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Abstract Concrete materials show a very complexmacroscopic deformation behavior under tension and com-
pression, accompanied by crack opening and crack closing phenomena under cyclic loading. The continuum
damage mechanics offers a promising framework for the description of the damage deformation behavior.
This paper proposes a continuum damage model, which is formulated based on energy equivalence using a
unified equivalent strain. The evolution of isotropic damage is governed by two independent history variables
to describe the crack opening and closing behavior, i.e., unilateral behavior, of concrete. The evolution of
damage and inelastic strains are described by a single damage function and a modified failure surface, respec-
tively. Moreover, the implicit gradient method is applied to the equivalent strains to achieve proper localization
of deformation. The stiffness recovery and crack opening/closing mechanisms are simulated considering the
thermodynamically consistent framework. Validation of numerical results with experimental data and the pre-
vious models demonstrates the efficiency of the model to simulate concrete behavior under monotonic and
cyclic/reverse loadings.

Keywords Concrete · Damage · Cyclic behavior · Unilateral effect · Gradient · Crack opening/closure

1 Introduction

Concrete remains as a broadly used construction material in the field of civil engineering. Due to its main
characteristics of low tensile strength compared to compressive strength, it exhibits ductile behavior under
compression and brittle behavior under tension. Thus, the brittleness of concrete causes the damage of the
material in the form of opening of tensile cracks and consequentlymay lead to failure of structural components.
In addition, the material exhibits a gradual decrease in stress with the increase in strains in the post-peak region,
i.e., strain softening. Therefore, it is very essential to understand the mechanical behavior of concrete under
various loadings such as monotonic, cyclic, and reverse loadings.

In the past, several researchers have developed various models in the framework of continuous media
to describe the deformation behavior of concrete. Although the irreversible deformation of concrete is not
fully understood, several models apply theories of plasticity to simulate concrete behavior [2,8,34,41]. On the
other hand, models based on linear elastic fracture mechanics [3] yield unrealistic results. Unlike the ductile
fracture of metals, the fracture process zone of concrete is inhomogeneous and governed by multiple micro-
cracks. Therefore, a fictitious crack model or cohesive crack model (a line crack model), which is based on
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nonlinear fracture mechanics characterizing cracks by a stress–displacement rather than stress–strain relation,
was developed by Hillerborg [17]. Later, it is found that the material loses stability, as the stiffness ceases to
be positive definite once the strain softening begins. As a consequence, the strain softening tends to localize
strains within a zone of vanishing volume [4]. The disadvantages of the line crack model that separates the
crack process zone are avoided by smeared crack models or Crack Band Models [6], which are characterized
by three parameters, namely the tensile strength, the fracture energy, and the cracking front width.

On the contrary, many continuum models have been developed based on the work of Kachanov [18,19]
who first introduced a scalar internal variable to give a physical meaning of damage. Subsequently, several
continuum damage models [9,25,27,28,36] are developed for concrete by introducing a set of internal state
variables solely contributing to the post-peak nonlinear softening behavior. On the other hand, there are
several other models, namely coupled plastic damage models [23,24,40,42] and multi-surface plastic damage
models [7,11,33], that couple plasticity and either isotropic or anisotropic damage theories for concrete.

Most of the elastic damage or plastic damage models introduce two independent internal damage variables
to represent the distinct behavior of concrete in tension as well as in compression. The evolution of these
damage variables is based on a damage surface. In another approach, a total damage is a weighted sum of these
damages in tension and compression related to two different loading surfaces, respectively [28]. Occasionally,
the total damage is estimated from two damage variables using a multiplicative relation [11,23] to consider
elastic stiffness recovery during loading/unloading processes. Likewise, the positive (tension) and negative
(compression) parts of effective stresses, which are obtained using spectral decomposition, are sometimes
linked to these damage variables [10,42]. However, an effective damage could also be considered as a function
of two independent history deformation variables associated with two different loading surfaces [27]. Thereby,
these history variables are related to damage equivalent strains in tension and compression, respectively.

Furthermore, the history variable governing the evolution of damage is usually related to a scalar measure
of local deformation via the loading criterion function. It is also noteworthy that there are various definitions
available in the literature for the consideration of local measure of deformation [29,36], which can be deter-
mined by using damage equivalent strains in terms of either principal stresses [9] or principal strains [27,28],
damage energy release rate [10,42], effective stress [26], equivalent effective stress [14] and inelastic strains [7]
or sometimes inelastic multipliers [11]. Similarly, there are also different alternatives to express the damage
equivalent strain, namely Mazars criterion [28], modified von Mises strain [13,36], and two separate expres-
sions, for cracking and crushing, respectively [27]. Even though the equivalent strain is modified in order to
account for predicting both the tensile and compressive behaviors, these modifications are not yet fully cap-
turing the initial elastic domain and ultimate stress domain. Numerical results show considerable differences,
especially in bicompression and complex regions, while comparing with experimental data [38]. Moreover,
the numerical predictions of Mazars’s unilateral model [27] are not smooth enough in the complex region,
though this model offers good results with few differences near bisector of bicompression region.

Moreover, it is witnessed from the experimental studies on concrete [16,20,26,32] that concrete exhibits
inelastic/permanent deformation to some extent under direct cyclic loading or reverse cyclic loading even
though this inelastic deformation is not as large as that observed in ductile materials like steel. Thence, the
incorporation of inelastic deformation behavior is unavoidable to model the deformation behavior of concrete
correctly.

When these local damagemodels are implemented into a finite element program, the localization occurring
in fracture process zone leads to the loss of well-posedness of boundary value problems and mesh objective
results. Therefore, an internal length scale can be incorporated by an implicit gradient method of nonlocal
enrichment to avoid these numerical difficulties, as the implicit gradient formulation remains as a one of the
most efficient approaches in regularization. The nonlocal enrichment should be applied to the variable that
drives the damage growth. Nevertheless, standard gradient damagemodels [12,15] based on strain equivalence
concept may show broadening effect upon increase in loading. This kind of continued broadening is caused,
as the local equivalent strains only depending on total strains go on increasing upon loading.

The main objective of this paper is to formulate a continuum damage model to describe crack open-
ing/closing behavior exhibited by concrete using a unified equivalent strain based on energy equivalence
principle. To address the important aspects of concrete behavior under tension and compression, the proposed
model defines a single loading criterion for damage evolution. To capture inelastic strains, a slightly modi-
fied version of extended Lubliner–Lee failure criterion [22,23] is used. To take stiffness recovery/unilateral
effects due to crack closure during cyclic loading into account, the model uses a history variable and inelastic
multiplier as a function of two independent history variables and inelastic multipliers, respectively. To avoid
ill-posedness of problem and achieve a proper localization, the present model applies implicit gradient method
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to equivalent strains, which act as the driving force for the damage growth. To validate the present model with
experimental tests [16,20,26], some numerical examples using the model are analyzed under uniaxial tensile
and compression and direct cyclic/reverse loading conditions. Finally, the localization phenomena are also
illustrated using a numerical example.

2 Constitutive modeling of elastic damage

The stress–strain relation for elastic damage material behavior can be written using the principle of energy
equivalence as follows:

σ = (1 − D)2H : ε, (1)

where σ and ε are the second-order Cauchy stress tensor and the linear strain tensor, respectively, and H is
the fourth-order elasticity tensor of the undamaged material. The damage variable D is a scalar measure of
effective isotropic damage. Inelastic strain evolution is not considered. Thus, the strain softening behavior of
concrete is described by the constitutive law (1).

2.1 Damage evolution law

The damage variable D is generally considered to be driven by a history variable κ , which is described as a
maximum deformation of the material occurred during tension or compression loading path. Therefore, κ is
a monotonically increasing parameter during loading/unloading processes and the accumulation of damage.
Hence, the damage evolution law [29] that exhibits exponential softening is explicitly expressed as a function
of κ as follows:

D(κ) = 1 −
[κ0

κ

]β1
e
−β2

[
κ−κ0

κ0

]
, (2)

where κ0 is an initial threshold to set the initial elastic domain below which there is no damage. β1 and β2 are
model parameters characterizing the softening behavior of the material after the peak stress up to a complete
loss of stiffness. β1 controls the initial growth of damage, and β2 ensures the later damage growth and its large
extent. Thus, D is limited to the range 0 ≤ D ≤ 1 at any case.

2.2 Damage equivalent strain

In the framework of continuum damage mechanics, it is obvious that κ is often related to a scalar measure
of deformation, a damage equivalent strain ε at a point of continuum considered locally. There are several
alternatives for determining the local measure ε, as discussed in Sect. 1. In this work, ε is defined as a unified
damage equivalent strain for describing tensile cracking as well as crushing failure, which is given by

ε = 1

(1 − αL)E

(
αL I1 + √

3J2 + βLHσmax

)
, (3)

where I1 and J2 are the first invariant of elastically predicted stress tensor σ p and second invariant of the
deviatoric part of σ p, respectively; σmax is the maximum principal stress of σ p; and H is a Heaviside function,
whereby H = 1 if σmax > 0, else H = 0. The parameters αL and βL are defined as follows [23,24]:

αL= fbc/ fc − 1

2 fbc/ fc − 1
, βL = (1 − αL)

fc
ft

− (1 + αL), (4)

where fbc and fc are the characteristic strength values in equibiaxial and uniaxial compression, respectively.
The experiments confirm the ratio fbc/ fc0 ranging from 1.10 to 1.16. For more details, the reader may refer
to [23,24].

The expression (3) is inspired from the failure criterion of Lubliner [23,24,42] and slightly transformed
herein in order to express the damage criterion in strain space, which will be discussed in the following section.



1182 A. H. Monnamitheen Abdul Gafoor, D. Dinkler

2.3 Damage surface criterion

As similar to a yield or failure surface of the material, a function is generalized here to limit the initial elastic
domain and also to allow the growth of damage. The damage criterion f is conveniently used to relate κ to
the unified damage equivalent strain ε. Therefore, the associated single loading surface is written as

f = ε − κ, (5)

with κ as a maximum threshold value reached during tensile/compression loading path. Thus, it is defined by

κ = Sup
[
κ0,max ε

]
, (6)

where κ0 is the initial threshold value at which damage initiates. The evolution of the history variable κ can
mathematically be expressed by the Kuhn–Tucker loading/unloading relations [9,13] as follows:

f ≤ 0, κ̇ ≥ 0, f κ̇ = 0, (7)

where (˙) represents the derivative of any variable with respect to time t . The function f < 0 means that
the material response remains linear elastic, as there is no damage development. The damage initiates when
f = 0, since this is the merely dissipative mechanism considered in the model for the brittle failure of concrete
in the absence of inelastic strains. During the damage evolution, the consistency condition ḟ = 0 must always
be valid. Moreover, the damage remains constant if κ̇ = 0.

2.4 Tension–compression behavior

Two independent history variables such as κt and κc can be defined for tension and compression, respectively,
as follows:

κt = Sup
[
κ0t,max ε

]
; κc = Sup

[
κ0c,max ε

]
. (8)

Subsequently, the expression for κ (6) can be expressed in terms of κt and κc using the Heaviside function H
as

κ = κt H + κc (1 − H), (9)

to account for the crack opening/closure effects (i.e., unilateral behavior). Consequently, the model parameters
can also be determined from the respective parameters under tension as well as compression

κ0 = κ0t H + κ0c (1 − H), (10)

βi = βi t H + βic (1 − H), for i = 1, 2. (11)

Remarks In the case of the model including crack opening/closure behavior, one needs to understand correctly
how the evolution of the internal variables occurs. Figure 1 shows the evolution of internal variables and strain
measures during tension–compression loading/unloading and reverse loading processes. As can be seen, in
the first tension phase, ε increases when t < t2 and decreases when t3 > t > t2 depending on whether loading
or unloading occurs. But the adopted expression (3) of ε yields always positive during the entire tension–
compression loading processes, but ε increases during loading (t < t2 or t3 < t < t4) and decreases during
unloading (t3 > t > t2 or t5 < t < t6). It is clearly shown that κt or κc, which describes themaximum threshold
value that the material experienced during its tensile or compression load history, respectively, always shows
monotonic increase. Therefore, either the history variable κ or the effective damage D refers to the active
stress state, because the effective damage D becomes zero if the subsequent loading occurs in compression
direction (t3 < t < t4). By contrast, if the loading in tensile direction (t6 < t) occurs, the effective damage D
recovers from the previous tensile loading, as the cracks open up. Thus, both κ̇ and Ḋ remain positive for all
positive or negative strain states.
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Fig. 1 Evolution of κ , κt, κc and D during the loading/unloading processes

3 Coupling of inelasticity

The Lubliner–Lee [22–24] yield criterion is found to be successful in modeling the nonlinear behavior of
concrete under both monotonic and cyclic loads. This model uses a loading surface that couples plasticity and
isotropic damage by effective plastic strain. The evolution of the isotropic damage variable is described by
means of two damage variables in multiplicative manner in order to take the crack opening/closing effects into
account.

However, the following section describes a slightly modified version of this criterion considering the
evolution of inelastic strains that is coupled with the unilateral description of isotropic damage. Isotropic linear
hardening is considered in tension as well as compression [42].

3.1 Inelastic deformation

In the theory of inelasticity under small deformations, the total strain tensor ε is decomposed into the elastic
part of strain εel and the inelastic part of strain εin such that:

ε = εel + εin. (12)

Subsequently, by taking time derivative of Eq. (12), the total strain rate ε̇ can be written as

ε̇ = ε̇el + ε̇in, (13)

where ε̇el and ε̇in refer to the rates of the elastic and inelastic strain tensors, respectively.
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3.2 Constitutive law

After coupling of the inelastic strains into the isotropic damage model based on the energy equivalence, the
generalized Hooke’s law (1) becomes as

σ = (1 − D)2 H : εel = (1 − D)2H : (ε − εin), (14)

where H is the fourth-order undamaged elastic stiffness tensor. Here, σ , ε, εel and εin are considered as
macroscopic homogeneous variables. Thereafter, the elastic strain εel follows

εel = (1 − D)−2
H

−1 : σ . (15)

Subsequently, the effective stress and effective strain tensors of the damaged material can be written as

σ̃ = σ

(1 − D)
, ε̃ = (1 − D) ε. (16)

In the case of inelastic consideration, the same damage evolution law (2) models the proper softening behavior
of concrete under tension, but yields an underestimated hardening-softening behavior under compression. It
means that a lower peak stress value from which the softening begins is predicted due to the incorporation of
inelastic deformation. Thus, the damage evolution law (2) with the existing model parameters is not sufficient
to model the behavior of concrete material perfectly. As a result, it entails a slight modification in the damage
evolution so as to capture an appropriate behavior in compression as well. Thus, the softening law (2) is further
modified with an additional model parameter β3 as follows:

D(κ) = 1 −
[κ0

κ

]β1
e
−β2

[
κ−κ0

κ0

]
− (1 − β3)

κ0

κ
. (17)

Note that the influence of β3 on the damage evolution or on the related stress behavior is considered only for
κ > κ0 within this modification. Refer to Sect. 3.5.

3.3 Inelastic failure surface

It is familiar that concrete exhibits distinct behavior in tension and compression. The failure criterion initially
developed by Lubliner et al. [24] and later extended by Lee and Fenves [23] is adopted here. The extended
version of the model, which was based on effective stress concept or strain equivalence concept, was expressed
in effective stress space. As we use the energy equivalence principle of damage description in this work, both
equivalent stress and limiting strength need to be expressed in the effective stress space to recover the original
model behavior. Accordingly, a slightmodification is embodied in this work by including a reduction of (1−D)
to the limiting strength as follows:

F(σ̃ , h±) =
(
α Ĩ1 +

√
3 J̃2 + β±(h±) H σ̃max

)
− (1 − α) f̄c(h

−) (1 − D), (18)

where Ĩ1 and J̃2 are the first invariant of the effective stress σ̃ and the second invariant of the deviatoric part
of the effective stress σ̃ , respectively, H is the Heaviside step function (H = 1 for σ̃max > 0 and H = 0 for
σ̃max < 0), and σ̃max is the maximum principal stress. The dimensionless constants α and β are defined as
follows [24]:

α = fbc/ fc0 − 1

2 fbc/ fc0 − 1
, β±(h±) = (1 − α)

f̄c(h−)

f̄t(h+)
− (1 + α), (19)

where fbc and fc0 are the initial flow stresses in equibiaxial and uniaxial compression, respectively. The
experiments confirm the ratio fbc/ fc0 ranging from 1.10 to 1.16.

In order to consider isotropic hardening, the hardening function is adopted in tension aswell as compression
by assuming linear functions as below:

f̄t = ft0 + Ht h
+, f̄c = fc0 + Hc h

−. (20)
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The evolution functions of tensile and compressive hardening can be defined as

˙̄ft = Ht ḣ
+, ˙̄fc = Hc ḣ

−, (21)

where Ht and Hc are the hardening modulus in tension and compression, respectively, and ft0 is the initial
flow stress in uniaxial tension. The hardening variables h+ in tension and h− in compression are defined in
rate form [23,24] as follows:

ḣ+ = w ε̇inmax, ḣ− = −(1 − w) ε̇inmin, (22)

where the dimensionless parameter w, which is a triaxial weight factor obtained from the effective stress
σ̃ �= 0, is defined according to [23] as

w =
∑3

k=1〈σ̃ k〉∑3
k=1 |σ̃ k|

, (23)

where 〈x〉 = x+|x |
2 refers to Macaulay bracket and principal directions k = 1, 2, 3. ε̇inmax = ε̇in1 and ε̇inmin = ε̇in3

are the maximum and minimum inelastic strain rates of the inelastic strain rate tensor ε̇in such that if ε̇in1 >

ε̇in2 > ε̇in3 . Thus, Eq. (22) can be equivalently written in tensor form as
⎛
⎜⎝
ḣ+

0

ḣ−

⎞
⎟⎠ =

⎡
⎢⎣

w+ 0 0

0 0 0

0 0 w−

⎤
⎥⎦

⎛
⎜⎝

ε̇in1

ε̇in2

ε̇in3

⎞
⎟⎠ (24)

where w+ = w and w− = −(1 − w).

3.4 Non-associative flow rule

In order to obtain the volumetric expansion or dilatancy of frictional materials like concrete properly under
given loading, the definition of a non-associative flow rule is important. As soon as the failure surface criterion
F is satisfied, the material starts to deform inelastically upon further increase in the loading. The inelastic
deformation is measured by the evolution of inelastic strains εin, which is evaluated by the flow rule as
follows:

ε̇in = λ̇
∂Q

∂σ
, (25)

where λ̇ is a nonnegative multiplier as a consistency parameter that can be obtained from the consistency
condition Ḟ = 0 for inelastic flow in such a way that the following loading/unloading conditions

F ≤ 0, λ̇ ≥ 0, F λ̇ = 0, λ Ḟ = 0 (26)

must be satisfied during the inelastic deformation process. The scalar inelastic potential function Q in (25) is
usually assumed different from the failure surface function F to govern non-associated flow rule, and thereby,
the direction ∂Q

∂σ
of the inelastic strains is not normal to the failure function F . This can be fulfilled by adopting

the Drucker–Prager surface as Q expressed in the effective stress space such that:

Q(σ̃ ) = αp Ĩ1 +
√
3 J̃2, (27)

where αp is the dilation constant. Thus, the flow rule (25) relates the failure loading surface and the constitutive
law (14).

According to the experimental investigations on crack opening/closure effects in concrete [32], the inelastic
strains progressively vanish and the material recovers its initial stiffness during the first compression loading
phase, when load changes from tension to compression. During the crack closure, the evolution of inelastic
strains is partially explained by the friction developed by the discontinuity lips. Moreover, a crack closing
stress σcr at which the accumulated damage in tension has no effect on the stiffness of concrete once cracks
are completely closed can be taken as 10% of fc [1]. Therefore, the present model is enabled to predict
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Fig. 2 Responses for β2 = 0.18

Fig. 3 Responses for β1 = 0.75

crack closure mechanisms such as stiffness recovery and vanishing inelastic strains by allowing σcr in the
compression region. In this work, we adopted a value of about 2.5 (MPa) for the selected material parameters
as σcr. Thus, the damaged stiffness remains constant as long as the stress in compression is lesser than σcr. As
soon as the compressive stress goes beyond σcr, the initial stiffness is recovered at the corresponding state of
strain. In addition, the multiplier λ appearing in the flow rule (25) is introduced with two separate multipliers
for tension and compression as follows:

λ̇ = λ̇t H + λ̇c (1 − H). (28)

Similar to the definition of history variable (9), λ̇t and λ̇c deactivate the effect of inelastic strains developed
due to tensile loading on the compression phase. Hence, the evolution of inelastic strains due to tension
does not have any influence on the compressive behavior and vice versa. Meanwhile, the loading/unloading
conditions (26) are still valid, but λ̇t or λ̇c is itself a monotonically increasing multiplier.

3.5 Influence of model parameters

In order to study the influence of themodel parameters on the softening behavior of thematerial, tensile loading
under 1D-situation is considered to cause homogeneous deformation. In such case, κ = ε = ε. The damage
evolution and the corresponding stress–strain curves are obtained for varying the values of model parameters
β1, β2, and β3.

Figure 2 shows the stress–strain responses for increasing values of β1, whereas β2 is kept constant as 0.18.
It is observed that a higher value of β1 makes the initial damage growth faster and thus leads to a more brittle
response of the stress–strain behavior. Moreover, it is worth mentioning that the same evolution law (2) can



A macroscopic gradient-enhanced damage model 1187

Fig. 4 Responses for β1 = 0.0; β2 = 0.105

be used to model the nonlinear behavior of concrete under compression as well, as the model response shows
a nonlinear behavior between the initiation of damage and the peak stress for β1 = 0.20 in Fig. 2.

On the other hand, Fig. 3 shows the stress–strain responses for increasing values of β2, whereas β1 is kept
constant as 0.75. It is noticed that a higher value of β2 leads to a faster damage growth and results in zero
residual stresses in the post-peak regime of the curve.

Additionally, the influence of model parameter β3 on the stress–strain behavior is studied for β1 = 0,
β2 = 0.105 with inelastic strain evolution and corresponding stress responses are displayed in Fig. 4. Having
β3 = 1.0 reduces the damage law (17) to its initial form (2), which means that there is no effect of β3 on
the stress response. Therefore, β3 ≥ 1.0. The higher values of β3 yield higher peak stresses by delaying the
damage growth.

4 Consistency of thermodynamics

The process of undergoing deformations of any kind is generally a thermodynamic irreversible one [31]. There-
fore, any constitutive modeling of material behavior must be consistent with the thermodynamic principles.
According to the thermodynamic laws, a generalized form of the Clausius–Duhem inequality for any allowable
dissipation process is given by

σ : ε̇ − ψ̇ + ρη̇T − q
∇T

T
≥ 0, (29)

where ρ, η, T , and q refer to the material density, the entropy density per unit mass, the absolute temperature,
and the heat flux, respectively. Within this context, the Helmholtz free energyψ per unit volume can be written
in terms of internal state variables characterizing the nonlinear deformation behavior of concrete both in tension
and in compression such that:

ψ = ψ(εel, D, κt, κc, h
+, h−). (30)

As similar to the split of total strains (12), the Helmholtz free energy ψ can also be given as a decomposition
of elastic ψel and inelastic ψ in parts such that:

ψ = ψel(εel, D, κt, κc) + ψ in( h+, h−). (31)

The above decomposition is valid when the effect of damage is considered on the elastic properties and
implicitly on the inelastic properties by means of inelastic strains and a reduction in limiting strength, as the
proposed model is intended for brittle materials like concrete.

The elastic free energy ψel based on the principle of energy equivalence is given by

ψel = 1

2
(1 − D)2 εel : H : εel. (32)

Herein, the elastic free energy (32) uses a quadratic degrading function due to the assumption of energy
equivalence principle in the material law (1). This kind of quadratic degrading function is usually adopted
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for phase-field variables in phase-field models [12] that lead to a constant broadening zone of localization. A
detailed comparison between the gradient damage models and phase-field approaches discussed can be found
in [21]. Nevertheless, the model presented in this paper does not fall into the category of gradient damage
models discussed in their comparison, as the present model will use a nonlocal equivalent strain by following
the work [36], which is explained in Sect. 5.

Furthermore, the assumption of linear isotropic hardening functions (20) and knowing the dependency of
ψ in on hardening variables h± enable one to postulate the inelastic free energy ψ in as in the following form

ψ in = g+ + g− − 1

2

(
Ht (h

+)2 + Hc (h−)2
)
, (33)

which is similar to the form of inelastic dissipation used in the Lubliner–Lee criterion [23]. Herein, g± is the
dissipated energy density during the fracture process [23,24].

Taking time derivative of Eq. (31), the rate of change of free energy can be written as

ψ̇ = ∂ψel

∂εel
ε̇el + ∂ψel

∂D

(
∂D

∂κt
H κ̇t + ∂D

∂κc
(1 − H)κ̇c

)
+ ∂ψ in

∂h+ ḣ+ + ∂ψ in

∂h− ḣ−. (34)

For any isothermal and adiabatic mechanical dissipation process (Ṫ = 0 and q = 0), the Clausius–Duhem
inequality (29) reduces to

σ : ε̇ − ψ̇ ≥ 0. (35)

Substitution of Eqs. (13) and (34) into Eq. (35) yields

(
σ − ∂ψel

∂εel

)
: ε̇el + σ : ε̇in

(
+ Y

∂D

∂κt
H κ̇t + ∂D

∂κc
(1 − H)κ̇c

)
− ∂ψ in

∂h+ ḣ+ − ∂ψ in

∂h− ḣ− ≥ 0, (36)

whereY , ∂ψ in

∂h+ , and ∂ψ in

∂h− describe the thermodynamic conjugate force to damage (often termed as damage energy
release rate) and thermodynamic conjugate forces to inelastic strain evolution under tension and compression,
respectively. The damage energy release rate Y is defined as

Y = − ∂ψ

∂D
= −∂ψel

∂D
= (1 − D) εel : H : εel. (37)

For any admissible process of energy dissipation that satisfies Eq. (36), it follows that:

σ = ∂ψ

∂ε
= ∂ψel

∂εel
= − ∂ψ

∂εin
, (38)

and the intrinsic mechanical dissipation potential function D can be expressed in terms of associated thermo-
dynamic forces and the evolution of internal variables as

D = σ : ε̇in + Y

(
∂D

∂κt
H κ̇t + ∂D

∂κc
(1 − H)κ̇c

)
− ∂ψ in

∂h+ ḣ+ − ∂ψ in

∂h− ḣ− ≥ 0. (39)

The process of damage and inelastic deformation can occur without any influence of each other, and therefore,
the dissipation potential function D can be decoupled into dissipation potentials due to damage Dd and
inelasticity Din such that

D = Dd + Din ≥ 0, (40)

where

Dd = Y

(
∂D

∂κt
H κ̇t + ∂D

∂κc
(1 − H)κ̇c

)
≥ 0, (41)

Din = σ : ∂εin

∂λ
λ̇ − ∂ψ in

∂h+ ḣ+ − ∂ψ in

∂h− ḣ− ≥ 0, (42)

(or)
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Din = σ :
(

∂εin

∂λt
H λ̇t + ∂εin

∂λc
(1 − H)λ̇c

)
− ∂ψ in

∂h+ ḣ+ − ∂ψ in

∂h− ḣ− ≥ 0. (43)

To satisfy the dissipation function (40), the following relations must be valid:

σ : ε̇in≥ 0, (44a)

∂ψ in

∂h± ḣ±≤ 0. (44b)

Herein, Dd remains nonnegative if Y ≥ 0 as Ḋ ≥ 0 and κ̇t ≥ 0, κ̇c ≥ 0. Din remains positive if Eq. (44a)
remains positive because of the convexity of the selected inelastic potential function (27) and Eq. (44b) remains
negative, as ḣ± ≥ 0. Thus, the non-negativity of Eqs. (41)–(43) proves that both the damage and inelastic
processes respect the Clausius–Duhem inequality (39) or (40).

5 Gradient enhancement

In this section, how the gradient enhancement of the local continuummodel from a general concept of nonlocal
continua is achieved is presented.Any nonlocal variable k̄ at eachmaterial point x can bewritten as theweighted
average of its local counterpart k over its surrounding volume domain V [5,37]:

k̄(x) = 1

V

∫

V
g(ξ)k(x + ξ)dV, (45)

where g(ξ) is a certain weight function and the vectorial variable ξ represents the distance from the point x to
a point in its vicinity.

As the averaging of damage variable leads to spurious residual stresses and an expansion of the softening
zone across the bar [5], and also the damage growth in the present model is driven by the equivalent strain ε,
the averaging procedure is therefore applied to the equivalent strain ε. Consequently, the nonlocal quantity ε̄
is defined as

ε̂(x) = 1

V

∫

V
g(ξ)ε(x + ξ)dV . (46)

The integral (46) is approximated by a partial differential equation according to [30,35], which is given by

ε̂ − l2c∇2ε̂ = ε, (47)

where lc is the characteristic length scale and ∇2 is the Laplacian operator. An appropriate boundary condition
(either a Dirichlet boundary or a Neumann boundary) must be used to solve the partial differential equation
(47). Nevertheless, the present work adopts a natural boundary condition at every point of the boundary as
provided below:

∇ ε̂ · n = 0. (48)

The above boundary condition (48) ensures that the average of nonlocal equivalent strain ε̂ over the entire
domain equals that of local equivalent strain ε [36].

Hence, κ is related to the distributed nonlocal equivalent strain ε̂ in the gradient-enhanced damage model.
Subsequently, the damage criterion (5) is rewritten as follows:

f = ε̂ − κ. (49)

The Kuhn–Tucker loading/unloading relations (7) even so remain valid. Assuming the length scale lc → 0,
the local continuum model is resumed as ε̂ = ε.
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Table 1 Material and model parameters used for damage models

Adopted parameters Data 1 [23] Data 2 [23]

Material parameters fc (MPa) 27.6 27.6
ft (MPa) 3.48 3.48
E (GPa) 31.0 31.7
ν (−) 0.18 0.2

Internal length lc (mm) 200

Elastic damage model Coupled inelastic–damage model

Model parameters β1t 0.85 β1t 0.25
β2t 0.18 β2t 0.25

β3t 1.0
β1c 0.0 β1c 0.0
β2c 0.095 β2c 0.105

β3c 1.20
κ0t fc/E κ0t fc/E
κ0c 10 ft/3E κ0c fc0/E

Hardening parameters Ht (MPa) 25.0
Hc (GPa) 42.0
ft0 (MPa) ft
fc0 (MPa) 0.6 fc

6 Validation of the model equations

In order to check the ability of the proposed damage model in predicting the material behavior, the numerical
algorithm to solve the model equations has been implemented into a finite element program (an in-house
code [39]). The performance of the model is investigated under several loadings such as monotonic uniaxial
tensile and compression, direct cyclic tension and compression as well as reverse cyclic loading.

In order to prove the model equations, a single 8-noded brick element of size 200 (mm) × 200 (mm) ×
50 (mm) is adopted for the numerical analyses using 8 Gauss integration points. The material parameters are
taken from the work [23] so as to compare the numerical results of the present model with the respective
experimental results [16,20,26]. The model parameters β1 and β2 have been chosen accordingly so as to
reproduce the material behavior under respective monotonic loadings. Both the material and model parameters
used in this work are provided in Table 1.

In order to investigate the solution procedure without localization, the material length scale lc is considered
as 200 (mm). Linear shape functions have been used for the nonlocal equivalent strain ε̂. The nonlinear system
of resulting equations has been solved with the Newton–Raphson method. Displacements are imposed as
prescribed boundary conditions. Numerical results are obtained and plotted against the experimental results in
Figs. 6, 7, 8, 9, whereby the quality of the numerical simulation depends on the selected model parameters.

6.1 Monotonic loading tests

6.1.1 Uniaxial tension and compression

The single element is subjected to uniaxial tensile and compression. The numerical responses obtained
using the model are compared with experimental results in Figs. 6 and 5.

As shown in Fig. 6, the simulated stress–strain behavior agrees well with the experimental results [16]. It
can be noted that the model exhibits a gradual decrease in stress with increasing strains, i.e., strain softening
and ensuring the residual stresses to a large extent. It means that damage increases monotonically.

Similarly, the numerically predicted compressive stress–strain responses depict very good agreement with
the experimental compressive curve [20], which is noticed in Fig. 5. Moreover, the proposed model can predict
the hardening as well as the post-peak softening behavior well.

In addition, it is obvious that the damage initiation in the case of compressive loading is later than that in
case of tension, which is physically reasonable. Furthermore, the nonlinear behavior in the case of coupled
inelastic damagemodel is provided by both the dissipativemechanisms of damage and inelasticity, even though
hardening functions are assumed as linear functions.
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Fig. 5 Uniaxial compression

Fig. 6 Uniaxial tension

6.2 Cyclic loading

6.2.1 Uniaxial cyclic tension and compression

The ability of the model is checked under uniaxial cyclic tensile as well as compressive loadings. Figures 8
and 7 depict the simulated tensile and compressive stress–strain behavior, respectively. The numerical results
are compared with the experimental investigations according to Gopalaratnam and Shah [16] and Karsan and
Jirsa [20] and also compared with previously proposed models of Lee and Fenves [23], which is the extended
model version of Lubliner et al. [24] and Zhang and Li [42]. The model predictions agree with the phenomena
observed by experiments:

(a) the softening behavior under tension predicted by the model is fairly comparable with the experimental
results, as shown in Fig. 8, and the results are also close to the previously proposed models;

(b) As shown in Fig. 7, the nonlinear hardening behavior under compression is close to the experiments and
previous models, but the softening behavior reasonably agrees with the test data with few differences due
to the calibration of model parameters using uniaxial monotonic tests; Nonetheless, the capture of the
inelastic strains gives good approximation of the material behavior;

(c) the history variable κt or κc grows monotonically, as every reloading follows the path of the previous
unloading, and thus, thermodynamic consistency is verified;

(d) the tensile damage or compressive damage is monotonically increasing, which can be observed from the
decrease in the slopes of the unloading behavior;

(e) the history variable and damage remain constant during unloading regions;
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Fig. 7 Uniaxial cyclic compression

Fig. 8 Uniaxial cyclic tension

Thus, the model is able to simulate nonlinear deformation behavior of concrete satisfactorily, but only the
coupled model with inelasticity and damage is able to capture the residual permanent strains during the
unloading cycles.

The hysteresis behavior of the experimental investigations is not included in the model, since unloading
and reloading are described with constant stiffnesses. An extension of the model with respect to the hysteresis
behavior is possible, if the inelastic strains are modified with respect to the strain velocity.

6.2.2 Tension–compression loading

In order to investigate the effect of damageunder uniaxial cyclic tension–compression loading, the displacement
history is used to be cyclic with an increasing magnitude alternatively tension and compression as an imposed
loading as performed in [26]. The numerical results are illustrated in Fig. 9 with the loading path (O–A–B–O–
B–D’–O–C–E). Additionally, loading and unloading cycles are labeled as 1 – 4 . During cycles 1 and 2 ,
the first and the second tensile loading and unloading occur, respectively. During cycle 3, the loading changes
from tension to first compression phase and further continues in cycle 4 . As observed in Fig. 9a, κ = κt
or κ = κc is monotonically increasing during tension–compression loading/unloading processes, respectively.
Consequently, a monotonic increase in the effective damage D during the respective load stages is depicted
in Fig. 9b. It is also observed that D becomes zero after the tensile loadings (cycle 1 and 2 ), and thus,
the accumulated effective damage in the previous tensile loadings does not affect the stiffness of the material
in the first phase of compression (cycle 3 ). It means that the initial stiffness of the material is recovered for
the first compression phase. Further loading in the compression phase (cycle 4 ) causes continuous growth
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(a) (b)

(c) (d)

(e) (f)

Fig. 9 Unilateral responses. Elastic damage (a, b, e) with loading paths (O–A–B–O–B–D’–O–C–E) and inelastic–damage (c, d,
f) with loading paths (O, A, B, O’, B, D’, O”, Ō, C, E). (Color figure online)
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(a) (b)

Fig. 10 Normalized stress–strain responses under tension–compression compared with experimental results [26]

(a) (b)

Fig. 11 Normalized stress–strain responses under tension–compression compared with experimental results [32]. (Color figure
online)

of damage as the κ = κc increases. If the material experiences tension in reloading phase beyond the load
cycle 4 , D due to previous tensile load cycle is recovered. During the unloading paths (B–O) and (D’–O),
the accumulated damage remains constant, i.e., Ḋ = 0 as κ̇ = 0, during these load phases.

The corresponding stress–strain responses using elastic damage and inelastic damage models, which show
unilateral behavior, are compared with the previous model [23], as illustrated in Fig. 9e, f. The degradation
of stiffness is shown by softening, as damage develops due to the opening of micro-cracks during the first
tensile loading path (O–A–B). Then, the tensile unloading that occurs follows the path (B–O), and thus, the
unloading slope refers to the damaged stiffness. Afterward, the tensile reloading (O–B–D’) that occurs recovers
the damaged stiffness caused by the previous tensile loading (Ḋ = 0 as κ̇ = 0). Subsequent degradation of
stiffness occurs, as cracks open up during the cycle 2 . Subsequent unloading that follows (D’–O) keeps the
damaged stiffness unaltered temporarily. When the sign of loading changes, i.e., the first compressive loading
(O–C) occurs, the initial stiffness is completely recovered due to the closure of opened micro-cracks. At this
level, there is no damage development, as observed in Fig. 9e, since the damage criterion is not fulfilled. During
the cycles 3 and 4 , if the loading occurs along the path (C–E) and further continues, damage grows due to
compression, and consequently, degradation in stiffness is resulted which is indicated by the nonlinear increase
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Fig. 12 One-dimensional bar with an imperfection (shaded portion) at the center. All dimensions are in (mm)

(a)

(b)

(c)

Fig. 13 Meshes for the one-dimensional problem: red shows the elements with the imperfection. (Color figure online)

in stress and subsequent softening after the peak stress. But there are certain discrepancies due to the fact that
the permanent inelastic strains are not taken into account in the elastic damage model.

Nevertheless, as can be seen in Fig. 9f, the evolution of the history variable and damage during the
loading/unloading and reloading cycles demonstrates that the thermodynamic laws are respected by showing
the monotonic increase in the history variable and corresponding damage either in tension or in compression.
Moreover, the main discrepancy of the elastic damage model is overcome, as the inelastic strain evolution
(OO’ and O’O”) is observed after every unloading cycle. The initial stiffness recovery also occurs during the
first compression phase, since the inelastic strains from the previous tensile load histories become inactive at
the point Ō. Thus, the present model is able to reproduce similar results of the previous model and the present
crack closing behavior shows an improved response with the crack closing feature such that the inelastic strains
are vanished compared to the response of the previous model, because the previous model recovers the initial
stiffness as soon as the compressive stresses come into picture.

Further, to verify the crack closing behavior observed by the model, the numerical tension–compression
stresses are normalized and compared with the experimental results [26,32] in Figs. 10 and 11. In Fig. 10,
the tensile and compressive stresses are normalized by uniaxial tensile strength ft and uniaxial compressive
strength fc, respectively. Similarly, the experimental response [26] is also normalized by respective material
data from their work to compare with the numerical results. On other hand, Fig. 11 shows both the tensile
and compressive stresses of numerical and experimental data [32] are normalized by the uniaxial tensile
strength ft from the respective data. From both the figures, it can be noticed that the normalized stress–strain
responses agree fairly with the experimental data [26,32] by showing adequate crack opening/closing effects
such as damaged stiffness, capturing residual strains, stiffness recovery, and vanishing of inelastic strains on
the compression behavior.

7 Localization phenomena

In order to visualize the localization phenomena of the proposed gradient-enhanced damage model, a simple
one-dimensional problem is analyzed using a bar of size 100 (mm) × 10 (mm) × 10 (mm) subjected to a pure
tensile loading, as shown in Fig. 12. The left end of the bar is fixed. A pure tensile loading is applied at the
free end of the bar by prescribing an imposed displacement. Model parameters and material parameters (Data
2) used are from Table 1. To trigger the damage localization, the initial damage threshold κ0 is adopted from
Table 1 in a 10-mm-wide zone in the middle of the bar, whereas κ0 = is set to 1 × 10−3 in the rest of the
portion. Thus, the reduction in κ0 in the middle zone is about 13%.
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(b)(a)

Fig. 14 Applied displacements and mesh convergence

(a) (b)

(c) (d)

Fig. 15 Nonlocal solutions of the bar. (Color figure online)

It is a well-known fact that the order of shape functions for the displacements should be at least one order
higher than that of shape functions used for nonlocal variables so as to avoid stress oscillations. Therefore,
linear shape functions have been used for the nonlocal equivalent strain ε̂. The bar is discretized into 40, 80,
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160 equal-sized solid (Hex27) elements along the loading direction (x-axis), respectively. The three different
meshes are shown in Fig. 13. The computations are performed using different internal length scales, namely
lc = {5, 7.5, 10} (mm). Figures 14, 15 show the nonlocal results obtained during the numerical analyses.
Figure 14a displays the applied displacement during analysis. The stress–displacement responses generated
for the three meshes using various internal length scales are depicted in Fig. 14b. It is clearly observed that the
softening responses of every mesh are almost identical and converging faster. It is obvious that a finite energy
dissipation has been obtained due to mesh-independent solutions. In addition, Fig. 14b illustrates the influence
of characteristic internal length scale lc on the softening behavior. It is also apparent that the brittleness of
softening responses is influenced by the internal length. The model responses become brittle; the model loses
its stiffness and the peak stress value reduces for decreasing internal lengths, and vice versa. It is due to the
fact that the larger internal length makes the localization zone wider. Moreover, the softening responses are
also physically meaningful.

Figure 15a, b displays the distributions of nonlocal equivalent strains and resulting damage over the local-
ization zone that are obtained using the different length scales for the fine mesh (n = 160) at the loading step
t3. Indeed, a larger value of lc allows wider spreading of the nonlocal strains, and accordingly, the damage
becomes wider. In other words, a smaller value of lc yields strong (narrowing down) localization of nonlocal
strains as well as damage at the center of triggered zone.

Furthermore, Fig. 15c compares the evolution of local and nonlocal equivalent strains corresponding to the
three different loading steps (t1, t2, t3) in the post-peak regime, which are obtained for the fine mesh (n = 160)
with lc = 5 (mm). As can be observed, the local equivalent strains (dashed lines) are concentrated near the
vicinity of the triggered region and further loading increases the narrowing of zone leading to propagation of
macro-crack. On the other hand, the nonlocal equivalent strains (thick lines) are spread over the localization
zone, physically meaning the occurrence of microstructural interaction in the neighborhood.

The respective evolution of damage is plotted over the length of the bar in Fig. 15d. The continued loading
leads to the subsequent development of damage. The damage formed in a broader area. Nonetheless, the nar-
row region of strains that obtained replicates formation of the finite width of localization. Thus, the gradient
enhancement of the model describes the physical meaning of crack initiation, growth of micro-cracks, and
coalescence of these into a macro-crack, as observed in [35].

8 Concluding remarks

A simplified constitutive model for concrete has been developed based on energy equivalence concept to
take its distinct deformation behavior under monotonic and cyclic loading conditions into account. A unified
equivalent strain is considered as the local measure of deformation driving the evolution of isotropic damage.
The crack opening and closure of micro-cracks under cyclic and reverse loadings are described by the evo-
lution of two independent history variables. The implicit gradient method is incorporated to enrich the local
equivalent strain. The efficiency of the damage models is demonstrated by validating the numerical responses
with the experimental results under several load tests. Thus, the model can simulate the unilateral behavior of
concrete well by showing adequate crack opening/closing effects such as damaged stiffness, inelastic residual
strains, and stiffness recovery and vanishing of inelastic strains for the compression phase. The investigations
of the one-dimensional bar problem prove that the ill-posedness of the boundary value problem is avoided by
the incorporation of the implicit gradient method. Moreover, the ability of the present model in producing a
constant width of damage zone is illustrated qualitatively.
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