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Abstract The ensemble of interstitial atoms as C attracted to a dislocation is well established as “Cottrell
cloud” phenomenon. The deposition of the interstitial atoms in octahedral or tetrahedral positions in a bcc
lattice may yield a remarkable internal stress state according to their anisotropic misfit eigenstrains. The stress
fields of the atoms may then lead to a significant change in the stress field, e.g., around a dislocation. In such
a case, the interstitial atoms are situated near the dislocation core in cylindrical volume elements along the
dislocation line. As the occupancy of the sites in each cylinder by interstitial atoms can be considered as
constant, also the eigenstrain state tensor is constant in the cylinder. A complete set of analytical expressions
for the eigenstress state inside and outside of the cylinder is presented. The resultant stress field is then given
by superposition, which allows also the determination of the interaction energy between the Cottrell cloud and
the dislocation.

Keywords Inclusions · Micro-mechanics · Analytical solution · Linear elasticity · Cylinder

1 Introduction

The problem of interaction between dislocations and interstitial atoms as carbon or hydrogen is of increasing
interest with respect to a detailed understanding of Cottrell clouds [1], and their kinetics [2]. To calculate
the main physical quantity, i.e., the interaction energy between the stress field of a distinct dislocation and
of the interstitial atoms, one can use the superposition of the elastic fields generated by the dislocation and
by eigenstrains due to deposition of the atoms in interstitial positions. Here the pioneering work by Cochardt
et al. [3] can be mentioned, who explained in detail the interaction of a dislocation with a single interstitial
atom in the bcc lattice; see also the later Krempasky et al. [4]. There exist three types of anisotropic octahedral
positions for interstitial atoms being shorter in one of the three main crystallographic 〈100〉 directions in the
bcc lattice. Thus, deposition of an atom in one of the octahedral position leads to a remarkably anisotropic
eigenstrain in the region of the deposited atom, which can be considered as a spherical inclusion of the volume
ω of a substitutional atom with a given eigenstrain tensor εω

i depending on the type i , i = 1, 2, 3, of the
octahedral position. This problem of interaction was dealt with also by Friedel [5], Sect. 15.4., in recent papers
by Cahn [6,7], Mishin and Cahn [8] and Cai et al. [9]. In most studies, the anisotropic eigenstrain is replaced
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by a volume misfit, which is approved for interstitial atoms in fcc lattice or for substitutional atoms in any
cubic lattice. In such a case, a rather simple analytical solution for the stress field inside and outside of the
inclusion exists. Experimental work, see Wilde et al. [10], and atomistic simulations, Veiga et al. [11], Waseda
et al. [12], has shown that an arrangement of interstitial atoms may exist leading to a significant overall stress
field stemming from eigenstrains of atoms deposited in the three types of octahedral interstitial positions in
the bcc lattice. Since the interaction energy of atoms with the stress field of a distinct dislocation depends
significantly on the type of the octahedral interstitial positions, also the local site fraction of atoms in various
types of octahedral interstitial positions is significantly different in thermodynamic equilibrium. As a result,
the eigenstrains by deposition of interstitial atoms can significantly change the deformation field generated by
the dislocation.

The treatment of the interaction with a cloud of interstitial atoms can be, e.g., performed for an edge
dislocation, embedded in an infinite elastic lattice, with the dislocation line coinciding with the z-axis. Then
the cloud of interstitial atoms around the dislocation is independent of z coordinate. The distribution of the
interstitial atoms can then be described by a set of cylinders of infinite length along the z-axis having small cross
sections and possessing in their whole volume constant site fractions of atoms in all three types of interstitial
positions. Then the eigenstrain in each cylinder can be calculated and considered as given.

The goal of this paper is to check existing analytical relations for the stress state due to anisotropic
eigenstrain state in an infinite cylinder embedded in infinite lattice and to provide a fully analytical solution
for the stress field inside and outside of the cylinder. These results will provide the base for a thermodynamic
kinetic model treating interaction of interstitial atoms with a moving dislocation.

2 Problem description

According to the recent atomistic simulations [11,12], we assume a cylindrical inclusion as a representative
volume element with the radius R in the x–y-plane normal to the z-axis, which may coincide with the dislo-
cation line. We consider a homogeneous eigenstrain state with the in-plane components ε

eig
x , εeigy , εeigxy and the

component εeigz in the z-direction acting in the inclusion and no eigenstrain in the surrounding matrix. For the
sake of completeness, it should be mentioned that the role of eigenstrains, εeigxz , ε

eig
yz can be dealt with extra by

a simple use of Hooke’s law. All the eigenstrain components may have different values.
The cylindrical inclusion is restricted with respect to its expansion in z-direction by the surrounding

material. Therefore, we assume, as simplest representation of the constraint in z-direction, a plane strain state
with zero total strain in z-direction (εz ≡ 0). A recent atomistic study [8] has shown that the assumption of
isotropic material is acceptable for cubic crystals. The isotropic material constants as Young’s modulus E and
Poisson’s ratio ν are assumed to be spatially constant in both the inclusion and the surrounding matrix; see
Fig. 1.

From pioneering works by Eshelby [13,14], it follows that a homogeneous eigenstrain in an ellipsoidal
inclusion induces a homogeneous stress field in the inclusion. If one approximates the cylinder by a needle-like
spheroid with R for axes a and b and an infinite length of axis c, one may utilize the solutions with normal
and shear eigenstrains in Mura’s book [15], Chpt. 2 there, or the results worked out in Fischer and Böhm
[16]. However, it must be kept in mind that the interstitials interact due to their exterior stress field with the
adjacent interstitials and the dislocations. Therefore, the exterior stress field is of immediate relevance. The
according mathematical framework in context with the Eshelby concept is rather extensive and somewhat
demanding; see also Chpt. 2 in Mura [15] and the treatment by Li et al. [17,18] for inclusions embedded in a
finite domain. Our intention to provide easy-to-handle relations for the stress field of a cloud forced us to look
for a straightforward solution of our particular problem. Since we have also to consider a shear eigenstrain in
the cylinder, the analytical concept by Markenscoff and Dundurs [19], dealing also with a shear eigenstrain in
an annulus and the corresponding comment by Shodja and Korshidi [20] concerning the disappearance of the
singularities of stresses, motivated us to follow an exact analytical solution.

Since we assume an infinite domain, we expect rather easy-to-handle equations for the stress and defor-
mation state utilizing the Airy function in polar coordinates. Here we refer to the pioneering work by Michell
[21] who provided a set of solutions of the biharmonic equation in polar coordinates already in 1899; see also
the book by Mal and Singh [22], Sect. 7.5, the book by Barber [23], Sect. 8.4, and the book by Bower [24],
Sect. 5.2.3. Such an approach is in accordance with that applied in classical works on circular holes in disks
(plates), e.g., by Kirsch [25], more than a century ago, by Bickley [26] and Sen [27].
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Fig. 1 Sketch of setting

3 Theory and solution concept

We introduce cylindrical coordinates r, ϑ, z and the according displacements u, v, w. The kinematic relations
between the total strain components εr , εϑ , εz and the shear angles γrϑ, γr z, γϑz in terms of u, v, w and the
equilibrium equations can be taken from any continuum mechanics textbook. Hooke’s law links the stress
components σr , σϑ , σz, σrϑ, σr z, σϑz to the elastic strain contributions. Furthermore, we use the following
abbreviations

cosϑ = c, sin ϑ = s, cos 2ϑ = c2, sin 2ϑ = s2. (1)

3.1 Solution for the area eigenstrain εeig

Although the solution for this problem is known, for the sake of completeness we start the stress calculation
with an in-plane (area) eigenstrain εeig together with an eigenstrain ε

eig
z in z-direction keeping in mind that

εz ≡ 0, which yields
σz = −Eε

eig
z + ν(σr + σϑ). (2)

Expressing the equilibrium equation only in u(r), since v = 0 and w = 0, one finds after some analysis

u = Ar + B/r. (3)

The integration constants A, B can be calculated from the two contact conditions

r = R : u|i = u|o, r = R : σr |i = σr |o. (4)

The subscripts “i” and “o” stand for inside and outside of the inclusion, resp. Finally, we have the following
solution for the nonzero stress components as

0 ≤ r ≤ R σr = σϑ = −
E

(
εeig + νε

eig
z

)

2(1 − ν2)
, σz = −

E
(
νεeig + ε

eig
z

)

(1 − ν2)
, (5.1)

r > R σr =
−E

(
εeig + νε

eig
z

)

2(1 − ν2)

R2

r2
, σϑ = −σr , σz = −Eε

eig
z . (5.2)

Note that only a deviatoric in-plane stress state exists for r ≥ R and ε
eig
z = 0. This fact is denoted as

“Bitter–Crum” theorem; for details, see Fratzl and Penrose [28].
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3.2 Solution concept for ε
eig
x �= 0 and ε

eig
y �= 0

First we calculate the stress state for ε
eig
x �= 0 only and transform the according eigenstrain tensor in polar

coordinates as

ε
eig
x = ε

eig
x

2
(I + P), P =

[
c2 −s2

−s2 −c2

]
, (6)

with I as unit tensor and the abbreviations by Eq. (1). The first part with I of the r.h.s. of Eq. (6) represents
a homogeneous eigenstrain with the solutions of Sect. 3.1 for εeig = ε

eig
x /2 and ε

eig
z = 0. The second part

with P represents a tensor varying with the angle 2ϑ . Here we select a proper biharmonic Airy stress function
φ(r, ϑ), inspired by the solution of the “inclusion problem,” by Mal and Singh [22], Example 7.5–8, as

φ = (Ar2 + Cr4)c2 for 0 ≤ r ≤ R, φ = (B/r2 + D)c2 for r ≥ R. (7)

We find the nonzero stress components by the following operation, see [21], Sect. 5.2.3 there,

σr = 1/r∂φ/∂r + 1/r2∂2φ/∂ϑ2,

σϑ = ∂2φ/∂r2, σrϑ = −∂/∂r(1/r ∂φ/∂ϑ), (8)

yielding

0 ≤ r ≤ R σr = −2Ac2, σϑ = (
2A + 12Cr2

)
c2,

σrϑ = (
2A + 6Cr2

)
s2; (9.1)

r ≥ R σr = (−6B/r4 − 4D/r2
)
c2, σϑ = (

6B/r4
)
c2,

σrϑ = (−6B/r4 − 2D/r2
)
s2. (9.2)

The integration constants A, B,C, D can be calculated from four contact conditions as

r = R : u|i = u|o, ϑ |i = ϑ |o, σr |i = σr |o, σrϑ |i = σrϑ |o. (10)

According to Eshelby [13], the stress state must be homogeneous in the inclusion with the consequence that C
must become zero. Furthermore, the contact conditions enforce the calculation of u(r, ϑ) and v(r, ϑ) via the
integration of the kinematic equations for εr and εϑ , combined with Hooke’s law (including εz = 0 yielding
σz = ν(σr + σϑ)), as

Eεr = E∂u/∂r = σr − νσϑ − ν2(σr + σϑ) + Eε
eig
x c2/2, (11.1)

Eεϑ = E(∂v/∂ϑ + u)/r = (−νσr + σϑ − ν2(σr + σϑ)) − Eε
eig
x c2/2. (11.2)

The integration of Eqs. (11) involves two functions, namely fu(ϑ) in u(r, ϑ) and gv(r) in v(r, ϑ). These two
functions can be found by employing Eεrϑ with Eu and Ev from above as

Eεrϑ = E

(
1

r

∂u

∂ϑ
+ ∂v

∂r
− v

r

)/
2 = (1 + ν)σrϑ − Eε

eig
x s2/2. (12)

Inserting now u together with fu(ϑ) and v together with gv(r) in Eq. (12) shows that both fu(ϑ) and gr (r)
can be interpreted as “rigid” body motions and, therefore, can be skipped.

To summarize, the calculation of the coefficients A, B, C, D and, consequently, the stresses makes a lot
of algebraic operations necessary, which were left to mathematica (https://www.wolfram.com/mathematica/)
but result indeed in C = 0, see above, and rather simple equations for the stresses. Using the abbreviation
Ẽ = Eε

eig
x /(8(1 − ν2)) and denoting the stress terms corresponding to P in Eq. (6) with a subscript “P” yield

0 ≤ r ≤ R : σP
r = −Ẽc2, σP

ϑ = Ẽc2,

σP
rϑ = Ẽs2, σP

z = 0; (13.1)

r ≥ R : σP
r = −Ẽ

(
4R2/r2 − 3R4/r4

)
c2, σP

ϑ = −Ẽ
(
3R4/r4

)
c2,

σP
rϑ = Ẽ

(
3R4/r4 − 2R2/r2

)
s2, σP

z = −4ν Ẽ R2/r2. (13.2)

https://www.wolfram.com/mathematica/
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Let us check now the stress state inside the inclusion with respect to the x–y system. This means that
stresses σP

r , σP
ϑ , σP

rϑ must be transformed into the x–y system. The components σP
x , σP

y , σP
xy follow after some

algebra

0 ≤ r ≤ R : σP
x = −Ẽ, σP

y = Ẽ, σP
xy = 0. (13.3)

This result is in accordance with the Eshelby [13] theorem, stating that the stress state must be homogeneous
in the inclusion for a homogeneous eigenstrain.

The problem of calculating the stress state to an eigenstrain field ε
eig
y only is easily solved by rotation of

the total configuration by π/2 in relation to the eigenstrain field ε
eig
x , yielding, in analogy to Eq. (6),

ε
eig
y = ε

eig
y

2
(I − P). (14)

The superposition of ε
eig
x and ε

eig
y yields for the homogeneous eigenstrain εeig = (ε

eig
x + ε

eig
y )/2 and for

the contribution due to P the eigenstrain difference �εeig = ε
eig
x − ε

eig
y and with the abbreviations Ẽ I =

E(εeig + νε
eig
z )/8(1 − ν2) ẼP

ε = E�εeig/8(1 − ν2),

0 ≤ r ≤ R : σr = −4Ẽ I − ẼP
ε c2, σϑ = −4Ẽ I + ẼP

ε c2,

σrϑ = ẼP
ε s2, σz = −E

(
νεeig + ε

eig
z

)
(
1 − ν2

) ; (15.1)

r ≥ R : σr = −4Ẽ IR2/r2 − ẼP
ε

(
4R2/r2 − 3R4/r4

)
c2, σϑ = 4Ẽ IR2/r2 − 3ẼP

ε

(
R4/r4

)
c2,

σrϑ = ẼP
ε

(
3R4/r4 − 2R2/r2

)
s2, σz = −4ν ẼP

ε

(
R2/r2

)
c2. (15.2)

3.3 Solution concept for ε
eig
xy

We complete the results by calculating the stress state according to the shear eigenstrain ε
eig
xy (or the shear

angle γ
eig
xy = 2εeigxy ) only and consider a coordinate system x ′−y′−z rotated by an angle of π/4 in relation to

the master x–y–z coordinate system with the eigenstrains ε
eig
x ′ = ε

eig
xy and ε

eig
y′ = −ε

eig
xy . Then we can apply

the solution concept for ε
eig
x and ε

eig
y , however, in the x ′−y′−z coordinate system with εeig = 0, �εeig = γ

eig
xy

and ε
eig
z = 0. Using the abbreviation ẼP

γ = Eε
eig
xy /4(1 − ν2) and noting that ϑ ′ = ϑ − π/4, the relations in

the master coordinate system read as

Fig. 2 Eigenstrain ε
eig
x , Eε

eig
x = 8(1 − ν2); (a) stress state σx , σy along x-axis, (b) shear stress σrϑ along r at ϑ = 45◦
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Fig. 3 Eigenstrain ε
eig
xy , Eε

eig
xy = 4(1 − ν2); (a) normal stresses σr , σϑ along r at ϑ = 45◦, (b) shear stress σxy along x-axis

0 ≤ r ≤ R σr = −ẼP
γ s2, σϑ = ẼP

γ s2,

σrϑ = −ẼP
γ c2, σz = 0; (15.1)

R < r σr = −ẼP
γ

(
4R2/r2 − 3R4/r4

)
s2, σϑ = −3ẼP

γ

(
R4/r4

)
s2,

σrϑ = −ẼP
γ

(
3R4/r4 − 2R2/r2

)
c2, σz = −4v ẼP

γ

(
R2/r2

)
s2. (15.2)

4 Representative examples and discussion

Wedemonstrate two examples in a dimension-free form. Assuming Eε
eig
x = 8(1 − ν2), we demonstrate σx and

σy along the x-axis in Fig. 2a and σrϑ along the radius r for ϑ = 45◦ in Fig. 2b. Assuming Eε
eig
xy = 4(1 − ν2)

we demonstrate σr and σϑ along the radius r for ϑ = 45◦ in Fig. 3a and σxy along the x-axis in Fig. 3b. All
curves are checked by a finite element study with ABAQUS (http://www.3ds.com/de/produkte-und-services/
simulia/produkte/abaqus/).

It is interesting to note that the stresses outside of the inclusion, dominated by a (R/r)2 term, decay to
nearly zero over a remarkably long distance of approximately 10R.

For practical application of the results, we present for each kind of eigenstrain (i.e., εeigx , ε
eig
y , ε

eig
xy , ε

eig
z ) the

stress fields in a Cartesian coordinate system in “Appendix.”
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Appendix: Eigenstress fields in a Cartesian coordinate system

With the abbreviations in Eq. (1), we have

σx = c2σr + s2σϑ − s2σrϑ, σy = s2σr + c2σϑ − s2σrϑ
(A.1)

σxy = sc(σr − σϑ) + c2σrϑ, σz = −Eε
eig
z + ν(σr + σϑ), (A.2)

with c = x/r , s = y/r and r2 = x2 + y2 and x̄ = x/R, ȳ = y/R and r̄ = r/R.

http://www.3ds.com/de/produkte-und-services/simulia/produkte/abaqus/
http://www.3ds.com/de/produkte-und-services/simulia/produkte/abaqus/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Expressing the relations for the individual cases of eigenstrain yields:

ε
eig
x �= 0

Inside

σx = − 3Eε
eig
x

8
(
1 − ν2

) , σy = − Eε
eig
x

8
(
1 − ν2

) , σz = − Evε
eig
x

2
(
1 − ν2

) .

Outside

σx = − Eε
eig
x

[
2r̄4

(
x̄2 − ȳ2

) + 4r̄2 x̄2
(
x̄2 − 3ȳ2

) − 3
(
x̄4 − 6x̄2 ȳ2 + ȳ4

)]

8
(
1 − ν2

)
r̄8

,

σy = Eε
eig
x

[
2r̄4

(
x̄2 − ȳ2

) − 4r̄2 ȳ2
(
3x̄2 − ȳ2

) − 3
(
x̄4 − 6x̄2 ȳ2 + ȳ4

)]

8
(
1 − ν2

)
r̄8

,

σxy = − Eε
eig
x x̄ ȳ

[
r̄4 + (

2r̄2 − 3
) (
x̄2 − ȳ2

)]

2
(
1 − ν2

)
r̄8

, σz = − Evε
eig
x

(
x̄2 − ȳ2

)

2
(
1 − ν2

)
r̄4

.

ε
eig
y �= 0

Inside

σx = − Eε
eig
y

8
(
1 − ν2

) , σy = − 3Eε
eig
y

8
(
1 − ν2

) , σz = − Evε
eig
y

2
(
1 − ν2

) .

Outside

σx = − Eε
eig
y

[
2r̄4

(
x̄2 − ȳ2

) − 4r̄2 x̄2
(
x̄2 − 3ȳ2

) + 3
(
x̄4 − 6x̄2 ȳ2 + ȳ4

)]

8
(
1 − ν2

)
r̄8

,

σy = Eε
eig
y

[
2r̄4

(
x̄2 − ȳ2

) + 4r̄2 ȳ2
(
3x̄2 − ȳ2

) + 3
(
x̄4 − 6x̄2 ȳ2 + ȳ4

)]

8
(
1 − ν2

)
r̄8

,

σxy = − Eε
eig
y x̄ ȳ

[
r̄4 − (

2r̄2 − 3
) (
x̄2 − ȳ2

)]

2
(
1 − ν2

)
r̄8

, σz = − Evε
eig
y

(
x̄2 − ȳ2

)

2
(
1 − ν2

)
r̄4

.

ε
eig
xy �= 0

Inside

σx = σy = 0, σxy = − Eε
eig
xy

4
(
1 − ν2

) ,

Outside

σx = − Eε
eig
xy x̄ ȳ

[
r̄2

(
3x̄2 − ȳ2

) − 3
(
x̄2 − ȳ2

)]
(
1 − ν2

)
r̄8

, σy = Eε
eig
xy x̄ ȳ

[
r̄2

(
x̄2 − 3ȳ2

) − 3
(
x̄2 − ȳ2

)]
(
1 − ν2

)
r̄8

,

σxy = Eε
eig
xy

(
2r̄2 − 3

) (
x̄4 − 6x̄2 ȳ2 + ȳ4

)

4
(
1 − ν2

)
r̄8

, σz = −2Evε
eig
xy (x̄ ȳ)(

1 − ν2
)
r̄4

.

ε
eig
z �= 0

Inside

σx = − Eνε
eig
z

2
(
1 − ν2

) , σy = − Eνε
eig
z

2
(
1 − ν2

) , σz = − Eε
eig
z(

1 − ν2
) .
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Outside

σx = − Eνε
eig
z

(
x̄2 − ȳ2

)

2
(
1 − ν2

)
r̄4

, σy = Eνε
eig
z

(
x̄2 − ȳ2

)

2
(
1 − ν2

)
r̄4

,

σxy = − Eνε
eig
z x̄ ȳ(

1 − ν2
)
r̄4

, σz = 0.
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