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Abstract Vibration chains are of interest in many fields of practical applications. In this contribution, a modal
analysis of the rather special Mikota’s vibration chain is performed. Herein, focus is set on the mode shapes
of this multibody oscillator, which was firstly introduced byMikota as a solid body compensator in hydraulic
systems for filtering out fluid flow pulsations. The mode shapes show interesting properties, e.g. an increase in
the polynomial representing the coordinates of each mode shape with an increasing eigenfrequency associated
with the respectivemode shape. This and other properties are discussed exemplary. Someof these properties still
have to be proven, which is the task of future work. Additionally, modal damping of Mikota’s vibration chain
is discussed. Moreover, an approach for determining the damping matrix for given Lehr’s damping measures
without knowing the mode shapes in advance is introduced. This approach involves the determination of a
matrix root.

Keywords Mikota’s vibration chain · Solid body compensator · Mode shape · Multibody dynamics ·
Damping

1 Introduction

In many engineering disciplines such as civil engineering or mechanical engineering, multibody oscillators
and in detail vibration chains are an appropriate approach for modelling even complicated structures and to get
major insights into the structures’ behaviour. Standard text books which deal with the investigation of vibration
chains and other multibody oscillators are among others [3,4,6–8,14,15]. Typical examples of vibration chains
are torsional vibration of turbines [6] or the dynamic behaviour of layered soil deposits above a bedrock [2].
Besides these apparent applications, multibody oscillators serve as examples for application of advanced
methods of investigations. Such methods are—among other things—model order reduction techniques [20]
or solver routines for determining eigenvalues. The main advantage of multibody oscillators is that there are
configurations which give results known a priori. Consequently, the multibody oscillators serve as reference
cases. One such configuration is Mikota’s vibration chain. For the first time, it was introduced in [11] as
a special configuration of a solid body compensator for filtering fluid flow pulsations of hydraulic sources,
see also [9,10]. Although this solid body compensator is a rather special vibration chain, it possesses nice
properties and gives interesting results when analysing its dynamic behaviour.
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Fig. 1 Undamped vibration chain [16]

The outline of this contribution is as follows: In Sect. 2, the definition of a special vibration chain according
to [9] is given. Additionally, this section contains the state of the art of investigations concerning Mikota’s
vibration chain. Based on the findings revisited there, a discussion of the mode shapes of Mikota’s vibration
chain is performed in Sect. 3. Within this section, questions are sketched which are still open and need to be
answered in order to better understand the dynamic behaviour of Mikota’s vibration chain and of multibody
oscillators in general. A major topic in vibrational analysis and in control engineering is the investigation of
damping phenomena. Thus, in Sect. 4 the related work concerning Mikota’s vibration chain is revisited and
new aspects are discussed. A new approach which allows—for given Lehr’s damping measures—the deter-
mination of the damping matrix without knowing the mode shapes in advance is introduced. The applicability
of this proposed methodology is shown in Sect. 5. The conclusions are provided with Sect. 6.

2 Definition of MIKOTA’s vibration chain and literature review

In this contribution, a linear undamped vibration system with n degrees of freedom (DOF) is dealt with. Such
a system can be described by

M̃ẍ(t) + K̃x(t) = 0, (2.1)

with x = (x1, . . . , xi , . . . , xn)T and ẍ = (ẍ1, . . . , ẍi , . . . , ẍn)T representing the column matrix of displace-
ments and accelerations, respectively [6]. Herein, M̃ denote the mass matrix, while the stiffness matrix is given
by K̃.

For a linear vibration chain according to Fig. 1, these matrices are diagonal and tri-diagonal, respectively.
In detail, it is [3,6]

M̃ = diag (mi ) , (2.2)

K̃ = diag {(k1 + k2, −k2) , . . . , (−ki , ki + ki+1,−ki+1) , . . . , (−kn, kn)} . (2.3)

Mikota introduced a vibration chain with the following evolution equations for the masses and stiffnesses
associated with the i-th DOF

mi = 1

i
m and ki = (n − i + 1) k where i = 1, 2, . . . n , (2.4)

cf. [9]. Herein, m is the first mass. As given in Eq. (2.4), the evolution of the single masses is independent of
the total number n of DOF, while the stiffness coefficients are related to n in such a manner that the stiffness
of the last spring always is kn = k. Using the quantities m and k, Eq. (2.1) can be rewritten as

mMẍ(t) + kKx(t) = 0 (2.5)

so that M and K are number matrices.
Mikota conjectured that this specific vibration chain has the eigenfrequencies

Ωl = lΩ = l
√
k/m with again l = 1, 2, . . . n, (2.6)

where Ω = √
k/m is the first eigenfrequency, [9]. As can readily be seen, enlarging the system from n DOF

to n + 1 DOF leads to the following changes in the mass and stiffness matrices

Mn+1 =

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

Mn 0

0T 1
n+1

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

, Kn+1 =

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

2n + 1 −n 0T

−n

0 Kn

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

, (2.7)
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see also [16]. Obviously, there is a counter pattern in the setup of these matrices. Due to this opposite behaviour
in constructing the matrices, established methods as given in e.g. [6,15] for analysing the eigenfrequencies,
the mode shapes, and the eigenforces for arbitrary n DOF are not suitable. For a discussion of the resulting
difficulties for proving Mikota’s conjecture it is referred to e.g. [12,13]. To overcome these difficulties,
two different approaches were proposed by [13,16], each of which leads to a proof of Mikota’s conjecture.
Describing the mode shapes and the eigenforces of Mikota’s vibration chain was not the scope of Mikota’s
work. However, these are necessary in order to better understand the system’s dynamic behaviour. To close
this gap, in [13] an approach based on binomial coefficients for determining the mode shapes is provided,
while in [18] a modification of the well-known Laguerre polynomials is proposed allowing the evaluation
of the mode shapes of Mikota’s vibration chain. The drawbacks of both approaches are that they (i) are quite
laborious and (ii) do not reveal an easy structure in order to obtain general formulæ for the mode shapes ul .
Both problems are solved in [19] and some results presented therein shall be used in Sect. 3.

Meanwhile, further investigations of Mikota’s vibration chain took place. The optimal damping of
Mikota’s vibration chain for the two cases of an (i) absolute damper and (ii) relative damper was exem-
plary addressed in [17]. For determining the optimal damping for these two cases, the criteria were used which
have been presented in [4,14]. A model order reduction in Mikota’s vibration chain based on the proper
orthogonal decomposition according to [5] was performed in [20]. In the latter contribution, two cases were
considered: (i) model order reduction of Mikota’s vibration chain and (ii) model order reduction of Mikota’s
vibration chain with an additional absolute damping element.

3 Mode shapes of MIKOTA’s vibration chain and related observations

The coordinates of the eigenvectors of a matrix , i.e. the mode shapes, can be expressed by polynomials Pl(i)
in the coordinate i

ul = (ul(i)) = (
ul,i=1, ul,i=2, . . . , ul,i=n

)T

= (Pl(i = 1), Pl(i = 2), . . . , Pl(i = n))T , (3.1)

see [7]. Based on the proof provided with [19] the mode shapes ul of Mikota’s vibration chain for arbitrary
n DOF and l ≤ n can be determined in a successive manner. Herein, the polynomial degree of Pl is l. In detail,
the first four mode shapes of Mikota’s vibration chain are given by the following polynomials:

u1(i) = Pl=1(i) = i, (3.2)

u2(i) = Pl=2(i) = i2 − 2n + 1

3
i, (3.3)

u3(i) = Pl=3(i) = i3 − 3

5
(2n + 1) i2 + 1

5

[
3

2
n (n + 1) + 1

]
i, (3.4)

and

u4(i) = Pl=4(i) = i4 − 6

7
(2n + 1) i3 + 1

7
[6n (n + 1) + 5] i2 . . .

− 2

35
(2n + 1) [n (n + 1) + 3] i, (3.5)

see [19]. Exemplary, for Mikota’s vibration chain with n = 10 DOF the eigenfrequencies Ωl and the first
five mode shapes are given in Fig. 2.

In general, the mode shapes ul of a dynamical system to different eigenfrequencies fulfil the relation

uT
l Mu j

{= 0 for l �= j
�= 0 for l = j , uT

l Ku j

{= 0 for l �= j
�= 0 for l = j . (3.6)

Thatmeans that they are not orthogonal to each other with respect to the (standard) scalar product. However, the
mode shapes of Mikota’s vibration chain show the neat property that the matrix product UTU is tri-diagonal,
see also [19], where U is the modal matrix

U = [u1, u2, . . . , un] . (3.7)
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Fig. 2 Eigensolutions of Mikota’s vibration chain for n = 10 DOF, where only the mode shapes ul=1 . . . ul=5 are shown,
cf. [20]. The displacements between the coordinates i are interpolated linearly, where i = 0 is at the fixed support according to
Fig. 1
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Fig. 3 Mode shape no. 4 represented by u4(i) and P4(x) for different n

Introducing the polynomials Pl(x) with Pl(i) = ul(i) such that

Pl=1(x) = x, (3.8)

Pl=2(x) = x2 − 2n + 1

3
x, (3.9)

Pl=3(x) = x3 − 3

5
(2n + 1) x2 + 1

5

[
3

2
n (n + 1) + 1

]
x, (3.10)

and

Pl=4(x) = x4 − 6

7
(2n + 1) x3 + 1

7
[6n (n + 1) + 5] x2 . . .

− 2

35
(2n + 1) [n (n + 1) + 3] x (3.11)

etc., then Pl(x) approximates the linearly interpolated mode shape ul , cf. for example Fig. 3.
It is worth noting that only the vectors ul , that is, the coordinates stemming from evaluating the polynomials

Pl(x) at the distinct x = i , lead to the tri-diagonality. But the polynomials Pl themselves are not orthogonal
in the sense of

n∫

x=0

q(x)Pl(x)Pk(x)dx �= 0 with l, k ∈ N, 0 ≤ l, k ≤ n, x ∈ R (3.12)
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with a certain weighting function q(x) > 0. Or—in other words—the Pl(x) do not belong to a classical system
of orthogonal polynomials as, e.g. the Legendre- or Laguerre polynomials.

Figure 3 contains the 4-th mode shape for n = 4 and n = 8, respectively. Herein, the representation of the
mode shapes is done both by line segments and interpolation polynomials Pl . If these two types of mode shape
representation are compared with each other it is apparent that with increasing number of DOF, the difference
between the discrete coordinates of the line segments and the corresponding polynomials tends to zero, which
is indeed a trivial observation. Some additional observations shall be listed in what follows.

In [3], it has been proved that the mode shapes ul represented by line segments show l nodes and l antinodes
(loops) including the behaviour at the boundaries, that is, a node at Pl(0) = 0 and an antinode at Pl(n). This
result has also been quoted in [6, p. 165ff]. Because each antinode is associated with at least one coordinate
ul(i), the polynomial Pl(x) possesses the same number of antinodes and therefore shows the same number l
of nodes, too. That means that the polynomials Pl(x) show l real nonnegative zeros x j ≥ 0 with j = 1, . . . , l
and Pl

(
x j

) = 0 in 0 ≤ x j < n. Additionally, the nodes of Pl(x) with 0 ≤ x < n are separated by the nodes
of Pl−1(x) for l = 3, . . . , n.

4 Remarks on modal damping of Mikota’s vibration chain

The adequate modelling of damping is a major issue in vibrational analysis. Only some works deal with
the investigation of damping in the context of Mikota’s vibration chain. Based on [12], the influence of a
single absolute damper and a single relative damper on the vibration behaviour of Mikota’s vibration chain
was investigated in [17] for some n DOF. In [20], Mikota’s vibration chain with additional dampers was
investigated concerning some issues of model order reduction. However, a systematic investigation is still
missing, yet. Thus, some general properties shall be discussed in what follows.

The eigenvalue problem of Eq. (2.5) reads

(Mλl + K) ul = 0 (4.1)

with M, K according to Eqs. (2.2)–(2.5) and

λl = −Ω2
l = −(l)2. (4.2)

In the present case, for the spectral matrix

Ω2 = diag
(
Ω2

l

) = diag
(
1, 4, . . . , n2

)
(4.3)

holds. Using the modal matrix as introduced with Eq. (3.7), the following relations hold

UTMU = diag (m1,m2, . . . ,mn) (4.4)

UTKU = diag (κ1, κ2, . . . , κn) , where
κi

mi
= Ω2

i = i2 (4.5)

Ω2 = (
UTMU

)−1
UTKU = U−1M−1KU. (4.6)

In the preceding sections, M and K denote number matrices. Thus, for describing modal damping, a number
matrix D is introduced, too:

dD with DM−1K = KM−1D. (4.7)

where condition (4.7) has been given by [1].
This number matrix D shall be determined in what follows. Starting point is the equation of motion

describing free oscillations (
Mμ2

l + Dμl + K
)

ul = 0. (4.8)

Right-multiplication of ul with Eq. (4.7) yields

DM−1Kul︸ ︷︷ ︸
Ω2

l ul

= KM−1Dul (4.9)
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and consequently
(
Ω2

l I − KM−1) Dul = 0, (4.10)

where I denotes the unit matrix. This can be rewritten
(
Ω2

l M − K
)

M−1Dul = 0, (4.11)

showing the eigenvector
M−1Dul = αlul , αl �= 0 (4.12)

with an arbitrary scaling factor αl . Then,

Dul = αlMul (4.13)

DU = MUα, α = diag (αl) (4.14)

holds. The eigenvalue problem for the damped Mikota’s vibration chain can now be formulated as follows:
(
μ2
l + αlμl + Ω2

l

)
Mul = 0. (4.15)

As Mul �= 0,

μl = −αl

2
±

√
α2
l

4
− Ω2

l . (4.16)

The αl can be determined e.g. by setting the Lehr’s damping measure Dl to

Dl := 1 = αl

2Ωl
, (4.17)

cf. amongst others [8]. Then,

αl = 2l and with Eq. (4.16) μl = −l, (4.18)

which is a twofold eigenvalue. Equations (4.13), (4.14) then read

Dul = 2lMul ⇔ DU = 2MUΩ (4.19)

and thus the sought damping matrix is
D = 2MUΩU−1. (4.20)

Considering UTDU which is a diagonal matrix it is obvious that D is a symmetric positive definite matrix. As
can be directly seen, the modal matrix U and thus all mode shapes ul are needed to calculate the damping
matrix D. The question arises of how the damping matrix can be determined without knowing the mode shapes
in advance. Using the relation

(
UΩU−1)2 = UΩ2U−1 = UU−1M−1KUU−1 (4.21)

= M−1K, (4.22)

where Eq. (4.6) was applied, gives

UΩU−1 =
√

M−1K. (4.23)

Thus, the damping matrix can be determined without knowing the mode shapes by means of the following
equation

D = 2M
√

M−1K. (4.24)

However, finding the roots necessitates the eigenvalues of the matrix root to be positive. This preliminary is
always fulfilled for the vibration chain dealt with here. But still the roots of matrices in general are ambiguous.

Setting

αl = Ωl (4.25)
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yields

μl = −Ωl

2
± ιΩl

√
3

2
= l

(

−1

2
± ι

√
3

2

)

(4.26)

and consequently

Dul = ΩlMul (4.27)

according to Eq. (4.13). For this case, the damping matrix reads as

D = MUΩU−1 = M
√

M−1K. (4.28)

As can readily be seen, the damping matrix in the present case is half of the damping matrix as given with
Eq. (4.24). The eigenvalues of the present case are

�(μl) = −Ωl

2
= − l

2
, 	(μl) = ±

√
3

4
l (4.29)

and Lehr’s damping measure follows to

Dl = Ωl

2Ωl
= 1

2
. (4.30)

It should be noted that finding the matrix root
√

M−1K again is the major issue for determining the damping
matrix D without using the mode shapes.

5 Example for n = 3 DOF

To show the applicability of the proposed methodology, a rather small example shall be looked at in what
follows. For n = 3,Mikota’s vibration chain is characterized by

M =
⎡

⎣
1

1
2

1
3

⎤

⎦ , K =
⎡

⎣
5 −2 0

−2 3 −1
0 −1 1

⎤

⎦ . (5.1)

The mode shapes are given by Eqs. (3.2)–(3.4) and yield

u1 =
⎛

⎝
1
2
3

⎞

⎠ , u2 = 1

3

⎛

⎝
−4
−2
6

⎞

⎠ , u3 = 1

5

⎛

⎝
3

−6
3

⎞

⎠ . (5.2)

Therefore, the modal matrix and its inverse are determined as

U =
⎡

⎣
1 − 4

3
3
5

2 − 2
3 − 6

5
3 2 3

5

⎤

⎦ , U−1 = 1

12

⎡

⎣
2 2 2

− 24
5 − 6

5
12
5

6 −6 2

⎤

⎦ . (5.3)

The damping matrix according to Eq. (4.28) is calculated as

D = 1

15

⎡

⎣
32 −7 −1
−7 17 −4
−1 −4 8

⎤

⎦ . (5.4)

The relation (4.12) is confirmed with αl = l such that

M−1Du1 = u1, M−1Du2 = 2u2, M−1Du3 = 3u3 (5.5)

really hold. It should be noted that the most labourious work is related to the determination of U−1.
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6 Conclusions

Mikota’s vibration chain is amultibody oscillator possessing nice properties.Due to these properties, the rather
special Mikota’s vibration chain can serve as reference case and application example for several techniques
which allow the solution of practical problems. This special vibration chain has been investigated completely
confirming the eigenfrequencies Ωl = lΩ with the first eigenfrequency Ω = √

k/m and determining the
eigenvectors ul successively by a recursion formula. The mode shapes have been illustrated by means of both
line segments from (i, ul(i)) to (i + 1, ul(i + 1)) and by polynomials Pl(x), where the relation ul(i) = Pl(i)
holds. Although the polynomials do not form a classical system of orthogonal polynomials, it seems that there
exist similar properties. However, this conjecture has to be proven in future work.

Additionally, the structure of the damping matrix is investigated without knowing the mode shapes in
advance by setting Lehr’s damping measure to certain values. However, the authors currently have to halt
the investigations when the matrix root

√
M−1K has to be evaluated. For the best knowledge of the authors,

finding the roots of this expression is an open question. Thus, these investigations concerning the damping
matrix have to be continued in future work, too.
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