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Abstract The object of this paper is the Saint-Venant torsion of a radially non-homogeneous, hollow and solid
circular cylinder made of orthotropic piezoelectric material. The elastic stiffness coefficients, piezoelectric
constants and dielectric constants have only radial dependence. This paper gives the solution of the Saint-
Venant torsion problem for torsion function, electric potential function, Prandtl’s stress function and electric
displacement potential function.
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1 Introduction

Application of piezoelectric materials and structures has been increasing recently. Sensors and actuators are
examples of active components made of piezoelectric materials which are used widely in smart structures.
These structural components are often subjected tomechanical loading. The torsion of these structuralmembers
is an important task.

The Saint-Venant torsion of a homogeneous, isotropic elastic cylindrical body is a classical problem of
elasticity [1–3], which is solved using a semi-inversemethod by assuming a state of pure shear in the cylindrical
body so that it gives rise to a resultant torque over the end cross sections. Extension of more complicated cases
of anisotropic or non-homogeneous materials has been considered by Lekhnitskii [4,5], Rooney and Ferrari
[6], Davi [7], Bisegna [8,9], Horgan and Chan [10], Rovenski et. al. [11,12], Rovenski and Abramovich [13],
Horgan [14], Ecsedi and Baksa [15,16].

In this paper, the torsional deformation of radially non-homogeneous, piezoelectric, solid and hollow
circular cylinders is studied. This study gives a non-trivial generalization of the results in paper [8], which
deals with the Saint-Venant torsion of radially non-homogeneous anisotropic elastic circular cylinder.

The formulation of the Saint-Venant’s theory of uniform torsion for the homogeneous piezoelectric beams
has been analyzed by Dave [7], Bisegna [8,9] and Rovenski et al. [11,12]. The papers of Bisegna [8,9] use
the Prandtl’s stress function and electric displacement potential function formulation for simply connected
cross section. Davi [7] obtained a coupled boundary-value problem for the torsion function and for the elec-
tric potential function from a constrained three-dimensional static problem by the application of the usual
assumptions of the Saint-Venant’s theory. Rovenski et al. [11,12] give a torsion and electric potential func-
tion formulation of the Saint-Venant’s torsional problem for monoclinic homogeneous piezoelectric beams. In
these papers [11,12], a coupled Neumann problem is derived for the torsion and electric potential functions,
where exact and numerical solutions for elliptical and rectangular cross sections are presented. Ecsedi and
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Fig. 1 Hollow circular cylinder

Baksa [15] give a formulation of the Saint-Venant torsional problem for homogeneous monoclinic piezoelec-
tric beams in terms of Prandtl’s stress function and the electric displacement potential function. The Prandtl’s
stress function and electric displacement potential function satisfy a coupled Dirichlet problem in the multiply
connected cross section. A direct formulation and a variational formulation are developed in [15]. In another
paper by Ecsedi and Baksa [16], a variational formulation is presented for the torsional deformation of homo-
geneous linear piezoelectric monoclinic beams. The variational formulation presented uses the torsion and
electric potential functions as independent quantities of the considered variational functional. The mechanical
meaning of the variational functional defined in [16] is also given. Examples illustrate the application of the
presented variational functional. Rovenski and Abramovich apply a linear analysis to piezoelectric beams
with non-homogeneous cross sections that consist of various monoclinic (piezoelectric and elastic) materials
[13]. They give the solution procedure for extension, bending, torsion and shear. The developed method is
illustrated by numerical examples [13]. Batra et al. [17] studied the electromechanical nonlinear deformations
of homogeneous, transversely isotropic piezoelectric circular cylinder loaded on its end cross sections. In [17],
the second-order constitutive equations are used and show that when the cylinder is deformed by applying
pure torque and non-electric charges at the end cross sections the potential difference between the end cross
sections is proportional to the square of twist.

In this paper, the deformation of circular cylinders made of orthotropic, radially non-homogeneous piezo-
electric material is studied by means of Saint-Venant’s theory of uniform torsion. The elastic stiffness coeffi-
cients, piezoelectric constants and dielectric constants depend only on the radial coordinate. The dependence
of material parameters is either described by smooth functions of radial coordinate as in the case of functionally
graded materials [18,19], or the material parameters are piecewise smooth functions of the radial coordinate
as in the case of radially layered circular cylinders.

2 Formulation of Saint-Venant torsional problem

Let B = A× (0, L) be a right circular cylinder of length L . Let A1 and A2 be the bases and A3 = ∂A× (0, L)
the mantle of B. The cross section A is given in the Cartesian coordinate frame Oxyz

A =
{
(x, y)

∣∣∣R2
1 ≤ x2 + y2 ≤ R2

2

}
. (1)

The Cartesian coordinate frame Oxyz is supposed to be chosen in such a way that the Oz-axis is parallel to
the generators of the cylindrical boundary surface segments A3 = A

′
3 ∪ A

′′
3 (Fig. 1). The plane Oxy contains

the terminal cross section A1. The position of the end cross section A2 is given by z = L . A point P in
B = B ∪ A1 ∪ A2 ∪ A3 is indicated by the vector r = xex + yey + zez = R + zez , where ex , ey and ez are
the unit vectors of the coordinate system Oxyz (Figs. 1, 2).

In the case of Saint-Venant torsion, the displacement field u and electric potentialV of the twisted cylindrical
bar can be represented as [11,13]

u = ϑzez × R + ϑω(x, y)ez (2)
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Fig. 2 Cylindrical coordinates (r, ϕ)

V = ϑφ(x, y), (3)

where ϑ is the rate of twist, ω = ω(x, y) is the torsion function and φ = φ(x, y) is the electric potential for
the unit value of the twist. The vectorial product of the two vectors in Eq. 2 is denoted by cross. The shear
strains are obtained from the linearized strain–displacement relationships of elasticity as [1,2]

γxz = ϑ

(
∂ω

∂x
− y

)
γyz = ϑ

(
∂ω

∂y
+ x

)
. (4)

The components of the electric field vectors are [11,12]

Ex = −ϑ
∂φ

∂x
Ey = −ϑ

∂φ

∂y
. (5)

The shearing stresses τxz , τyz and electric displacements Dx , Dy according to the constitutive equations of
linear orthotropic piezoelectric bodies can be written in the next form:

τxz = Ã55γxz + ẽ15
∂V

∂x
= ϑ

[
Ã55

(
∂ω

∂x
− y

)
+ ẽ15

∂φ

∂x

]
(6)

τyz = Ã44γyz + ẽ24
∂V

∂y
= ϑ

[
Ã44

(
∂ω

∂y
+ x

)
+ ẽ24

∂φ

∂y

]
(7)

Dx = ẽ15γxz − κ̃11
∂V

∂x
= ϑ

[
ẽ15

(
∂ω

∂x
− y

)
− κ̃11

∂φ

∂x

]
(8)

Dy = ẽ24γyz − κ̃22
∂V

∂y
= ϑ

[
ẽ24

(
∂ω

∂y
+ x

)
− κ̃22

∂φ

∂y

]
. (9)

In Eqs. (6)–(9), Ã44 and Ã55 are the shear rigidities, ẽ15 and ẽ24 are the piezoelectric constants, κ̃11 and κ̃22 are
the dielectric constants. In our case, the shear rigidities, the piezoelectric constants and the dielectric constants
depend only on the radial coordinate

r =
√
x2 + y2 R1 ≤ r ≤ R2. (10)

This dependence of thematerial parameters as a function of position is described by the inhomogeneity function
f = f (r) as

Ã44 = f (r)A44 Ã55 = f (r)A55 (11)

ẽ15 = f (r)e15 ẽ24 = f (r)e24 (12)

κ̃11 = f (r)κ11 κ̃22 = f (r)κ22. (13)

In Eqs. (11)–(13), A44, A55, e15, e24, κ11 and κ22 are constants and f = f (r) is unit free, f (r) > 0,
R1 ≤ r ≤ R2.
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3 Solution of the torsion problem

Starting from the equation of mechanical equilibrium and Gauss equation, we can write

∂τxz

∂x
+ ∂τyz

∂y
= 0

∂Dx

∂x
+ ∂Dy

∂y
= 0. (14)

The substitution of Eqs. (6)–(9) into Eqs. (14)12 gives the following results:

A55
∂

∂x

[
f (r)

(
∂ω

∂x
− y

)]
+ e15

∂

∂x

[
f (r)

(
∂φ

∂x

)]
+ A44

∂

∂y

[
f (r)

(
∂ω

∂y
+ x

)]
+ e24

∂

∂y

(
f (r)

∂φ

∂y

)
= 0

(15)

e15
∂

∂x

[
f (r)

(
∂ω

∂x
− y

)]
− κ11

∂

∂x

(
f (r)

∂φ

∂x

)
+ e24

∂

∂y

[
f (r)

(
∂ω

∂y
+ x

)]
− κ22

∂

∂y

(
f (r)

∂φ

∂y

)
= 0.

(16)

The cylindrical surface A3 is stress free, i.e.,

τxznx + τyzny = 0 on A3. (17)

There is no free charge on the cylindrical boundary surface, so we have

Dxnx + Dyny = 0 on A3. (18)

In Eqs. (17) and (18), the components of unit normal vector n on the boundary curves ∂A1 = {(x, y)
∣∣∣x2+ y2 =

R2
1} and ∂A2 = {(x, y)

∣∣∣x2 + y2 = R2
2} are (Fig. 1)

nx = − x

R1
ny = − y

R1
on ∂A1 (19)

nx = x

R2
ny = y

R2
on ∂A2. (20)

Detailed form of the stress boundary condition (17) and free charge boundary condition (18) are as follows:

A55x

(
∂ω

∂x
− y

)
+ e15x

∂φ

∂x
+ A44y

(
∂ω

∂y
+ x

)
+ e24y

∂φ

∂x
= 0 (x, y) ∈ ∂A1 ∪ ∂A2 (21)

e15x

(
∂ω

∂x
− y

)
− κ11x

∂φ

∂x
+ e24y

(
∂ω

∂y
+ x

)
− κ22y

∂φ

∂y
= 0 (x, y) ∈ ∂A1 ∪ ∂A2. (22)

Here, we note that, assuming sufficient smoothness of the inhomogeneity function f = f (
√
x2 + y2), the

standard results from the linear theory of second-order partial differential equations show that the classical
(strong) solutions to the boundary-value problem formulated by Eqs. (15–16) and Eqs. (21–22) are unique in
two constants. This means that, if ω = ω(x, y) and φ = φ(x, y) are a solution, then

ω̃(x, y) = ω(x, y) + K1 φ̃(x, x) = φ(x, y) + K2 (23)

are also a solution with arbitrary values of constants K1 and K2.

Theorem 1 The solution of the torsional boundary-value problem formulated by Eqs. (15–16) and Eqs. (21–
22) is

ω(x, y) = Cωxy + K1 (24)

φ(x, y) = Cφxy + K2, (25)

where

Cω = (A55 − A44)(κ11 + κ22) + e215 + e224
(A55 + A44)(κ11 + κ22) + (e15 + e24)2

(26)

Cφ = − 2(A44e15 − A55e24)

(A55 + A44)(κ11 + κ22) + (e15 + e24)2
(27)

K1 and K2 are arbitrary real constants.
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Proof By the direct substitution of the following equations:

∂ Ãi j

∂x
= f

′
(r)

x

r
Ai j

∂Ai j

∂y
= f

′
(r)

y

r
Ai j

i, j = 4, 5, i �= j (28)
∂ ẽmn

∂x
= f

′
(r)

x

r
emn

∂ ẽmn

∂y
= f

′
(r)

y

r
emn

m = 1, 2 n = 4, 5 (29)
κ̃pp

∂x
= f

′
(r)

x

r
κpp

κ̃pp

∂y
= f

′
(r)

y

r
κpp p = 1, 2, (30)

we get the functionsω = ω(x, y) and φ = φ(x, y) given by Eqs. (20) and (27) with arbitrary constants K1 and
K2 satisfying Eqs. (15–16) and Eqs. (21–22). Next, we define K1 = 0 and K2 = 0 according to the statement
formulated by Eq. (23). ��

4 Shearing stresses and electric displacement field

Shearing stresses are obtained from Eqs. (6) and (7):

τxz = ϑ f (r)
[
A55(Cω − 1) + e15Cφ

]
y (31)

τyz = ϑ f (r)
[
A44(Cω + 1) + e24Cφ

]
x . (32)

In the cylindrical coordinate system,

r =
√
x2 + y2 ϕ = arctan

y

x
(33)

x = r cosϕ y = r sin ϕ (34)

τr z = τxz cosϕ + τyz sin ϕ

= ϑ f (r)
[
A55(Cω − 1) + e15Cφ

]
r cosϕ sin ϕ + ϑ f (r)

[
A44(Cω + 1) + e24Cφ

]
r cosϕ sin ϕ = 0

(35)

τϕz = −τxz sin ϕ+τyz cosϕ = −ϑ f (r)
[
A55(Cω−1)+e15Cφ

]
r sin2 ϕ+ϑ f (r)

[
A44(Cω+1)+e24Cφ

]
r cos2 ϕ

= 2ϑ f (r)
A55A44(κ11 + κ22) + A55e

2
24 + A44e

2
15

(A55 + A44)(κ11 + κ22) + (e15 + e24)2
r. (36)

The computation of the components of the electric displacement vector is based on Eqs. (8–9):

Dx = ϑ f (r)
[
e15(Cω − 1)y − κ11Cφ y

]
(37)

Dy = ϑ f (r)
[
e24(Cω + 1)x − κ22Cφx

]
. (38)

In the cylindrical coordinate system, the components of the electric displacement vectors are Dr and Dϕ , which
are computed as

Dr = Dx cosϕ + Dy sin ϕ = ϑ f (r)
[
e15(Cω − 1) − κ11Cφ + e24(Cω + 1) − κ22Cφ

]
r cosϕ sin ϕ = 0

(39)

Dϕ = −Dx sin ϕ+Dy cosϕ = −ϑ f (r)
[
e15(Cω−1)−κ11Cϕ

]
r sin2 ϕ+ϑ f (r)

[
e24(Cω+1)−κ22Cφ

]
r cos2 ϕ

= 2ϑ f (r)
e15A44κ22 + e24A55κ11 + e15e24(e15 + e24)

(A55 + A44)(κ11 + κ22) + (e15+e24)
2 r. (40)
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The connection between the applied torque T and the rate of twist ϑ is characterized by mechanical torsional
rigidity SM which is defined as

SM = T

ϑ
, (41)

where

T = 2π

R2∫

R1

r2τϕz(r) dr. (42)

The combination of Eq. (36) with Eqs. (41) and (42) gives

SM = 4πF
A55A44(κ11 + κ22) + A44e215 + A55e224
(A44 + A55)(κ11 + κ22) + (e15 + e24)2

, (43)

where

F =
R2∫

R1

r3 f (r) dr. (44)

Based on Eqs. (36) and (43), a simple computation gives the next result for the shearing stress in terms of the
applied torque:

τϕz = T

2πF
r f (r). (45)

Electrical torsional rigidity SE is defined as

SE = 1

ϑ

∫

A

r Dϕ dA. (46)

Starting from Eq. (40), after a simple computation we get

SE = 4πF
(e15 + e24)e15e24 + e15A44κ22 + e24A55κ11

(A44 + A55)(κ11 + κ22) + (e15 + e24)2
. (47)

It is very easy to prove that, in terms of the applied torque T , the circumferential component of the electric
displacement vector can be computed from the following equation:

Dϕ = T
SE
SM

f (r)

2πF
r. (48)

The solution of the Saint-Venant torsion problem of orthotropic FGM circular cylinder in the case of radial
dependence of material parameters has two important properties:

(a) The torsion function ω = ω(x, y) and the electric potential function φ = φ(x, y) are independent of the
inhomogeneity of the cross section.

(b) For a given torque T , the stress field is independent of the material parameters (A44, A55, e15, e24, κ11 and
κ22) and it depends only on the non-homogeneity of the considered circular cross section.

Here, we note that, in the case of anisotropic non-homogeneous linearly elastic circular cylinder, the torsion
function is also independent of the radial inhomogeneity [20].
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Fig. 3 Layered hollow circular cross section

5 Prandtl’s stress function, electric displacement potential function

The determination of the Prandtl’s stress function U = U (r, ϕ) is based on the following equations:

τr z = ϑ
1

r

∂U

∂ϕ
= 0 (49)

τϕz = −ϑ
∂U

∂r
= 2ϑ f (r)r

A55A44(κ11 + κ22) + A55e224 + A44e215
(A44 + A55)(κ11 + κ22) + (e15 + e24)2

. (50)

Equation (49) shows that U does not depend on the polar angle ϕ. In the next part of this paper, we consider
only a simply connected (solid) cross section, that is R1 = 0, R2 = R. It is known that the Prandtl’s stress
function satisfies the homogeneous boundary condition:

U (R) = 0. (51)

The integration of Eq. (50) under the boundary condition (51) gives

U (r) = 2
A55A44(κ11 + κ22) + A55e224 + A44e215
(A55 + A44)(κ11 + κ22) + (e15 + e24)2

R∫

r

ρ f (ρ) dρ. (52)

By the same method, we can obtain the electric displacement potential function as is used in the derivation of
Eq. (52). We note that, for solid cross section, the electric displacement potential function H = H(r) satisfies
the boundary condition [9,15]:

H(R) = 0. (53)

A detailed computation, starting from the equations

Dr = ϑ
1

r

∂H

∂ϕ
= 0 (54)

Dϕ = −ϑ
∂H

∂r
= 2ϑ f (r)r

e15A44κ22 + e24A55κ11 + e15e24(e15 + e24)

(A55 + A44)(κ11 + κ22) + (e15 + e24)2
, (55)

gives

H(r) = 2
e15A44κ22 + e24A55κ11 + e15e24(e15 + e24)

(A55 + A44)(κ11 + κ22) + (e15 + e24)2

R∫

r

ρ f (ρ) dρ. (56)
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(a)

(b)

Fig. 4 Illustrations of the torsion function: a contour lines, b graph of the torsion function

6 Layered non-homogeneous circular cross section

Figure 3 shows a hollow circular cross section which is layered in the radial direction. In this case, the
inhomogeneity function is piecewise continuous on the cross-sectional domain and it is given by the following
formula:

f (r) = fi (r) ri−1 < r < ri
(i = 1, 2, . . . , n) r0 = R1 rn = R2 (57)

It is evident for radially layered, non-homogenous, orthotropic piezoelectric hollow circular cross section
that the torsion function and the electric potential function given by Eqs. (24), (25), together with all the
formulae obtained before, are valid here, and we have

R2∫

R1

ρ3 f (ρ) dρ =
n∑

i=1

ri∫

ri−1

ρ3 fi (ρ) dρ. (58)
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(a)

(b)

Fig. 5 Plots of electric potential function: a contour lines, b graph of the electric potential function

Fig. 6 Plots of shearing stress
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Fig. 7 Dependence of mechanical torsional rigidity from α

Fig. 8 Dependence of Prandtl’s stress function from α

Fig. 9 Plots of Dϕ

The continuity conditions of torsional function and electric potential function over the whole cross section
are satisfied. This fact follows from Eqs. (24) and (25). The continuity conditions of shearing stress τr z and
electric displacement Dr are also fulfilled, since on the whole cross section τr z and Dr vanish.

Here, we note that, from the obtained results, we can recover the solution of the Saint-Venant torsion for
radially non-homogeneous orthotropic elastic circular cylinder. This fact is illustrated in the cases of torsion
function and torsional rigidity. For orthotropic elastic material, we have
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Fig. 10 Dependence of electrical torsional rigidity from α

Fig. 11 Dependence of electric displacement potential function from α

e15 = e24 = 0. (59)

From Eqs. (24), (26) and (59), it follows that for radially inhomogeneous Cartesian orthotropic elastic beams

ω(x, y) = A55 − A44

A55 + A44
xy. (60)

Furthermore, in this case the following result can be derived for the torsional rigidity from (43):

S = 4πF
A55A44

A44 + A55
. (61)

7 Example

The following data are used in the numerical example:

A44 = 6.27 × 1010 Pa; A55 = 5.13 × 1010 Pa

e15 = 17C/m2; e24 = 9C/m2

κ11 = 2.0797 × 10−9 F/m; κ22 = 2.186 × 10−9 F/m

R1 = 0; R2 = R = 0.015m

ϑ = 0.5 × 10−2 rad/m; f (r, α) =
( r

R

)α

.
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The contour lines and the graph of the torsion function ω are shown in Fig. 4 for α = 1. In Fig. 5, the contour
lines and the graph of the electric potential function φ are presented for α = 1. For α = −1, α = −0.5, α = 0,
α = 0.5 and α = 1, the graphs of shearing stress τϕz are shown in Fig. 6. The dependence of mechanical
torsional rigidity SM from the graded index α is shown in Fig. 7.

The dependence of Prandtl’s stress function U from the graded index α is shown in Fig. 8. For α = −1,
α = −0.5, α = 0, α = 0.5 and α = 1, the graphs of electric displacement Dϕ are shown in Fig. 9. The electric
torsional rigidity as a function of α is shown in Fig. 10. The dependence of electric displacement potential
function H from α is illustrated in Fig. 11.

8 Conclusions

The purpose of this paper is to investigate the effects of the radial inhomogeneity of the material to the
torsional response of a linearly piezoelectric, orthotropic circular cylinder. The elastic stiffness coefficients,
piezoelectric constants and dielectric constants have radial dependence. It is shown that the considered problem
of Saint-Venant torsion has two important properties:

– The torsion function and the electric potential function are independent of the cross-sectional inhomogene-
ity.

– For the given torque, the stress field is independent of the material parameters; it depends only on the
non-homogeneity of the cross section.

The presented exact analytical solution can be used as a benchmark solution to verify the efficiency of the
usual approximate methods, such as finite element and finite difference methods.
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