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Abstract The self-adaptive behavior of a clamped–clamped beam with an attached slider has been experi-
mentally demonstrated by several research groups. In a wide range of excitation frequencies, the system shows
its signature move: The slider first slowly moves away from the beam’s center, at a certain point the vibrations
jump to a high level, then the slider slowly moves back toward the center and stops at some point, while the
system further increases its high vibration level. In our previous work, we explained the unexpected movement
of the slider away from the beam’s vibration antinode at the center by the unilateral and frictional contact
interactions permitted via a small clearance between slider and beam. However, this model did not predict the
signature move correctly. In simulations, the vibration level did not increase significantly and the slider did
not turn around. In the present work, we explain, for the first time, the complete signature move. We show
that the timescales of vibration and slider movement along the beam are well separated, such that the adaptive
system closely follows the periodic vibration response obtained for axially fixed slider. We demonstrate that
the beam’s geometric stiffening nonlinearity, which we neglected in our previous work, is of utmost impor-
tance for the vibration levels encountered in the experiments. This stiffening nonlinearity leads to coexisting
periodic vibration responses and to a turning point bifurcation with respect to the slider position. We associate
the experimentally observed jump phenomenon to this turning point and explain why the slider moves back
toward the center and stops at some point.

Keywords Self-adaptive · Self-resonant · Non-smooth dynamics · Geometric nonlinearity

1 Introduction

Self-adaptive systems are designed to adjust their dynamical characteristics depending on certain operating
conditions. In comparison with active systems, passive systems have the advantage that neither a control unit
nor an external energy source is needed, which makes them interesting, e.g., for energy harvesting [2,3] and
vibration suppression applications [13,17].

In various experiments, carried out independently by different research groups [2,3,11,12,16,19], a
clamped–clamped beam under harmonic base excitation with attached slider has shown self-adaptive behav-
ior. After initially small vibrations, the slider moved to a certain position and the vibration level increased
substantially. Hereby a signature move was observed [2,11,12], which is shown in Fig. 1, and described in the
following. A video of this intriguing behavior is available online [1].While the system vibrates initially at small
level, the slider moves toward the clamping. At a certain point, the vibrations jump to a higher level and the
slider turns back toward the beam’s center. This movement goes along with a further increase of the vibration
level. At a certain position, which can be different from the beam’s center, the slider stops and large vibrations
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Fig. 1 Example for self-adaptive signature move. Black: Beam’s deformation at center. Red: Normalized position of slider. A
video of this behavior is available here: [1]. (Color figure online)

are maintained at steady state. This behavior was observed for a broad range of excitation frequencies. There
is no conclusive theory explaining this complex self-adaptive behavior.

Miller et al. [11,12] proposed a first model of the system. They described the beam in terms of linear
Euler–Bernoulli theory. The slider was modeled as a rigid body and assumed to be vertically constrained to
the beam, which corresponds to a tight fit with no clearance. This leads to the conclusion that the slider moves
to an antinode of the vibrational deflection shape. In all experimental observations, the beam’s vibrational
deflection shape had only one antinode at the beam’s center. Consequently, this model always predicts that the
slider moves toward the beam’s center and stays there.

Krack et al. [7] refined the model of Miller et al. by taking into account a small clearance between slider
and beam, which gives rise to unilateral and frictional contact interactions. It was shown that these contact
interactions are responsible for the movement of the slider away from the beam’s center. Without friction, the
slider never reaches a fixed horizontal location along the beam, but keeps cycling around the beam’s center. For
a too tight fit (too small clearance between slider and beam), the slider never moves away from the center, in
contrast to the experimental observations. The self-adaption was shown to work for a broad, yet limited, range
of excitation frequencies around the system’s first natural frequency. However, the model failed to predict the
jump to high vibration levels and that the slider turns around to further move toward the beam’s center.

Under axial constraints, the transverse deformation of a beam is associated with a midplane stretching. This
is known to cause a strong geometric stiffening effect, which leads to strongly nonlinear behavior in case of
sufficiently large transverse deformations of the beam [15,18]. Despite the fact that the measured deformations
exceeded the beam’s thickness, this effect was neglected in the aforementioned models.

While preparing the current paper, the group of Yu et al. [19] independently worked on the beam-slider
system. To the authors’ knowledge, they are the first to publish results on the effect of the beam’s geometric
nonlinearity on the system’s self-adaptive behavior. Just as Miller et al. [11], they assume that the slider is
transversely constrained to the beam (tight fitwithout clearance), thus neglecting unilateral contact interactions.
Using this model, they demonstrated theoretically that the system with bonded slider has (at most two) coex-
isting limit states. If the slider is placed sufficiently close to the clamping, it moves monotonously toward the
beam’s center and stops there, while the vibration level increases continuously to high level. These theoretical
results are in good agreement with the experimental investigations [19]. As the unilateral contact interactions
were neglected, however, the signature move, involving a slider movement away from the beam’s center and a
jump of the vibration level [2,11,12], could not be explained with their model. Yu et al. [19] also showed that
if the slider is initially placed sufficiently close to the beam’s center and the system starts with low vibration
levels, the system never reaches high vibration levels. This implies that the system can only adapt once. As
soon as the vibrations decay to low level (e.g. if the excitation level is temporarily decreased or the excitation
frequency is temporarily far from resonance), the slider remains at the beam’s center, and the system looses
its ability to adapt itself in order to reach high vibration levels. To overcome this, Yu et al. [20] proposed to
introduce an inclination with respect to the gravity field. If the vibrations decay, gravity pulls the slider toward
the clamping, which may recover the system’s self-adaptability.

With this work, we intend to provide, for the first time, a conclusive theoretical explanation of the above
described signature move. To this end, we extend the model developed in our previous study [7] by the
geometric stiffening nonlinearity in Sect. 2. We then validate the model by reproducing experimental results
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(a) (b)

Fig. 2 a Two-dimensional model of self-adaptive system. b Detail of slider

available in the literature in Sect. 3. Besides the signaturemove,we consider also cases of unsuccessful adaption
processes, in order to gain further confidence that the model captures all essential characteristics. In Sect. 4,
the self-adaptive behavior is analyzed and comprehensively explained. The paper ends with conclusions in
Sect. 5.

2 Extension of model by the beam’s geometric nonlinearity

In this section, the model of [7] is extended to consider the beam’s geometric nonlinearity due to bending-
stretching coupling. A schematic of the model is shown in Fig. 2. In Sect. 2.1, the beam’s nonlinear equation
of motion is given. In Sect. 2.2, a closed-form expression is derived for the approximation of the system’s
first natural frequency, as function of the slider position and the beam’s vibration level. The validity of this
approximation is analyzed using a nonlinear modal analysis. The contact model and the numerical simulation
is described in Sect. 2.3.

2.1 Geometric nonlinearity due to bending-stretching coupling

Within this work, the beam’s transverse elastic deformations w(x, t) are described in terms of the N lowest-
frequency bending modes. Here x is the spatial coordinate in the direction of the beam’s length and t the time.
The clamping and the support frame are assumed to be perfectly rigid.We assume the beam to be homogeneous,
with constant cross section area A and density ρ, and to behave linear elastically, with the Young’s modulus
E . As in the experiments, the beam’s length is assumed to be much larger than the thickness, such that Euler–
Bernoulli theory is justified and, accordingly, we neglect shear, Poisson effect, rotational and longitudinal
inertia. The vibrational amplitude is assumed to be small in comparison with the beam’s length; however, we
consider nonlinear terms due to stretching enforced by the clamped–clamped boundary conditions. As shown
e.g. in [4,15,18], this leads to the following equation system (for the clamped–clamped beam without slider):

w(x, t) ≈
N∑

n=1

ϕn (x) qn(t), (1)
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lin
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Differentiation with respect to t and x is denoted (̇) and ()′. Equation 1 represents the ansatz, which assumes
that the beam’s deformation can bewell approximated by a linear combination of the N lowest-frequencymode
shapes, ϕn(x) (mass-normalized), of the underlying linear system (linear Euler-Bernoulli theory). ωlin

n are the
associated natural frequencies, Dn the modal damping ratios and qn the modal coordinates. Furthermore,
γn = − ρA

∫ L
0 ϕndx and ẅ0 is the imposed base acceleration. Equation 2 is the equation of motion, condensed
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Fig. 3 Lowest natural frequency of the copper beam (System 1) without slider as a function of vibrational amplitude. Black:
Nonlinear modal analysis. Green: Single-mode single-term HB approximation. (Color figure online)

to the transverse direction. Equation 3 defines the coefficients of the cubic nonlinear polynomial that describes
the beam’s geometric stiffness nonlinearity.

For this work, we evaluate the integrals in Eq. 3 numerically using Matlab. An alternative is to apply the
stiffness evaluation procedure or implicit condensation [9,10,14] using a standard finite element tool.

To underline the significance of the geometric nonlinearity, the lowest natural frequency is plotted in
Fig. 3 as a function of vibrational amplitude at the beam’s center. The beam’s properties are set as specified
in Sect. 3.1. The natural frequency is determined by nonlinear modal analysis (NMA) and compared to a
single-mode single-term Harmonic Balance (HB) approximation. For the NMA, the extended periodic motion
concept [6] is used, which is also applicable to damped systems. To this end, a HB approach with modal
truncation after N = 7 modes is considered, using the free Matlab tool NLvib [8]. The harmonic truncation
order is set to H = 10, such that the condition max(ω1)·H > ωlin

N holds in the considered amplitude range.
Increasing N and H does not change the picture in the considered amplitude range, but yields additional loops
for higher amplitude levels which are not relevant for this work.

The single-term, single-mode HB approach of the undamped system, see e.g. [15], yields the natural
frequency

ωSHB
1 =

√
(
ωlin
1

)2 + 3

4
b(1)
1,1,1q̂

2
1 . (4)

Herein q̂1 denotes the amplitude of the first modal coordinate which is linked to the physical amplitude at
the beam’s center via ŵL/2 = ϕ1(L/2)·q̂1. Both approaches match very well up to ŵL/2/h ≈ 2.6, where h is
the beam’s thickness. The deviations for larger amplitudes, including a loop in the NMA at ŵL/2/h ≈ 4, can
be explained by modal interactions, see e.g. [5], which cannot be captured with the single mode approximation
in Eq. 4. However, the largest vibration levels encountered in the present study remain sufficiently small,
ŵL/2/h ≤ 2.5. It can thus be stated that the approximation in Eq. 4 is valid in the range of vibration levels
relevant in the present study.

2.2 Approximation of the system’s fundamental natural frequency

An approximation of the beam-slider system’s first natural frequency, as function of the slider position, was
provided in [7]. Hereby the influence of the slider’s mass and inertia on the beam’s linear natural frequency
was approximated using the Rayleigh quotient. Here, we extend this approximation to consider also the beam’s
geometric stiffening effect. To this end, we replace the linear natural frequency by the single-mode single-term
HB approximation of Eq. 4, giving
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(a) (c)

(b) (d)

Fig. 4 Approximation for the first natural frequency as a function of slider position and vibrational amplitude according to Eq. 5
for System 1: a 3D-plot. b–d Different projections

The approximated natural frequency ω̃1 is now a function of the amplitude q̂1 and slider position xC . The
result of this function and different projections are shown in Fig. 4. One can see that both vibrational amplitude
(geometric nonlinearity) and slider position (additional mass/inertia) have a crucial influence on the system’s
natural frequency in this range. For the given mass ratio, changing the slider position from the clamping to
the center alone decreases the natural frequency by 64%. Increasing the beam’s amplitude, e.g., from zero to
ŵL/2/h = 2.5 doubles the natural frequency.

2.3 Slider model, contact model and numerical simulation

The slider is assumed to be a rigid body with three degrees of freedom (horizontal and vertical translation
plus rotation). We consider gravity acting on the slider as indicated in Fig. 2. This is in accordance with
the orientation of the experiments [3,11] and the model from [7]. The slider’s inner geometry is such that
contact may occur only at the four points indicated in Fig. 2. Unilateral and dry frictional contact interactions
between beam and slider are modeled by the Signorini and Coulomb laws combined with Newton’s impact
law. These are set-valued contact laws, which are associated with velocity jumps, and thus, standard time
integration algorithms for continuous ordinary differential equation systems cannot be applied. Instead, the
equation of motion is transformed to ameasure differential inclusion, which is solved numerically byMoreau’s
time stepping scheme. The dynamic contact problem is resolved using an augmented Lagrangian approach. In
accordance with preliminary convergence studies, modal truncation after N = 7 modes and a fixed time step
of �t = 2π/(5ωN ) is applied for all simulations. The contact model and simulation procedure are adopted
from [7].
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Table 1 Nominal parameters

Quantity Symbol System 1 [12] System 2 [11,12] Unit

Length (beam) L 60 300 mm
Thickness (beam) h 0.2 1.1 mm
Density (beam) ρ 8333 2630 kg/m3

Mass (beam) M 0.3 4.17 g
Young’s modulus (beam) E 131 70 GPa
Modal damping ratio (beam) Dn 0.3 0.3 %
Mass (slider) m 0.8 17 g
Inertia (slider) J (C)

yy 0.017 3.06 kg mm2

Width (slider) B 6 15 mm
Distance from center of gravity (slider) d 4.02 9.6 mm
Gap size R/h 1.05 1.05
Friction coefficient μ 0.1 0.1
Normal coefficient of restitution εn 0.5 0.5
Tangential coefficient of restitution εt 0 0

3 Validations against measurements reported in literature

In this section, the extended model is validated by means of experimental results. It should be emphasized
that the dynamics of the self-adaptive system have been experimentally well-established. Results are available
from experiments carried out independently by at least three different research groups, including authors of
this and our previous study [2]. Therefore, the objective of this work is not to report further experimental data,
but to provide the first conclusive theoretical explanation of the well-supported experimental observations.
Consequently, we validate our model based on measurements available from literature. First, the different
configurations are specified in Sect. 3.1. The signature move yielding successful adaption is analyzed in
Sect. 3.2. Different kinds of unsuccessful adaption are analyzed in Sect. 3.3.

3.1 Nominal parameters

The simulations are compared to measurements from two different, representative references, [3] (System 1,
beryllium-copper beam) and [11] (System 2, aluminum beam). The beam’s material properties and geometric
dimensions, the slider’s mass and rotational inertia are given for System 2 directly in [11], c.f. Table 1. For
System 1, these are specified in [12].

3.2 Successful adaption and signature move

Experimental results from [11] are shown in Fig. 5a. The beam’s deformation was measured in terms of the
voltage of a strain gauge on the beam’s top. The slider’s horizontal position is normalized with respect to
the beam’s length so that a value of 0.5 corresponds to the beam’s center. The system successfully adapted
itself to reach high vibration levels, and it showed the aforementioned signature move: Starting from its initial
location xC/L ≈ 0.8, the slider moved slowly toward clamping. During this process, the beam’s amplitude
was comparatively small. At a certain point, the slider turned and moved toward the beam’s center, while the
vibration level grew significantly. In the depicted case, the slider moved all the way to the center. In other
experiments, the slider stopped before reaching the center [2,12,19]. In all these cases, the system reached and
maintained high vibration levels.

Figure 5b shows the simulation results corresponding to Fig. 5a. Apparently, the model explains the self-
adaption process, including the signature move qualitatively. It should be emphasized that our model is the
first one to correctly predict this intricate behavior. Models that neglect the geometric nonlinearity cannot
reproduce this signature move [7,11], as will be explained in Sect. 4. Models that assume a tight fit (slider
vertically constrained to beam), and thus do not account for unilateral contact interactions, cannot reproduce
the movement of the slider away from the beam’s center [11,19]. This is further supported by the rattling
noise evident in the video [1]. This proves that both the beam’s geometric nonlinearity and unilateral contact
interactions are crucial to explain the intricate dynamics presented in Fig. 5a. Furthermore, friction in the
beam-slider attachment is crucial, as shown in Sect. 4.1.
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(a) (b)

Fig. 5 Self-adaptive process of System 2 at fex = 55Hz, ˆ̈w0 = 15.7m/s2. a Experimental results, reprinted with author’s
permission from [11]. Black: Voltage of a strain gauge as measure for the beam’s deformation. Purple: Normalized position of
slider. b Simulation results. Black: Beam’s deformation at center. Red: Normalized position of slider. (Color figure online)

(a) (b)

Fig. 6 Unstable process. a Experimental results, reprinted with author’s permission from [3]. Blue: Beam’s deformation at center.
b Simulation results, System 1 with parameters fex = 130Hz, ˆ̈w0 = 20m/s2, R/h = 1.2. Black: Beam’s deformation at center.
Red: Position of slider. (Color figure online)

The adaption process is quicker in the simulation. In [7], it was shown that the speed of the adaption
depends, among others, on the friction coefficient and the clearance. These parameters were not reported in
the reference [11] and thus had to be estimated (estimated values see Table 1).

3.3 Unsuccessful adaption

In addition to successful cases of the self-adaptive process, Gregg et al. [3] reported different experiments with
unsuccessful adaption, i.e., where the system failed to maintain large vibrations. Those observations are useful
to further validate the model proposed in the present work. Two examples are analyzed in the following, an
unstable adaption and a quasi-stable adaption.

Measurements of an unstable adaption are shown in Fig. 6a (reprint from [3]). Here, the beam’s transverse
deformation at the center is visualized. Like in successful adaptions, the beam’s vibrational amplitude was
initially small, while the slidermoved toward clamping.After a jump to higher vibrational amplitude at t ≈ 22s,
the slider did not turn but moved further toward clampingwhich resulted in a continuous decrease of amplitude.
Gregg et al. [3] attributed this to a too large clearance between slider and beam. To reproduce this behavior
with our model, System 1 is considered; however, with increased clearance, R/h = 1.2. The result is in good
accordance with the experiment, see Fig. 6b.

Measurements of a quasi-stable adaption are shown inFig. 7a (reprint from [3]).Again, the initial vibrational
amplitude was small in this experiment. After t ≈ 70s, the amplitude jumped to amuch higher level, which was
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(a) (b)

Fig. 7 Quasi-stable process. a Experimental results, reprinted with author’s permission from [3]. Blue: Beam’s deformation at
center. b Simulation results, System 1 with parameters fex = 150Hz, ˆ̈w0 = 10m/s2, R/h = 1.1, m/mref = J (C)

yy /J (C)
yy,ref = 2.

Black: Beam’s deformation at center. Red: Position of slider. (Color figure online)

retained only for a few seconds. After that, the amplitude jumped between high and low level recurrently. The
slider was described to ‘oscillate in and out of resonance’ [3]. Unfortunately, the according system parameters
were not available from the experimental study. To reproduce this behavior in the simulation, the system
parameters are set as specified in Table 1; however, the clearance is slightly enlarged by 5%, and the slider’s
mass and inertia are doubled. The result is in good qualitative agreement with the experiment, see Fig. 7b.
It should be remarked that the mean value of the beam’s transverse displacement, measured here from the
non-deformed configuration, is not zero due to gravity. Compared to the other simulation results shown in this
work, this effect is more pronounced here due to the increased slider mass and the relatively small vibration
level.

To conclude, the proposed model correctly reproduces, for the first time, the signature move of the self-
adaptive system, and reported cases of unsuccessful adaption. It also confirms the sensitivity with respect to
the clearance between slider and beam, and the slider’s mass, as reported from experimental investigations [3].

4 Analysis of the self-adaptive behavior

The aim of this section is to establish a comprehensive explanation of the self-adaption process. In Sect. 4.1, we
demonstrate that the geometric nonlinearity and dry friction are essential ingredients for explaining the system
dynamics. In Sect. 4.2, we prove that the timescales of vibration and slider movement along the beam are
indeed well separated, such that the adaptive system closely follows the periodic vibration response obtained
for axially fixed slider. With this, we explain why the slider needs to initially move away from the beam’s
center to reach high vibration level and that this is only possible if the slider is not fitted too tightly to the
beam. Moreover, we attribute the jump phenomenon with a turning point bifurcation of the periodic response
with respect to the slider position. In Sect. 4.3, we analyze why the slider stops before reaching the vibration
antinode at the center.

4.1 Are geometrical and frictional nonlinearity needed to explain the self-adaptive behavior?

In Fig. 8a, the signaturemove is again illustrated, yet for System1 instead of System2 and for a slightly different
initial slider location, c.f. Fig. 5b. For the simulation results in Fig. 8b, the beam’s geometric nonlinearity is
turned off, while the contact interactions are still considered. The slider now moves to a certain position away
from the beam’s center and stays there. The vibration level increases continuously. In the first 9 seconds, the
reference and the simulationwithout geometric nonlinearity agree reasonably. Thus, the geometric nonlinearity
is not needed to explain that the slider moves away from center. However, the vibrations are smaller and do
not jump to a high level. Also, the slider does not turn around to approach the beam’s center. Finally, a closer
look into the beam’s vibration shows that its response is highly irregular, as opposed to the reference in Fig. 8a.
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(a) (b) (c)

Fig. 8 Simulation of System 1 at fex = 130Hz, ˆ̈w0 = 30m/s2. Black: Beam’s deformation at center. Red: Position of slider. a
Reference. bWithout geometric nonlineraities. cWithout friction between beam and slider. (Color figure online)

(a) (b)

Fig. 9 System with prescribed horizontal slider position: a Schematic of model. b Definition of horizontal reaction force Fx

Apparently, these deficiencies can be explained by the fact that linear beam theory is not appropriate: The
vibration level reached after 13 seconds is so large that they would cause a nonlinear geometric hardening
effect which would shift the system’s natural frequency by 24%.

For the simulation results in Fig. 8c, the beam’s geometric nonlinearity is turned on again, but the dry
friction between beam and slider is switched off, μ = 0. Now the slider oscillates axially along the beam
around the beam’s center, while the beam’s vibration level strongly modulates. The modulation frequency is
twice the frequency of the slider’s horizontal oscillation. The period of this oscillation is much longer than
the excitation period; i.e., the re-arrangement of the slider takes place on a much longer timescale than the
vibrations (as also in the signature move). Apparently, dry friction in the beam-slider attachment, however
small, is needed to stabilize the slider’s positioning.

In conclusion, this means that both the beam’s geometric nonlinearity and the dry stick-slip friction in
the beam-slider attachment are needed to explain the signature move of the self-adaptive system. Finally, the
clearance between slider and beam, which gives rise to unilateral contact interactions, is crucial, which is
further analyzed in Sect. 4.2.

4.2 Why does the slider have to move toward the clamping and the vibration level jump to reach high
vibration level?

The results so far suggest that the slider re-arrangement and the vibration take place on well-spaced timescales.
It seems therefore justified to separate the complicated problem by imposing a certain slider position and
studying just the nonlinear vibration response. A schematic of this modified system is depicted in Fig. 9, and
the results are shown in Fig. 10b. Essentially, this is a bifurcation diagram which depicts how the steady-state
vibration level of the beam’s center depends on the horizontal slider position xC (control parameter). The
orange curve is generated by initially placing the slider near the beam’s center, and stepwise increasing the
horizontal slider location toward the clamping. The green curve is generated by initially placing the slider
near the clamping and stepwise decreasing the horizontal slider location toward the beam’s center. In each
step, the initial conditions are adopted from the previous step, and the simulation runs until a steady state is
reached. This corresponds to a sequential path continuation procedure. It should be noted that only the slider’s
horizontal translation is constrained. Vertical translation and rotation are left as degrees of freedom, and the
dynamic contact interactions between slider and beam are taken into account.
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(a) (b)

Fig. 10 Simulation of System 1 at fex = 145Hz, ˆ̈w0 = 20m/s2: a time-history of self-adaptive process. Black: Beam’s
deformation at center. Red: Position of slider. bVibrational amplitude versus slider position. Orange/Green: Increasing/decreasing
prescribed slider positionwith step length�xC/L = 0.003.Black: Self-adaptive process, arrows indicate directionof time.Dashed
gray: Relation between amplitude and slider position for resonance according to Eq. 5. (Color figure online)

The form of the diagram in Fig. 10b is similar to that of the frequency response of a Duffing oscillator with
softening characteristic. In that case, however, the control parameter is the excitation frequency, while it is here
the horizontal slider position. Still, one can clearly see that two branches of steady-state vibrations coexist for
slider positions around the center, more specifically in the range xC/L < 0.78 (and xC/L > 0.22 owing to the
system’s symmetry). It seems likely that the low-level branch has a turning point at xC/L ≈ 0.78, and there is
an unstable overhanging branch. The stable low-level branch and the overhanging branch would form a closed
loop, with mirror symmetry with respect to the beam’s center. Unfortunately, the branch of unstable periodic
vibration states cannot be found with time integration of the transient. A further analysis of the unstable branch
is hence considered beyond the scope of the present study.

As the timescales of the axial slider movement and the vibrations are well separated, the stable vibration
states determined for fixed slider form the subspace on which the self-adaptive system can operate. Simulation
results of the self-adaptive system (with horizontally free slider) are also depicted in Fig. 10b. Here, the slider
is initially placed near the beam’s center and the system starts with no vibration energy. The low-level branch
(orange) is reached first. The transient dynamics of the self-adaptive system closely follows the steady vibration
states determined for horizontally fixed slider. Here, the transient amplitude is defined as peak-to-peak/2 value,
determined and plotted for each excitation period. Assuming that the system has the tendency to maximize its
vibrations, the results in Fig. 10b explain why the slider first has to move away from the beam’s center, the
vibration level then jumps, and the slider turns around.

The results depicted in Fig. 11 were obtained for a very small clearance between slider and beam, i.e.,
for a slider tightly fitted to the beam. In this case, the slider moves directly toward the vibration antinode at
the beam’s center. This proves that a sufficiently large clearance is needed to enable the unilateral contact
interactions required for the signature move. Only with sufficiently large clearance, the slider can move away
from the beam’s center to reach high-level vibrations.

Figure 10b shows also the resonance curve, defined by the coincidence of the excitation frequency (here
fixed) and the natural frequency (dependent on slider position xC and vibration amplitude ŵL/2). To determine
this curve, the natural frequency is approximated as in Eq. 5, i.e., the points on the resonance curve are defined
by ŵL/2(xC ) = {ŵL/2|ω̃1(ŵL/2, xC ) = 2π fex}. During its adaption process, the self-adaptive system has the
tendency to approach the resonance curve.

Finally, besides the signaturemove, a second, less complex adaption process is possible as shown in Fig. 12:
If the slider is initially placed sufficiently close to clamping, xC/L > 0.78, only one stable vibration state
exists, and the self-adaptive system only follows the (green) high-level branch. In this case, the slider does not
turn around but moves monotonously toward the beam’s center, and the vibration level does not jump. This
behavior does also occur for a tightly fitted slider, see Fig. 13. Consequently, for tightly fitted slider, high level
vibrations can only be reached if the slider is initially placed sufficiently close to the beam’s clamping. This
implies that a tightly fitted slider (no clearance) permits only a one-time adaption: As soon as the excitation
level drops or the excitation frequency exceeds the system’s operating range, the system with tightly fitted
slider will forever remain on the low-level branch, and never reach large vibrations again (without external
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(a) (b)

Fig. 11 Simulation of System 1 with insufficient clearance (R/h = 1.01) at fex = 145Hz, ˆ̈w0 = 20m/s2: a time-history of
self-adaptive process. Black: Beam’s deformation at center. Red: Position of slider. bVibrational amplitude versus slider position.
Orange/Green: Increasing/decreasing prescribed slider position with step length �xC/L = 0.003. Black: Self-adaptive process,
arrow indicates direction of time. Dashed gray: Relation between amplitude and slider position for resonance according to Eq. 5.
(Color figure online)

(a) (b)

Fig. 12 Simulation of System 1 at fex = 145Hz, ˆ̈w0 = 20m/s2: a time-history of self-adaptive process. Black: Beam’s defor-
mation at center. Red: Position of slider. b Vibrational amplitude versus slider position. Orange/Green: Increasing/decreasing
prescribed slider position. Black: Self-adaptive process, arrow indicates direction of time. Dashed gray: Relation between ampli-
tude and slider position for resonance according to Eq. 5. (Color figure online)

help), and thus looses its ability to adapt itself. Of course, such a one-time adaption is of rather limited practical
value. This is the only scenario discussed in [19].

4.3 Why does the slider not go all the way to the beam’s center?

We now address the question why the slider stops at x ssC /L ≈ 0.57 rather than going all the way to the beam’s
center (x ssC /L = 0.5). To explain this behavior, the modified system with horizontally fixed slider is again
simulated. The horizontal component, F̄ ss

x (xC ), of the time-averaged steady-state contact force is determined,
c.f. Fig. 9. This is the force needed to keep the slider at its current position xC . Owing to the system’s symmetry,
we discuss only the slider’s behavior in the right half of the beam, xC/L > 0.5. A positive F̄ ss

x > 0 would drive
the free slider toward clamping, a negative F̄ ss

x < 0 toward the beam’s center, and F̄ ss
x = 0 corresponds to a

stationary position of the free slider. The results are depicted in Fig. 14 . Consider first the results obtained for
stepping the slider from the clamping toward the beam’s center (Fig. 14a, b). The vertical black line indicates
the steady state slider position of the self-adaptive process. One can see several zero crossings of F̄ ss

x close
to this position. Indeed, F̄ ss

x barely reaches positive values in this range. Still, this is sufficient to stop the
slider from further advancing toward the beam’s center. Crossings with ∂ F̄ ss

x /∂x < 0 indicate stable and
∂ F̄ ss

x /∂x > 0 unstable equilibria. To the right of these zero crossings, there is a range up to x ssC /L ≈ 0.85,
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(a) (b)

Fig. 13 Simulation of System 1 with decreased clearance (R/h = 1.01) at fex = 145Hz, ˆ̈w0 = 20m/s2: a time-history of
self-adaptive process. Black: Beam’s deformation at center. Red: Position of slider. bVibrational amplitude versus slider position.
Orange/Green: Increasing/decreasing prescribed slider position. Black: Self-adaptive process, arrow indicates direction of time.
Dashed gray: Relation between amplitude and slider position for resonance according to Eq. 5. (Color figure online)

(a) (c)

(b) (d)

Fig. 14 a, b Results from simulations with decreasing prescribed slider position of System 1 at fex = 145Hz, ˆ̈w0 = 20m/s2.
a Steady-state amplitude. b Average horizontal force acting on slider in steady state during one excitation period. c, d Same for
simulations with increasing prescribed slider position

where F̄ ss
x is negative, which means that the force acts toward center. This is consistent with the self-adaptive

simulations shown in Figs. 10 and 12. Interestingly there is an unstable equilibrium at the beam’s center, but
several stable equilibria away from center. This is consistent with different experimental observations, where
the slider’s steady-state position was away from the beam’s center [2,11,12,19]. This phenomenon does not
occur if a tight fit of the slider is assumed (no clearance, no unilateral contacts) [11,19]. Consequently, the
unilateral contact interactions are needed to explain that the slider stops before reaching the beam’s center.

Consider now the results obtained for stepping the slider from the beam’s center toward clamping (Fig. 14c,
d). Left of the jumping point, one can see a range with positive F̄ ss

x ; thus, the force points toward jumping
point here. Right of the jumping point, there is a range where the force is negative, thus pointing to the beam’s
center. The results are here in agreement with those in Fig. 14a, b. In conclusion, the evaluation of F̄ ss

x (xC )
can be used to predict the slider movement, and in particular, the range of initial slider positions that gives rise
to high vibration levels (successful adaption).
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5 Conclusions

The model proposed in the present work explains, for the first time, the experimentally observed complex
self-adaptive process. A focus was placed on the system’s signature move, which involves the slider movement
toward the clamping, followed by a jump to high vibrations, and subsequent turning of the slider toward
the beam’s center. Besides this, cases of unstable or quasi-stable adaption were qualitatively reproduced by
simulation. It was demonstrated that without dry friction, the slider keeps cycling around the beam’s center and
never reaches a fixed position.Without the beam’s geometric stiffening nonlinearity (due to bending-stretching
coupling), the vibrations do not jump to high levels. Without unilateral contact interactions, the slider never
moves toward the clamping but always toward the beam’s center. These interactions are also responsible for the
occurrence of several stable equilibrium slider positions away from the beam’s center and thus explain that the
slider stops before reaching the center. Finally, it was found that the clearance between slider and beam, which
gives rise to the unilateral contact interactions, is actually needed to achieve recurrent self-adaptive behavior.
In contrast, if the slider is fitted tightly to the beam (no clearance), the system looses its ability to adapt itself
as soon as the vibration level falls below a certain threshold (e.g. if the excitation is temporarily switched off).
Future work could focus on a thorough quantitative comparison of simulation and measurements in a broad
parameter range and analyzing the system’s suitability as broadband energy harvester or vibration absorber.
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