(x, t) + gradT u(x, t)) (3)

defines the linearized Green strain tensor, and

IE = trE, IIE = trE2, IIIE = trE3, IVE = tr (EM) = E · M, VE = tr (E2M) = E2 · M (4)

represent the invariants concerning transverse isotropy. M = a ⊗ a symbolizes the structural tensor, where
a defines the fiber direction. I = [I ⊗ I]T23 = δikδ jlei ⊗ e j ⊗ ek ⊗ el is the fourth-order identity tensor,
A = IA. The symbol AT23 implies the transposition of second and third index of the fourth-order tensor A,
i.e., for A = ai jklei ⊗ e j ⊗ ek ⊗ el we obtain AT23 = aik jlei ⊗ e j ⊗ ek ⊗ el .

One particular property of the model is its additive decomposition of the stress state T = Tiso + Tani into
an “isotropic” and an “anisotropic” part

Tiso = ΛIEI + 2μTE, (5)

Tani = αIVEI + (αIE + βIVE)M + 2(μL − μT )(EM + ME), (6)

implying the fourth-order tensors C = Ciso + Cani,

Ciso = ΛI ⊗ I + 2μT I, (7)

Cani = α[I ⊗ M + M ⊗ I] + βM ⊗ M + 2(μL − μT )[I ⊗ M + M ⊗ I]T23 , (8)
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Fig. 1 Specimens (dimensions in mm)

see comments onminor andmajor symmetries of the fourth-order elasticity tensor in Appendix B. In this sense,
Λ and μT represent the Lame constants depending on the Young’s modulus E and the Poisson’s number ν by

Λ = νE

(1 + ν)(1 − 2ν)
, μT = E

2(1 + ν)
, (9)

i.e., we can reformulate the fourth-order elasticity tensor Ciso by

Ciso = E

1 + ν
I + Eν

(1 + ν)(1 − 2ν)
I ⊗ I (10)

as well. The Voigt notation of the fourth-order elasticity tensor is summarized in Appendix A.

2.2 Experiments at pure resin and unidirectional composite specimens

In the following, we perform uniaxial tensile tests on pure resin specimens, uniaxial tensile experiments on
specimens with unidirectional fiber reinforcement in three directions (γ = 0◦, 45◦, 90◦), a shear test, and a
particular compression test. We choose glass fibers (Young’s modulus E f = 73,000 MPa, Poisson’s number
ν = 0.22) embedded in an epoxy resin RIMR135 with a curing agent RIMH1366 and a volume fraction of
approximately 55%. For the reinforcement, endless E-glass fibers HP-U400E are drawn on from HP-Textiles
GmbH. The fiber diameters are 13–24µm, which are bundled to rovings of 4-7 mm. The rovings are connected
by binding threads (for a picture of the specimens, see [21]). The distance of the fiber bundles is around 0–
1 mm.We use the double-camera systemARAMIS 5M in connection with the software ARAMIS Professional
2017 from GOM GmbH, Brunswick, Germany.

2.2.1 Tensile tests

In each test, the displacement of the machine’s traverse is prescribed linearly, the forces are recorded, and
the deformation field is measured in the center region of the specimens using a DIC system (except for the
compression test, where no optical access is possible). The geometries of the tensile specimens are shown in
Fig. 1. The traverse displacement is prescribed by u(t)e1 with u(t) = u̇t , u̇ = 0.025mm s−1. We measure
the reaction force—signal of the testing machine’s force gauge—and the surface displacements in the center
region of the specimens. For each tensile problem—pure plane resin (dog-bone-like specimens), and flat
fiber-reinforced specimens for γ = 0◦, 45◦, 90◦, and γ = 90◦—five tests are performed.

Exemplarily, the axial strain distribution of the tensile specimen of Fig. 1b is shown in Fig. 2. To minimize
rigid body displacements resulting from the testing machine’s flexibility, two arms are directly fixed (locally—
here, at the right-hand side with a ruler) at the clamps, and the measured displacements are modified relative
to the arms.

One interesting effect is that the matrix material between the fiber rovings deforms more than in the roving
region. Thus, a highly scattered strain distribution is present. However, we follow the common assumption of
a homogeneously distributed material property. Since we do not assume a heterogeneous material, model (1)
is assumed to be sufficient. It is well known that a homogeneous stress state is impossible for γ = 45◦ since
there is a coupling between both axial and lateral strains with shear, which is numerically demonstrated in [1].
Nevertheless, we show the load–deflection curves for the three tests γ = 0◦, 45◦, 90◦, see Fig. 3b. Using a
DIC system, we measure the surface displacements and surface strains in a subregion of the specimen. (The
results are used for parameter identification later on).
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Fig. 2 DIC information of axial strains ε11

Fig. 3 Load–displacement curves (traverse displacement) of pure resin material and various fiber orientations γ = 0, 45, 90◦
(for each experiment five tests are performed)

2.2.2 Shear tests

Additionally, shear tests at specimens with γ = 90◦ are performed using the shear tool proposed in [43].
Figure 4a shows the shear device of the three-rail shear tool is shown, whereas the results in Fig. 4c are
required in the parameter identification process.

2.2.3 Compression tests

For the purpose of parameter identification, we built a compression device where an axial, compressive load
can be applied, and the lateral stresses are measured, see Fig. 5a. In other words, we assume the stress and
strain state

T =
⎡
⎣

σ11 0 0
0 σ22 0
0 0 σ33

⎤
⎦ , E =

⎡
⎣
0 0 0
0 0 0
0 0 ε33

⎤
⎦ . (11)

We prescribe the axial strains ε33 and measure both σ11 and σ22 by the force gauges in the compression
tool as well as the axial stresses σ33 by the testing machine’s force gauge, see Fig. 5b. As it is common, the
axial deformation was calibrated using the testing machine’s stiffness, and several pretests with homogeneous
materials were performed to find out whether the measuring system provides sufficient accuracy. For this,
we chose aluminum and rubber material. Similarly to the lateral strain determination procedures in classical
tensile tests, where the lateral strains are very small, the lateral force measurement in the compression test is
highly sensitive due to geometrical imperfections of the specimens itself. Figure 6b, c shows the response of
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Fig. 4 Three-rail shear tool

Fig. 5 Compression device and chosen coordinate system

the lateral stresses resulting from the given strains ε33 (and stresses σ33), see Fig. 6a. The lubricant used for
the compression testing is CRC SILICONE IND (synthetic oil spray) to reduce the friction, and the samples
were brought to their final shape with a milling cutter. Unfortunately, this leads to melting of the material on
the surface if the coolant is left away. Another reason for the dispersion can be the width of the samples used
(12 mm), which is small in relation to the fiber bundle width of 4-7 mm. However, since this does not lead to
a significant effect on the identification of the parameters in the averaged sense (compare later the results of
the different approaches to identification), the experimental results are used in this form. Nevertheless, there
is a need for further investigation for the future.

3 Parameter identification of transverse isotropic material

3.1 Basics of parameter identification

Since we are interested in the application of the least-square method, the exact number of experimental data
for the material parameter identification process must be determined. In each experiment Ê , Ê = 1, . . . , nexp,

we have the experimental data d (Ê) ∈ R
n(Ê)
exp , with n(Ê)

exp = n(Ê)
N n(Ê)

d . n(Ê)
d are commonly more than sev-

eral thousand (spatial) entries for DIC data, and a reaction force of the testing machine if there is a dis-

placement control. In each experiment, we have n(Ê)
N load steps (sampling times), i.e., evaluation times tn ,
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Fig. 6 Experimental data of the compression tests (a = e1)

n = 0, . . . , n(Ê)
N . In other words, we have to assemble the data d (Ê)

n ∈ R
n(Ê)
d at each evaluation time tn

into the vector d (Ê)T = {d (Ê)T
0 ,d (Ê)T

1 , . . . ,d (Ê)T

n(Ê)
N

}. Accordingly, we compile all tests into a large vector

dT = {d (1)T ,d (2)T , . . . ,d (nexp)T }. The total number of experimental data is defined by nD = ∑nexp
Ê=1

n(Ê)
exp .

The experiments might be totally different or they are the same experiments performed multiple times. The
data sets in each experiment are either displacements or some strain measures (strains in a particular direction
maximum, principal strains, etc.) at particular points provided by a digital image correlation system, and the
force gauge’s information of the testing machine.

On the other hand, we have simulation data by means of finite elements, i.e., nodal displacements (or a
strain measure) and resulting forces, which are evaluated at other points for each experiment. Thus, a linear
interpolation in time to the experimental data at tn is chosen. In the case of linear problems, there are twopossible
approaches: Either the experimental data, where we have different increasing loading steps, are interpolated
in advance before treating parameter identification—in which we obtain only one experimental data point per
load step—or we consider all the data in the identification process for each loading step, yielding much more
data to be considered in our identification procedure.
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In our case, the DIC region is smaller than the FEM region, i.e., only a subset of all nodal displacements

u(Ê)
n ∈ R

n(Ê)
u of the finite element simulation (or strain measures at particular points of experiment Ê) can be

compared to the DIC data, ũ(Ê)
n = M̃

(Ê)
u(Ê)

n , ũ(Ê)
n ∈ R

ñ(Ê)
u . The matrix M̃

(Ê)
extracts only the necessary nodal

displacements. There must be a spatial interpolation of the experimental data d (Ê)
n to locations, where the

numerical data ũ(Ê)
n are provided (or the other way round). In this contribution, we project the FEM data onto

the DIC data. Thus, an interpolation scheme is required. An essential drawback is that neither commercial
DIC programs nor FEM programs provide displacements or strains at arbitrary points within the region under
consideration. Here, we draw on the triangulation concept proposed in [16] and apply it to each surface
displacement information (DIC and FEM), i.e., both the DIC and the FEM data are interpolated and the strains
(maximum and minimum strains, etc.) can be computed. Thus, we choose a triangulation concept instead of
the shape functions of the particular finite element formulation, in order to be as flexible as possible (which is
applicable to commercial finite element programs as well). Additionally, we need the resulting reaction force
of the finite element simulation

F (Ê)
FEMn = M

(Ê)T
pn, (12)

see Eq. (22) as well, where the vector M
(Ê) ∈ R

np extracts the required nodal reaction forces. All the data of
the simulation are in vector s∈ R

nD.
The interpolation in time has to be applied to the force data of the testing machine and the FEM reaction

force data (of a subset of nodes and directions) as well, see [19] for the computation of reaction forces in finite

elements.Accordingly,wehave, for example,d (Ê)T
n = {F (Ê)

expn, ũ
(Ê)T
n } at time tn if the surface displacements are

considered. This is the most common approach in comparing DIC and FEM. The comparison of displacements
is in some situations very difficult, particularly when rigid body motions in the experiment superimpose the
deformation caused by the movement of the testing machine’s sample holders (which is the common case).
This is very critical in small strain applications, where the resolution of DIC becomes sensitive. We make
use of the option that rigid body motions are subtracted from the data. Alternatively, a strain measure can be
chosen since it does not contain rigid body motions (but is influenced by comparing strains of DIC and FEM
at different spatial positions). In the following investigations, we will thus, for the sake of simplicity, assume
that the evaluation times, which are interpolated first, and the spatial evaluation points are identical.

Let d be the total experimental data as discussed previously, which is compared to the finite element
results s(κ) concerned. The finite element results depend on the material parameters κ ∈ R

nκ , which are the
Lame constants κT = {Λ, μ} (or the Young’s modulus and the Poisson’s number {E, ν}) in the case of linear,
isotropic elasticity, and for the case of transverse isotropy, κSP, κC, or κS, see last paragraph in Sect. 2.1.

In a least-square sense, the square of the residual r(κ) = s(κ)−d or a weighted residual r̃(κ) = Wr(κ) =
W{s(κ) −d} has to be minimized. According to [12], we weight the data by the number of data points and by
an expected order of magnitude of a parameter, where W∈ R

nD×nD is a diagonal matrix

W =
⎡
⎢⎣
W (1)

. . .

W (nexp)

⎤
⎥⎦ with W (Ê) =

⎡
⎢⎢⎢⎣

W (Ê)
0

. . .

W (Ê)

n(Ê)
N

⎤
⎥⎥⎥⎦ . (13)

If we take force data and displacement data into account, we have

W (Ê)
n =

[
w

(Ê)
F

w
(Ê)
u I

]
, (14)

where w
(Ê)
F weights the force data

w
(Ê)
F = 1

max
n=1,...,n(Ê)

N

∣∣F (Ê)
n

∣∣ (15)
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and w
(Ê)
u are the weighting factors for the displacement data (or strain data)

w(Ê)
u = 1(∥∥ũ(Ê)

n

∥∥
max

n=1,...,n(Ê)
N

)
n(Ê)
d

. (16)

In the least-square sense, we have to minimize

f (κ) = 1

2
{Wr(κ)}TWr(κ) = 1

2
{W{s(κ) − d}}T {W{s(κ) − d}} → min. (17)

There might be situations in which we have constraints (equality and inequality constraints) for the material
parameters,

cI (κ) ≤ 0, cI ∈ R
m I

cE (κ) = 0, cE ∈ R
m E ,

(18)

where m I defines the number of inequality constraints and m E the number of equality constraints. Here,
m E < nκ should hold so that we do not obtain a system of nonlinear equations (or linear—depending on the
problem). In the following theoretical investigations of identifiability, we assume for the sake of simplicity
that there are no constraint conditions (18) in the following theoretical considerations.

A necessary condition for a minimum at κ = κ∗ requires a vanishing derivative (find the root of a nonlinear
system)

F(κ∗) = d f

dκ

∣∣∣∣
κ=κ∗

= D T (κ∗)W TW
{
s(κ∗) − d

} = 0, (19)

with the Jacobian (sensitivity matrix)

D(κ) = dr̃(κ)

dκ
= ds(κ)

dκ
, (20)

D∈ R
nD×nκ , see, for example, [29,34,40]. Gauss–Newton-like methods require these derivatives. Since

s(Ê)T
n (κ) = {F (Ê)

FEMn(κ) ũ(Ê)T
n (κ)} is looked for, we need the sensitivities of the resulting forces and the

necessary displacements of the finite element simulation

dF (Ê)
FEMn(κ)

dκ
= M

(Ê)T dp(Ê)
n (κ)

dκ
,

dũ(Ê)
n (κ)

dκ
= M̃

(Ê) du(Ê)
n (κ)

dκ
, (21)

see Eq. (12) as well. The matrix M̃
(Ê) ∈ R

n(Ê)
d ×n(Ê)

u extracts the required nodal displacements, which are
compared to the experimental data (more precisely, which are used in the interpolation concept).

We follow two possibilities to determine the sensitivity matrixD. First, there is a purely analytical approach
to provide the sensitivity matrix, which we call internal numerical differentiation (IND), see [40]. The external
numerical differentiation (END) provides the sensitivity matrix by numerical differentiation.

In the case of IND (applied to finite element models), we treat the matrix representation of finite elements

G(u(κ),p(κ), κ) =
{

g(u(κ), κ)
g(u(κ), κ) − p(κ)

}
= 0. (22)

The indices (Ê) and n are omitted for the sake of brevity. The first set of equations defines the discretized
principle of virtual displacements, and the second set of equations defines the resulting reaction forces at those
degrees of freedom, where displacements are prescribed. In the case of linear elasticity, these equations read

g(u(κ), κ) = K(κ)u(κ) + K(κ)u − p, (23)

g(u(κ), κ) = K
T
(κ)u(κ) + K(κ)u. (24)

p∈ R
nu are prescribed equivalent nodal forces, and p∈ R

np are the unknown nodal reaction forces. u∈ R
nu

are the unknown and u∈ R
np the prescribed nodal displacements. Alternatively, we can write

g(t,u(κ), κ) =
nel∑

e=1

Z eT

⎧⎨
⎩

ne
GP∑

j=1

we( j)Be( j)T
Ce( j)Ee( j) det Je( j)

⎫⎬
⎭− p(t), (25)
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g(t,u(κ), κ) =
nel∑

e=1

Z
eT

⎧⎨
⎩

ne
GP∑

j=1

we( j)Be( j)T
Ce( j)Ee( j) det Je( j)

⎫⎬
⎭ . (26)

Although the material parameters might be linearly embedded in the expressions (25) and (26), the resulting
identification scheme does not lead to a linear least-square method, because the solutions du(κ)/dκ and
dp/dκ are only implicitly given (by the solutions of a linear system). K = K T ∈ R

nu×nu defines the classical

symmetric stiffness matrix, and K∈ R
nu×np and K∈ R

np×np are the remaining stiffness matrices:

K =
nel∑

e=1

Z eT

⎡
⎣

ne
GP∑

j=1

we( j)Be( j)T
Ce( j)Be( j) det Je( j)

⎤
⎦Z e (27)

K =
nel∑

e=1

Z
eT

⎡
⎣

ne
GP∑

j=1

we( j)Be( j)T
Ce( j)Be( j) det Je( j)

⎤
⎦Z e (28)

K =
nel∑

e=1

Z
eT

⎡
⎣

ne
GP∑

j=1

we( j)Be( j)T
Ce( j)Be( j) det Je( j)

⎤
⎦Z

e
(29)

Z e ∈ R
ne
u×nu and Z

e ∈ R
ne
u×np symbolize the assembling matrices, which are not programmed but defined in

order to describe the assembling procedure (for the notation used, see [19]. ne
u is the number of element nodal

displacement degrees of freedom, we( j) are the weighting factors of the Gauss integration in an element, ne
GP

symbolize the number of Gauss points within one element, andBe( j) ∈ R
6×ne

u defines the strain–displacement
matrix of element e evaluated at the j th Gauss point ξ ( j) ∈ R

3, j = 1, . . . , ne
GP,

Ee( j) = Be( j)ue = Be( j)
{
Z eu + Z

e
u(t)

}
, Ee( j) ∈ R

6 (30)

with the element nodal displacements ue ∈ R
ne
u . The prescribed nodal displacements u(t) depend explicitly on

the time t , i.e., the load step in the case of elasticity. Je( j) ∈ R
3×3 defines the Jacobi matrix of the coordinate

transformationbetween reference element coordinates andglobal coordinates. In order to obtain the sensitivities
(20), the chain rule is applied to Eq. (22) leading to the linear system

∂g
∂u

du
dκ

+ ∂g
∂κ

= 0 ⇒ K
du
dκ

= −∂g
∂κ

� du
dκ

(31)

and the resulting sensitivities

dp
dκ

= ∂g
∂u

du
dκ

+ ∂g
∂κ

⇒ dp
dκ

= K
du
dκ

+ ∂g
∂κ

. (32)

Obviously, after an LU decomposition of the stiffness matrixK in Eq. (31), nκ additional back-substitutions are
required to obtain the derivative du/dκ (the superscript (Ê) is omitted for brevity). Afterward, the sensitivities
of the reaction force are only given by matrix–matrix products, see Eq. (32).

Alternatively to IND, it is possible to apply END, which means performing numerical differentiation to
obtain the sensitivities. In this case, the derivatives are obtained by

du(Ê)
n

dκ
≈

nκ∑
j=1

u(Ê)
n (κ + Δκ je j ) − u(Ê)

n (κ)

Δκ j
eT

j =
n(Ê)
u∑

i=1

nκ∑
j=1

u(Ê)
ni (κ + Δκ je j ) − u(Ê)

ni (κ)

Δκ j
eie

T
j (33)

with the “unit vectors” ei ∈ R
n(Ê)
u (all entries are zero except for one having a 1 in row i) and e j ∈ R

nκ .
Furthermore, we have

dp(Ê)
n

dκ
≈

nκ∑
j=1

p(Ê)
n (κ + Δκ je j ) − p(Ê)

n (κ)

Δκ j
eT

j =
n(Ê)
p∑

i=1

nκ∑
j=1

p(Ê)
ni (κ + Δκ je j ) − p(Ê)

ni (κ)

Δκ j
eie

T
j (34)
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(here, of course, ei ∈ R
n(Ê)
p holds). In this case, the entire finite element program has to be called nκ + 1

times. Although END is computationally not as efficient as IND, it can be applied to commercial (black box)
programs. The increments Δκ j must be adapted to the accuracies of the finite element program (single or
double precision—not only for the internal numerical computations but also for the input and output reads and
writes).

There are further questions that should be treated in the parameter identification. Since the applied opti-
mizers will—more or less—provide a solution, we have to ask the question about the quality of the material
parameters found. As discussed in Beck and Arnold [3], the confidence interval determination and the identifi-
ability concept can be applied. For an application of these concepts in solid mechanics, see [14,20]. A common
indicator of the identification quality is given by the value R2 = 1− (∑nd

i=1(di − si )
2
)
/
(∑nd

i=1(di −d)2
)
with

d = (1/nd)
∑nd

i=1 di , R2 ≤ 1. If R2 ≈ 1, one obtains a very good fit. However, this does not say anything about
the quality of the material parameters itself. Thus, we are interested in further measures that could indicate
the identification quality. As described in Eq. (17) a necessary condition for the minimum problem is given by
Eq. (19) if we assume no constraint conditions. κ∗ is a solution computed by the optimization program. Since
there is a lot of knowledge in linear least-square problems, we follow the subsequent idea. We approximate
the objective function (17) in the local minimum κ∗ by a quadratic function,

f̂ (κ) = f (κ∗) +
{
d f (κ)

dκ

}T
∣∣∣∣∣
κ=κ∗

Δκ + 1

2
ΔκT

[
d2 f (κ)

dκdκ

]∣∣∣∣
κ=κ∗

Δκ, (35)

with Δκ = κ − κ∗. The third term contains the Hessian matrix

H(κ) = d2 f (κ)

dκdκ
=
[
∂2 f (κ)

∂κi∂κ j

]
=
[

nd∑
k=1

w2
kk

(
∂2sk(κ)

∂κi∂κ j
(sk(κ) − dk) + ∂sk(κ)

∂κi

∂sk(κ)

∂κ j

)]
. (36)

Subsequently, we make the assumption that

H ≈ D TD =
[
w2

kk
∂sk(κ)

∂κi

∂sk(κ)

∂κ j

]
(37)

holds, which is justified as long as ‖r‖ = ‖s − d‖ is small. Beveridge and Schechter [5], Beck and Arnold
[3] proposed the concept of identifiability, which is related to the question whether there is an unique, local
minimum. In the case of fulfilling the necessary condition (19) and for nonvanishing and positive definite
sub-determinants of the Hessian,

Dr =

∣∣∣∣∣∣∣∣

H11 H12 . . . H1r
H21 H22 . . . H2r
...

...
Hr1 Hr2 . . . Hrr

∣∣∣∣∣∣∣∣
, (38)

i.e., Dr > 0 for r = 1, . . . , nκ , a unique local minimum exists. The condition detH �= 0 has to be checked so
that we can state whether there might be a unique solution. Furthermore, it is known that the closer Dr is to
zero, the more sensitive the optimization result is to small perturbations. In other words, we look at the local
convexity of the objective function. In the case of a “long valley,” local uniqueness is not given, see for simple
examples [14].

To our experience, it turned out that the identifiability investigation should be studied with “synthetic
data,” i.e., one solves the boundary value problem of the experiment by means of finite elements, with some
“reasonable” parameters and tries to re-identify the parameters using the generated data assuming that these
are experimental results. Then, investigating the Hessian indicates whether the parameters are addressed by
the experiments, see [14,20]. If one uses experimental data directly, the influence of dispersions makes it very
hard to interpret the results.

One additional measure for the quality of identification is the confidence interval. For this purpose, we
need the covariance matrix

P = s2H−1(κ∗). (39)

Here, we have the standard deviation

s2 = 1

nD − 1
rT (κ∗)r(κ∗). (40)
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Fig. 7 Strain distribution of pure resin specimens

Fig. 8 Sketch of length and width determination on the basis of DIC images

The confidence interval is defined by

κconf = κ∗ ± Δκ, (41)

which is based on the diagonal components of the covariance matrix,

Δκi = √
Pii , i = 1, . . . , nd. (42)

This is an indicator whether the material parameters are correlated, essentially depending on the experiments
chosen. The correlation is provided by

C = [
ci j
]

with ci j = Pi j√
Pii
√

Pj j
, i, j = 1, . . . , nκ . (43)

The diagonal terms are cii = 1 and the off-diagonal elements represent the linear correlation between the
parameters κi and κ j , |ci j | ≤ 1. The correlation matrix only makes sense if the Hessian is regular and the
standard deviation is nonzero.

These pieces of information are chosen in the experiments described later on. Furthermore, we have
to remark that we draw on the MATLAB tool lsqnonlin.m as an optimizer if there are no constraints
assumed and on the in-house finite element program tasafem to solve the boundary value problem where
the constitutive models are implemented. If there are constraint conditions, see (18), then we draw on the
MATLAB routine fmincon.m.

3.2 Pure resin

First, we carry out five tensile tests on pure resin specimens and measure the axial and lateral strains ε11 and
ε22, respectively—see Fig. 7, where the region and strain distribution is exemplarily shown. In the following,
we are interested in comparing both the parameter identification on the basis of analytical modeling and the
calibration applying the numerical results of the DIC/FEM approach.
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Fig. 9 Calibrated experiment-fit diagram

3.2.1 Analytical approach (pure resin—isotropy)

We define two lines by the mean values of the coordinates concerned in the DIC data, each in axial and lateral

direction (in each experiment), and determine the original distances L(Ê)
0 (length) and B(Ê)

0 (width), see Fig. 8,
For this purposes, we assume that the coordinates of the DIC images at time tn are given. Then, we define
vertical and horizontal lines representing the mean values of the x and y coordinates, which are x1, x2, y1, and
y2—leading to L = x2 − x1 and B = y2 − y1. This is done for the reference image (reference configuration)

and the current configurations. Then, for each loading step L(Ê)
n and B(Ê)

n , n = 1, . . . , n(Ê)
N , Ê = 1, . . . , 5,

nexp = 5, are known. Using the measured forces F (Ê)
n , we obtain the axial stress σ11, the axial strains ε11, and

the lateral strains ε22 by

σ11
(Ê)
n = F (Ê)

n

A0
, ε11

(Ê)
n = L(Ê)

n − L(Ê)
0

L(Ê)
0

, ε22
(Ê)
n = B(Ê)

n − B(Ê)
0

B(Ê)
0

. (44)

Since there are small deviations in the specimens’ geometries, we take a mean value for the cross section A0 =(∑nexp
Ê=1

A(Ê)
0

)
/nexp in Eq. (44)1 to determine the axial stresses, see Fig. 3a for the force/displacement behavior.

These data serve to apply a least-square scheme to determine the Young’s modulus E = 2510±196 MPa and
the Poisson’s number ν = 0.39 ± 0.03. The result of the identification is shown in Fig. 9.

We are also interested in determining the other set of parameters Λ(E, ν) and μ(E, ν), see relation (9).
To obtain the uncertainty from that representation, we draw on the linear error propagation theory, see [45]. A
function f (κ) with the estimated deviation Δκ yields the uncertainty

δ f =
√√√√

nκ∑
k=1

(
∂ f

∂κk
Δκk

)2

, (45)

i.e., f ± δ f , evaluated at the best fit κ obtained by the other set of parameters (for the best fit, we assume the
least-square result). Here, we take Δκk as the standard deviation. Then, we obtain

Λ = 3201 ± 1079 MPa, and μ = 903 ± 73 MPa (46)

for f = Λ and f = μ respectively. Particularly, a small change in the Poisson’s number ν yields a big change
in Λ.
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Fig. 10 Finite element meshes using 20-noded hexahedral elements

3.2.2 Finite elements and DIC (pure resin—isotropy)

In the following, we perform the parameter identification procedure of Sect. 3.1 using the DIC data of the
pure matrix material to determine the material parameters (E, ν), and indirectly κ = {Λ,μ} as discussed in
the previous Sect. 3.2.1. We draw on the mesh in Fig. 10a. The DIC data are given by five tests, each with
40 load steps. Frequently, the displacement data are used to perform the parameter identification process. It
turned out that this has substantial drawbacks regarding the results of the parameters since there are always
rigid body motions in the experimental data. Thus, we draw on the surface strains calculated for both, DIC
data, see, for example, Fig. 7, and the finite element mesh according to [16]. In both cases, the motion of the
points (in the context of finite elements, the surface nodes) are interpolated using a triangulation. The in-plane
strains are determined in each triangle, or the two principal strains are calculated (maximum and minimum
strain). At the nodes of the finite element simulation, we determine the mean value of the triangle results
directly connected to the node. Then, the FEM values are projected onto the DIC triangles and compared. This
leads to a huge amount of spatial data points (approximately 22,000 data points per test) and only few data
for the external forces (40 data points per test). The least-square problem, weighted as explained in Sec. 3.1,
leads to E = 2453 ± 34 MPa and ν = 0.39 ± 0.007. If we draw on Eq. (45), the resulting Lame constants
are Λ = 3128 ± 243 MPa and μ = 882 ± 13 MPa, where the “confidence interval” is smaller than for the
analytical approach. Furthermore, the identified values are very close to the values identified with the analytical
considerations. Thus, the DIC/FEM approach yields similar results, and the parameters are considered reliable.

Since we apply both sensitivities with fully analytical derivatives (IND) and classical functional matrices
based on numerical differentiation (END), we can compare the computational time. In the case of IND, the
computational time required is around 189 s while END takes around 711 s. This is a factor of 3.8, or, roughly
estimated, IND requires only a quarter of the computing time compared to END. The computations are done
using the in-house finite element program TASAFEM on a four-core computer with an Intel(R) Core(TM) i7-
4770 processor (8MBCache, 3.4GHz) and 16GBmemory. Furthermore, we apply the linear solver PARDISO,
[39], addressing 8 threads.

3.3 Fiber reinforcement

In the case of transverse isotropy, we are not aware of publications regarding material parameter identification
that treat the whole set of five parameters in transverse isotropy, except for the discussion in Christensen [8].
Commonly, plane stress conditions are applied requiring only four material parameters—see discussion in
Christensen [8] as well—if the thickness change is not of interest. If computations with three-dimensional
continuum finite elements are performed, all material parameters are required. There are three simple tests that
can be treated, namely

– simple tension of a γ = 0◦ specimen, where the axial and lateral strains are measured,
– simple tension of a γ = 90◦ specimen, where the axial and lateral strains are measured (here, only the
axial information is necessary),

– and a shear test (fiber orientation parallel to loading direction).

Using these experiments, only four material parameters can be addressed. One additional equi-biaxial test—
presented in Christensen [8]—where a constant layer thickness is assumed, is commonly not applicable, but
would finalize the material parameter identification procedure. Here, we propose a compression test that can
be carried out in a uniaxial compression testing machine, see Sect. 2.2.3. Of course, the latter test provides
only force and displacement data and no images by a DIC system, i.e., the data have an integral character. It
will be shown that the sensitive compression test data might lead to problems in a reliable determination of
the parameters so that further investigations have to be performed.
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Wewill also show that theDIC/FEMapproach is not able to overcome the problemwithout the compression
test, which is commonly assumed by applying in-plane information with various fiber angles γ . A reliable
“compression” test is essential to obtain reliable material parameters.

First, we recap the analytical approach using the assumption of homogeneous deformations. Second, we
generate “synthetic data” to show that non-identifiability is apparent for the “DIC”/FEM approach if we choose
0◦, 45◦, 90◦, and shear data. Identifiability is given only for 0◦, 90◦, shear, and compression tests. Afterward,
real DIC data are taken into account to identify the material parameters, which are compared to the analytical
approach, i.e., where we assume homogeneity. Supplementary information about the internal and external
numerical differentiation is given as well.

3.3.1 Analytical parameter identification (transversal isotropy)

Under the assumption of homogeneous deformations, we are able to determine uniquely the five material
parameters. According to Christensen [8], we need four tests.

1. First, a tension test for specimens with a = e1 in e1-direction. We prescribe ε11 and measure both σ11
by the testing machine and the lateral strains ε22 by the DIC system, see the scheme in Appendix 3.2.1.
Here, we draw on the representation of the compliance matrix (74) with the stress and strain state TT =
{σ11, 0, 0, 0, 0, 0} and ET = {ε11, ε22, ε33, 0, 0, 0}. There, we obtain from the first equation of E = S0◦T

ε11 = σ11

E11
�⇒ E11 = σ11

ε11
(47)

ε22 = − ν12

E11
σ11 = −ν12ε11 �⇒ ν12 = −ε22

ε11
(48)

2. Second, a tensile test in e1-direction but with fiber orientation a = e2 can be performed. There are two
possibilities of evaluating the resulting equations. Either, the compliance matrix is provided in a rotated
form, E = S90◦T, or we take the compliance matrix (74), i.e., E = S0◦T, but applying a stress σ22 in
e2-direction. This yields

ε22 = σ22

E22
�⇒ E22 = σ22

ε22
(49)

ε11 = − ν21

E22
σ22 = −ν21ε22 �⇒ ν21 = −ε11

ε22
(50)

The last equation does not provide any additional information, since

ν12

E11
= ν21

E22
(51)

holds (symmetry of the compliance matrix). From the two tensile tests, we thus only obtain three material
parameters, E11, E22 and ν12 (and, accordingly, ν21). If we transfer this to a specimen with a = e2 and a
loading direction e1, the Young’s modulus E22 is obtained by

E22 = σ11

ε11
, (52)

since σ11 and ε11 represent the measured axial information.
3. The third test is the shear test of Sect. 2.2.2. Here, we obtain the shear modulus

γ12 = 1

μ12
τ12 �⇒ μ12 = τ12

γ12
(53)

from the fourth equation in E = S0◦T.
4. Thefinal test is given by the compression test yielding the stress and strain stateTT = {σ11, σ22, σ33, 0, 0, 0}

andET = {0, 0, ε33, 0, 0, 0}. ε33 is prescribed, and σ33 is measured using the compression testingmachine.
In lateral direction, wemeasure the stresses σ22 and σ33. Here, we choose a = e1. Using the first equation in
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Table 1 Identified parameters κS and estimated parameters κSP and κC based on the assumption of homogeneous deformations
(for the 2nd column, ν32 is not identified, but calculated by Eq. (59))

Parameter Dimension Analytical approach Christensen formula Synthetic compression test

κS
E11 N mm−2 44,777 ± 60 44,777 ± 60 44,777 ± 60
E22 N mm−2 12,964 ± 59 12,964 ± 59 12,964 ± 59
ν12 – 0.30 ± 0.07 0.30 ± 0.07 0.30 ± 0.07
μ12 N mm−2 3385 ± 173 3385 ± 173 3385 ± 173
ν32 – 0.02 ± 0.0006 0.39 0.35
κC
C11 N mm−2 47,900 ± 3195 50,016 ± 5750 49,637 ± 5150
C22 N mm−2 13,435 ± 477 16,571 ± 2892 15,856 ± 1149
C12 N mm−2 4710 ± 2565 7900 ± 5074 7330 ± 4264
C23 N mm−2 774 ± 474 7260 ± 3736 6253 ± 1147
C66 N mm−2 3385 ± 173 3385 ± 173 3385 ± 173
κSP
α N mm−2 3936 ± 2092 640 ± 3642 1076 ± 3117
β N mm−2 38,375 ± 1622 37,246 ± 2496 37,295 ± 2337
μT N mm−2 6330 ± 29 4655 ± 462 4802 ± 22
Λ N mm−2 774 ± 474 7260 ± 3736 6253 ± 1147
μL N mm−2 3385 ± 173 3385 ± 173 3385 ± 173

E = S0◦T, see Eqs. (73)–(74), does not yield any additional information. We draw on the second equation,
leading to

0 = − ν12

E11
σ11 + 1

E22
σ22 − ν23

E22
σ33 �⇒ ν32 = E22

σ33

(
− ν12

E11
σ11 + σ22

E22

)
, (54)

where we assume that the parameters E11, E22, ν12 are already determined and the stresses and strains have
been measured. It must be remarked that, in view of error propagation, there are sources of uncertainties.
First, themeasurements (σ11, σ22, σ33) have errors, see Fig. 6b, c. Second, the parameters (E11, E22, ν12)—
from the previous identification steps—are uncertain. Thus, ν32 is the most sensitive quantity.

Following the procedurementioned above, the strain measures ε11 and ε22 are determined using themethod
detailed in Appendix 3.2.1. To obtain the material parameters E11, E22, ν12, μ12, and ν32, i.e., κ S from the
analytical equations (47)-(49), (53), and (54), we proceed step by step, as discussed before. In each step, we
determine the material parameter just considered from the corresponding five tests (tensile tests) and four
experiments (shear and compression) using a least-square method. The resulting parameters are compiled in
Table 1 denoted as “analytical approach.” The results of the identification using the aforementioned procedure
are shown in Fig. 11.

There are a number of other possibilities to determine the parameter ν32:

1. Instead of applying in Eq. (73) the second equation, see Eq. (54), one can draw on the third equation,

ε33 = − ν12

E11
σ11 − ν23

E22
σ22 + σ33

E22
(55)

ν23 = ν32 = E11E22ε33 − E11σ33 + E22σ11ν12

E11σ22
. (56)

Here, themeasured axial strain ε33 has to be considered. However, this is very sensitive since it is dependent
on the machine stiffness. The sensitivity can be expressed by the derivative

∂ν23

∂ε33
= E22

σ22
. (57)

For this investigation, we have |∂ν23/∂ε33| ≈ |12,964/(−0.18)| ≈ 72,000. In other words, smallest
changes in ε33 will lead to extremely large changes in ν23. Thus, we cannot recommend this application.
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Fig. 11 Calibrated experiment-fit diagrams using the assumption of homogeneous deformations
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2. To overcome the problem of the compression test, we reduce the number of material parameters. Let us
assume the geometrical constraint ε22 = ε33, which holds for a tensile test (σ22 = σ33 = 0) with γ = 0◦
(evaluate the 2nd and 3rd equation in Eq. (73) using the compliance matrix (74)). In this case, we can
derive

ε33

ε22
= 1 ⇒ −ε33

ε22
= −ε22

ε11

ε11

ε22

ε11 + ε22

ε11 + ε22
= −ε22

ε11

(
1 + ε11/ε22

1 + ε22/ε11

)
.

Using Eqns.(48) and (50), the relation

ν32 = ν12

(
1 − ν21

1 − ν12

)
(58)

is obtained. This relation is adopted in [7] without any directly discernible explanation. Together with Eq.
(51), we arrive at the following estimation,

ν32 = ν12

(
1 − ν12

E22
E11

1 − ν12

)
. (59)

The material parameters κC and κSP are compiled in Table 1 (Christensen formula). In this case, no non-
physical behavior is observed in a tensile computation using the set κSP. However, it is a very strong
assumption. For κC and κSP, we also estimate the error propagation, see Eq. (45).

3. An alternative idea is to provide a numerical compression test using a representative volume element (RVE),
seeFig. 12.The compression simulationhas afiber volume fractionof 55%andweapply ε33 = 1%“global”
strain. Here, we take the pure resin elasticity parameters determined in Sect. 3.2.1 and the parameters of the
glass fibers provided in Sect. 2.2. Using the homogenization concept proposed in [33], we determine from
the nodal reaction forces at the RVE surface homogenized stresses σ 11, σ 22, and σ 33, which are required
in Eq. (54). This leads to ν32 in Table 1 (synthetic compression test), and the estimation of κC and κSP.
These parameters are now on a similar order of magnitude. Moreover, for the latter, the error propagation
scheme Eq. (45) is chosen again.

4. Let us consider a combination of the mixture rules, see [32], with particular attention to the Halpin–
Tsai estimations, see [11]. With a fiber volume fraction Φ f = 0.55, the Young’s moduli for the fiber
E f = 73 000 MPa, and the resin (matrix material) Em = 2510 MPa, we obtain

E11 = E f Φ f + Em(1 − Φ f ) ≈ 41 280 MPa. (60)

Similarly, the Poisson’s number ν12 with ν f = 0.22 and νm = 0.39 can be determined

ν12 = ν f Φ f + νm(1 − Φ f ) ≈ 0.3. (61)

The transverse Young’s modulus E22 can be estimated by the Halpin–Tsai formula, see [11,32]:

E22 = Em
1 + ϕ1η1Φ f

1 − η1Φ f
(62)

with

ϕ1 = 2 + 40Φ10
f , and η1 = E f /Em − 1

E f /Em + ϕ1
(63)

for circular fiber cross sections. Here, we obtain with ϕ1 ≈ 2.1 and η1 ≈ 0.9 the value E22 ≈ 10 149 MPa.
Using Christensen’s formula (59) again, one obtains ν32 = 0.39. Finally, the shear modulus μ12 can be
estimated using another Halpin–Tsai formula,

μ12 = μm
1 + ϕ2η2Φ f

1 − η2Φ f
(64)

with

ϕ2 = 1 + 40Φ10
f (for circular fibers), and η2 = μ f /μm − 1

μ f /μm + ϕ2
(65)
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Fig. 12 Finite element meshes (20-noded hexahedral elements) for a glass fiber volume fraction of 55%

μ f = E f

2(1 + ν f )
, μm = Em

2(1 + νm)
. (66)

This leads to ϕ2 = 1.1, η2 = 0.94, and μ12 = 2928 MPa. The values E11, E22, ν12, ν23, and μ12 are in
the order of values of the second and third column of Table 1. However, the stiffnesses E11, E22, and μ12
are below the values obtained from the other procedures, which are based on the experimental results of
the composite material.

3.3.2 Synthetic data

The goal of this section is to show that local identifiability is not given if only particular DIC information
is considered. In order not to mix up disturbed, real measurement data with the concept of identifiability of
material parameters, we use the concept of re-identification. Here, finite element calculations are performed
with given material parameters and the generated nodal displacements are considered as measurement data.
This information is then used to solve the identification problem, which should lead to the expected material
parameters, i.e., those which are used to generate the data. The determinant of the Hessian matrix (38) then
provides information about the identifiability of the parameters.

Re-identification using 0◦, 45◦, and 90◦ DIC data

As a first attempt to check for unique identifiability of the parameters, using the parameters κSP, synthetic
data (force and DIC data) are created. Using these data and random starting guess values of the parameters for
the nonlinear optimizer, we try to re-identify the analytically calculated parameters. However, it was observed
that the material parameters obtained cannot be re-identified. In this case, detH = 7.4e − 26 ≈ 0 holds,
which confirms that the parameters are not uniquely identifiable. In other words, if only in-plane information
is chosen, no reliable parameters can be determined. This is already supported by the preliminary analytical
investigations.

Re-identification using 0◦, 45◦, 90◦, and shear DIC data

As a second possibility, in addition to the 0◦ and 90◦ DIC data as well as 45◦ data, synthetic data for shear
tests were also created in order to check the identifiability of the parameters. It was found out that detH =
8.5e − 24 ≈ 0 in this case. This means that, in order to identify the parameters, one more test, e.g., the
compression test, is required to uniquely identify the parameters.
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Re-identification using 0◦, 90◦, shear DIC data, and compression test

As a different possibility, synthetic data of compression tests as explained in Sect. 2.2.3 were also included in
addition to force and DIC data of 0◦, 90◦, and shear tests in order to re-identify the material parameters. In
this case, detH = 0.69 �= 0—i.e., it is possible to re-identify the material parameters. This confirms that in
order to uniquely identify the material parameters, it is essential to first investigate experimental tests that are
required for identifiability. Different tests address different parameters within a material model. Sometimes,
performing different tests does not mean that different parameters are addressed. For example, the 45◦ and the
shear tests address the same parameters.

3.3.3 DIC/FEM approach (transverse isotropy)

A different approach to identify the material parameters is given by assuming inhomogeneous deformations.
In this case, we have to draw on the original DIC information. On the basis of the strain determination concept
proposed in [16], the principal strains are determined on the basis of both the DIC data and the finite element
nodal information, see the discussion in the previous sections as well. Additionally, the force data of the
testing machine are taken into account. In the following, three approaches are investigated using the least-
square method based on full-field surface information and finite element simulations. Since the compression
tests are not reliable, the parameter ν32 can be determined either by Christensen’s approach, see Eq. (59), or by
the numerical homogenization technique of the compression test, see Fig. 12. The latter approach consistently
leads to a pure homogenization technique of the four basis tests (tension γ = 0◦, 90◦, shear, and compression)
using the RVE in Fig. 12.

1. DIC/FEM and prescription of ν32: Here, we draw on the force and DIC data of the tensile tests for 0◦
and 90◦, the shear tests, and fixing the ν32 = 0.39 (obtained from analytical calculations). Since the finite
element implementation is based on the usage of the parameter set κSP, we have to formulate an equality
constraint condition, see Eq. (87), with

cI (κSP) = ν32 −
(

α2 − Λ(β + 4μL − 2μT )

(α + Λ)2 − (Λ + 2μT )(2α + β + Λ + 4μL − 2μT )

)
= 0, (67)

see Eq. (18)2. The resulting parameters are assembled in Table 2 (FEM/DIC (ν32 fixed)). Obviously, the
confidence interval of α is larger than the value itself. Similarly, this applies to the parameter Λ, where the
confidence interval is of the same order as the value itself. However, if we look at the magnitude of the
parameters and their confidence intervals, they are comparable to Table 1 (analytical approach), or even
better, to the parameter set κC for both procedures. Remember that in the analytical investigations, κS were
identified and κSP was estimated with error propagation. Here, it has been carried out in reverse.
As secondary information, the following should be noted: In the case of IND, the computational time
required is around 224 s, while END takes around 752 s. In other words, we can save 70% of the
computational times. This depends on the choice of the initial guess of the parameters. Here, we have
chosen: α = 300N mm−2, β = 30,000N mm−2, μT = 5000N mm−2, Λ = 5000N mm−2, and
μL = 5000N mm−2.

2. Since a fixed ν32 is a very strong assumption, we again consider a numerical homogenization scheme
for the compression test, see Fig. 12. In other words, we have five DIC data sets for each tension test
(γ = 0◦, 90◦), and four for shear, and assume one data set for RVE using the elasticity properties for the
pure resin and the glass fibers. In this case, we arrive at the parameters of Table 2 (FEM/DIC (RVE)). These
are now very similar to the results of prescribed ν32, see the discussion before.

3. Since we applied the compression test from an RVE, why should we not use the RVE to generate results of
the tension test (γ = 0◦, 90◦), shear and compression. Using the least-square/FEM approach, we obtain
the parameters in the “FEM (RVE)” column of Table 2. There, only the shear modulus μL deviates more
from all previous investigations. Thus, much better RVEs—resulting from μ-CT data (not available for
these investigations), for example—are required to investigate this.

3.3.4 Summary of parameter identification approaches

We discussed several approaches to identify the 5 material parameters of transverse isotropy for the case of
small strains and linear elasticity in detail. This is summarized in the following. The main goal here is the
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Table 2 Determination of κSP and calculation of κC and κS using the assumption of inhomogeneous deformations

Parameter Dimension FEM/DIC (ν32 fixed) FEM/DIC (RVE) FEM (RVE)

κSP
α N mm−2 190 ± 225 200 ± 261 173
β N mm−2 28,014 ± 4884 28,200 ± 4820 35,402
μT N mm−2 3865 ± 143 3871 ± 127 4196
Λ N mm−2 5772 ± 1628 5146 ± 1833 5537
μL N mm−2 3514 ± 3 3518 ± 22 2933
κC
C11 N mm−2 40,492 ± 5175 40,077 ± 5190 44,452
C22 N mm−2 13,502 ± 1652 12,889 ± 1851 13,756
C12 N mm−2 5962 ± 1643 5345 ± 1852 5537
C23 N mm−2 5772 ± 1628 5146 ± 1833 5365
C66 N mm−2 3514 ± 3 3518 ± 22 2933
κS
E11 N mm−2 36,803 ± 4898 36,908 ± 4839 41,245
E22 N mm−2 10,726 ± 553 10,562 ± 627 11,394
ν12 – 0.31 ± 0.03 0.29 ± 0.04 0.28
μ12 N mm−2 3514 ± 3 3518 ± 22 2933
ν32 – 0.39 ± 0.05 0.36 ± 0.07 0.36

unique identification of the parameters and the necessary experiments. For this discussion, we separate κs into
κ̂s = {E11, E22, ν12, μ12} and ν32.

1. (Pure analytical identification of κs) From the experimental side lateral and axial strains from tensile tests
(γ = 0◦, 90◦), a shear experiment, and a special compression test is required. The latter has to be treated
very carefully since it is very hard to obtain reliable results.

2. (Pure analytical identification with Christensen’s formulae (59) to determine ν32) To circumvent the special
compression test, a rough estimation of the material parameter ν32 can be performed. All other parameters
κ̂s are determined by the two tensile tests, and the shear test. This leads in our applications to appropriate
results.

3. (Analytical identification of κ̂s and numerical determination of ν32 using an RVE) To circumvent the
compression test with a special die/punch device, a representative volume element can be chosen, which
is loaded with the boundary conditions of the compression test (laterally bounded). The smeared lateral
stresses can be evaluated to determine ν32. The remaining parameters κ̂s are determined by the tensile and
shear tests as discussed before.

Approaches 2 and 3 lead to similar results. Approach 1 depends essentially on the reliability of the sensitive
compression test.

To circumvent all the four different tests mentioned afore, one pure tensile test of the matrix material to
determine Young’s modulus and the Poisson number is an alternative. In this case, particular homogenization
methods must be treated.

4. (Pure analytical homogenization)Usingmixture rules of [11] in combination ofChristensen’s formulae (59)
requires only the elastic material parameters of the two constituents (matrix material and fiber material).
But these parameters deviate considerably from the parameters found before.

5. (Fully numerical consideration of RVE) A representative volume element is subjected to uniaxial tension
for γ = 0◦, 90◦, shear, and compression. This leads very similar results to pure analytical homogenization
results.

4 Conclusions

In this article, several approaches to determine the material parameters of a model of linear elastic, small strain,
transverse isotropy for unidirectional fiber composite materials are proposed. The experiments for uniaxial
tension and shear are provided using a tensile testing machine. The use of DIC data provides the full-field
deformation information, showing effects such as rigid body motions in the testing machine, and insufficient
straight alignment of the testing machine (bending of the specimens). We can observe imperfections in the
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clamping, local inhomogeneities in the specimens due to the fiber bundles, small air inclusions, and so forth.
From these test data, we have to identify the material parameters. In more modern approaches, the DIC data
are chosen to identify material parameters, and an approach of using DIC in combination with finite elements
will lead to some parameters. However, it turns out that pure in-plane information cannot provide reliable
material parameters. The approach does not overcome the general question whether the material parameter
can be addressed. Thus, the concept of local identifiability is applied on the basis of generating synthetic data
and re-identification evaluating the Hessian matrix. This is a quite suitable indicator of whether the parameters
are uniquely identifiable. It is shown that a compression test is required. However, the newly built compression
device shows a response which cannot be explained in terms of the results that could be expected from
theoretical conclusions. Thus, various identification approaches are followed. First, purely analytical results
under the assumption of homogeneous deformations indicate that out-of-plane information is required. Thus,
the compression test was chosen. This leads to the first conclusion that the DIC/FEM approach to identify
material parameters is not a general tool to determine parameters. A detailed knowledge of the identifiability of
the material parameters should be known in advance. Apart from the purely analytical identification, a mixture
is chosen based on an RVE instead of the compression test data. However, this requires the material parameters
of the fiber material and the pure resin. This is done in a similar manner using DIC data combined with the RVE
approach for the compression test. This leads to similar material parameters as for the analytical approach.
A second conclusion is related to providing the confidence interval of the material parameters indicating the
quality of the parameters. A third conclusion concerns constitutivemodels, which can be expressed by different
sets of material parameters. Although one can identify one set of parameters, the dependent set of parameters
can be very uncertain due to simple error propagation investigations. This can lead to completely unphysical
results in computations. A third concept is based on purely homogenized RVEs, which is a common approach
in micro-to-macro-transitions of heterogeneous materials. It leads to parameters that are in a similar order to
the other set of parameters, although only a rough RVE is chosen.

Apart from the conceptual approach, we compare two numerical concepts, namely internal and external
numerical differentiation. It is very common todetermine the sensitivitymatrices in gradient-basedoptimization
schemes by numerical differentiation, which is very costly. Alternatively, we provide the tangent computations
in a purely analytical approach. This can save up to 70% of computational time.

In conclusion, it should be noted that material parameter identification is a discipline by itself, and extensive
knowledge about the constitutive model, the theory of finite elements, experimental uncertainties, and so forth
is required. A simple plug-and-play procedure is not available, as shown for a pure elastic constitutive model
for small strains.
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A Alternative representation of Voigt matrices

The Voigt representation of the fourth-order tensor (Spencer’s model) is chosen for the component represen-
tation. This (6 × 6) matrix representation reads as follows. The stress–strain relation is given by

T = CγE, (68)

with T∈ R
6, E∈ R

6, and Cγ ∈ R
6×6. (γ indicates the fiber orientation angle for plane problems.) In a finite

element implementation, an elasticity matrix Cγ with arbitrary fiber directions a has to be implemented, see,

http://creativecommons.org/licenses/by/4.0/
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for example, [15]. If we stay on the level of purely analytical considerations, which is the case for homogeneous
deformations, it is common to take the following representation (a = e1)

a = e1 :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

σ11
σ22
σ33
τ12
τ23
τ31

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

︸ ︷︷ ︸
T

=

⎡
⎢⎢⎢⎢⎢⎣

Λ − 2μT + 2α + 4μL + β Λ + α Λ + α 0 0 0
Λ + α Λ + 2μT Λ 0 0 0
Λ + α Λ Λ + 2μT 0 0 0

0 0 0 μL 0 0
0 0 0 0 μT 0
0 0 0 0 0 μL

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
C0◦

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ε11
ε22
ε33
γ12
γ23
γ31

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

︸ ︷︷ ︸
E

, (69)

(γi j = 2Ei j ). Christensen [8] only takes this representation to discuss various loading directions. In other
words, the loading direction is changed, but not the orientation vector a, i.e., the elasticity matrix in Eq. (69)
is constant. The index γ of the elasticity matrix Cγ indicates the angle between the loading direction e1 in the
uniaxial tensile test and the fiber direction a of the specimen, a · e1 = cos γ , γ = arccos(a · e1), see Fig. 1b.
Alternative expressions of the components of the elasticity matrix C—not applying “Spencer’s mate-
rial parameters” κSP = {Λ,μL , α, β, μT }—are shown in the following. These are the parameter sets
κC = {C11, C22, C12, C23, C66}, and κS = {E11, E22, ν21, ν32, μ23}. The representation of κC is provided
for completeness of the presentation.
The elasticity matricesC∈ R

6×6 for specific fiber orientations and material parameter sets can also be written,
for example, in the following representation using the parameter set κC,

C0◦ =

⎡
⎢⎢⎢⎢⎢⎣

C11 C12 C12
C12 C22 C23
C12 C23 C22

C66
C22−C23

2
C66

⎤
⎥⎥⎥⎥⎥⎦

(70)

for a fiber orientation angle γ = 0◦. Comparing representation (70) with (69), i.e., the parameter set κSP,
yields the identities

C11 = Λ+2μT +2α +4(μL −μT )+β, C22 = Λ+2μT , C12 = Λ+α, C23 = Λ, C66 = μL (71)

or, vice versa,

α = C12 − C23, β = C11 − 2C12 + C22 − 4C66, Λ = C23, μL = C66, μT = C22 − C23

2
. (72)

A third possibility for the matrix representation (68), i.e., the concrete expressions (69) or (70), is obtained by
the compliance matrix S∈ R

6×6, E = ST, C = S−1, see [8]. For γ = 0◦, we have

E = S0◦T (73)

with

S0◦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
E11

− ν21
E22

− ν21
E22

− ν12
E11

1
E22

− ν32
E22

− ν12
E11

− ν23
E22

1
E22

1
μ12

1
μ23

1
μ12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
[
Su
0◦

Sl
0◦

]
, (74)

Su
0◦ ∈ R

3×3, Sl
0◦ ∈ R

3×3. This leads to

C0◦ =
[
Su
0◦−1

Sl
0◦

−1

]
(75)
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with

Su
0◦−1 = 1

δ

⎡
⎣

E11(ν23ν32 − 1) E11ν21(1 + ν23) E11ν21(1 + ν32)
E22ν12(1 + ν32) E22(ν12ν21 − 1) E22(ν12ν21 + ν32)
E22ν12(1 + ν23) E22(ν12ν21 + ν23) E22(ν12ν21 − 1)

⎤
⎦ , (76)

δ = −1 + ν23ν32 + ν12ν21(2 + ν23 − ν32), and

Sl
0◦

−1 =
⎡
⎣

μ12
μ23

μ12

⎤
⎦ . (77)

In this case, we have the third parameter set κ S . To complete the dependencies, we calculate:

E11 = C11 − 2C2
12

C22 + C23
, E22 = (C22 − C23)

(
C11(C22 + C23) − 2C2

12

)

C11C22 − C2
12

, (78)

ν21 = C12(C23 − C22)

C2
12 − C11C22

, ν32 = C2
12 − C11C23

C2
12 − C11C22

, μ23 = C22 − C23

2
, (79)

C11 = E11E22(ν32 − 1)

2E11ν
2
21 + E22(ν32 − 1)

, C22 = E22
(
E11ν

2
21 − E22

)

(ν32 + 1)
(
2E11ν

2
21 + E22(ν32 − 1)

) , C66 = μ12, (80)

C12 = E11E22ν21

−2E11ν
2
21 − E22ν32 + E22

, C23 = − E22
(
E11ν

2
21 + E22ν32

)

(ν32 + 1)
(
2E11ν

2
21 + E22(ν32 − 1)

) , (81)

Λ = − E22
(
E11ν

2
21 + E22ν32

)

(1 + ν32)
(
2E11ν

2
21 + E22(ν32 − 1)

) , α = E22(E11ν21(ν21 − ν32 − 1) + E22ν32)

(1 + ν32)
(
2E11ν

2
21 + E22(ν32 − 1)

) , (82)

β = E11 − (E22 − 2E11ν21)
2

4E11ν
2
21 + 2E22(ν32 − 1)

+ E22

2(1 + ν32)
− 4μ23, μT = E22

2(1 + ν32)
, μL = μ12, (83)

E11 = − (α + Λ)2

Λ + μT
+ 2α + β + Λ + 4μL − 2μT , (84)

E22 = 2μT
(
2(Λ + μT )(2α + β + Λ + 4μL − 2μT ) − 2(α + Λ)2

)

(Λ + 2μT )(2α + β + Λ + 4μL − 2μT ) − (α + Λ)2
, (85)

ν21 = − 2μT (α + Λ)

(α + Λ)2 − (Λ + 2μT )(2α + β + Λ + 4μL − 2μT )
, (86)

ν32 = α2 − Λ(β + 4μL − 2μT )

(α + Λ)2 − (Λ + 2μT )(2α + β + Λ + 4μL − 2μT )
, (87)

μ23 = μT . (88)

B Symmetry properties of elasticity relation

The elasticity relation (1) and the fourth-order elasticity tensor (2) are consistently derived by applying the
Gateaux derivative on the specific strain energy function (hyperelasticity)

ψ(E,M) = ψ̂(IE, IIE, IVE,VE) = Λ

2
I2E + μT IIE + αIEIVE + β

2
IV2

E + 2(μL − μT )VE, (89)

with

DE ψ(E,M)[H] = ∂ψ(E,M)

∂E
· H with DE ψ(E,M)[H] = d

dλ
ψ(E + λH,M)

∣∣∣
λ=0

(90)
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i.e., T = h(E,M) = ∂ψ(E,M)
∂E holds, and the property ET = E was evaluated. (The explicit dependence on

the density is omitted for brevity and is considered to be included in the material parameters, see for the theory
of hyperelasticity, for example, [22].)
The fourth-order elasticity tensor C in Eq. (2) can be derived either from Eq. (1) using the transposition rule
(change of the second and third index) [A ⊗ B]T23 C = ACBT , or by evaluating the Gateaux derivative

CH = ∂h(E,M)

∂E
H = DE h(E,M)[H] = d

dλ
h(E + λH,M)

∣∣∣
λ=0

. (91)

This is symbolically equivalent to

C = ∂h(E,M)

∂E
= ∂2ψ(E,M)

∂E∂E
, ci jkl = ∂hi j

∂ Ekl
= ∂2ψ

∂ Ei j∂ Ekl
, (92)

and implies themajor symmetries C = CT with CT = ckli jei ⊗e j ⊗ek ⊗el . Themajor symmetry is guaranteed,
which is especially valid for the terms C(2) = I = [I ⊗ I]T23 and C(5) = [I ⊗ M + M ⊗ I]T23 . However, the
commonly assumed minor symmetry, ci jkl = ci jlk is not embedded in this derivation of applying the Gateaux
derivative and the evaluation of ET = E.
To circumvent this minor lack, we assume that the specific strain energy function to be dependent on the
symmetric part of the strain tensor E, Esym = (E+ET )/2 = IE using the symmetrizer I := 1/2(I + Î) with
Î = [I ⊗ I]T24 . Here, we have the transposition of the second and fourth index Î = δilδk jei ⊗e j ⊗ek ⊗el with
the general property [A ⊗ B]T24 C = ACTB. If we assume that the specific strain energy function depends on
the symmetric strain tensor, ψ = ψs(Esym(E),M), we obtain

DE ψs(Esym(E),M)[H] = DEsym ψs(Esym,M)[DE Esym(E)[H]] = IT ∂ψ

∂Esym
· H, (93)

i.e.,

T = ĥ(Esym(E),M) = IT ∂ψ

∂Esym
= IT

h(Esym(E),M)︸ ︷︷ ︸
∂ψ/∂Esym

(94)

= (ΛIEsym + αIVEsym)I + 2μTEsym + (αIEsym + βIVEsym)M + 2(μL − μT )(EsymM + MEsym) (95)

see [10] for “internal” and “external” differentials and the application of the chain rule. The tangent operator
(fourth-order elasticity tensor) stems from

DE ĥ(Esym(E),M)[H] = IT ∂h
∂Esym

IH = CsymH, (96)

i.e.,

Csym = IT ∂h
∂Esym

I = IT CI. (97)

To look at the results, a number of tensor products of fourth-order tensors and some transposition rules are
required. The latter read

[
[A ⊗ B]T23

]T =
[
AT ⊗ BT

]T23
,
[
[A ⊗ B]T24

]T = [B ⊗ A]T24 , (98)

where
[
. . .
]T means the exchange of the first and last two indices,

[
A⊗B

]T = B⊗A. The required products
are

[
A ⊗ B

]
[C ⊗ D]T23 = A ⊗ [

[C ⊗ D]T23
]TB = A ⊗ CTBD (99)

[A ⊗ B]T23
[
C ⊗ D

] = (
[A ⊗ B]T23 C

)⊗ D = ACBT ⊗ D (100)

[A ⊗ B]T23 [C ⊗ D]T23 = [AC ⊗ BD]T23 (101)
[
A ⊗ B

]
[C ⊗ D]T24 = A ⊗ [

[C ⊗ D]T24
]TB = A ⊗ DBTC (102)
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[A ⊗ B]T24
[
C ⊗ D

] = (
[A ⊗ B]T24 C

)⊗ D = ACTB ⊗ D (103)

[A ⊗ B]T24 [C ⊗ D]T24 =
[
ADT ⊗ BTC

]T23
(104)

[A ⊗ B]T23 [C ⊗ D]T24 =
[
AC ⊗ DBT

]T24
(105)

[A ⊗ B]T24 [C ⊗ D]T23 =
[
AD ⊗ CTB

]T23
. (106)

These relations are evaluated for the calculation of Eq. (97)

IT [
I ⊗ I

]I = I ⊗ I (107)

IT II = I (108)

IT [
I ⊗ M + M ⊗ I

]I = I ⊗ M + M ⊗ I (109)

IT [
M ⊗ M

]I = M ⊗ M (110)

IT [
I ⊗ M + M ⊗ I

]T23I = 1

2

[[
I ⊗ M + M ⊗ I

]T23 + [
I ⊗ M + M ⊗ I

]T24
]

(111)

= 1

2

(
ai (δ jkal + δ jlak) + a j (δilak + δikal)

)
ei ⊗ e j ⊗ ek ⊗ el , (112)

where the latter can be found in [41] as well. Thus, we obtain

Csym = ΛI⊗I+2μT I+α[I⊗M+M⊗I]+βM⊗M+(μL −μT )
[[
I⊗M+M⊗I

]T23 +[I⊗M+M⊗I
]T24

]

(113)
having the required major and minor symmetries.
The remaining question treats the subject whether different representations, C versus Csym, have different Voigt
matrices. In the procedure defined, for example, in [15], to derive the Voigt matrix both matrices have the same
entries for arbitrary vectors a.
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