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Abstract This paper presents a numerical study of perforation of the aluminium multi-layered targets impacted
by steel projectiles in the shape of a ball, nut and nail. For the construction of the protective panels arc-,
rectangular-, V- and U-shaped sheets of metal were considered. During the tests the panel thickness was
constant at 160 mm. The panels were composed of 1.5-mm-thick aluminium sheets, and the initial speed of
debris was 500 m/s. A comprehensive numerical study indicated the shape of the layer that had superior
ballistic resistance and the best strength-to-weight ratio. Computational analyses were also used to investigate
the influence of thermal softening and strain rate hardening in the Johnson—Cook constitutive model on the
ballistic performance of layered targets. The number of layers required to stop the penetrating objects was
compared for the rigid and deformable projectiles. Based on the comparative studies, some guidelines for
engineering tasks involving exploration of number of possible technical solutions were proposed.

Keywords Ballistic resistance - Multi-layered panels - Improvised projectiles

1 Introduction

The idea of using layered structures in ballistic resistant barriers is not new and has been extensively discussed
in the literature. Designing protective panels places great emphasis on ensuring protection against punctures
because the injuries from flying debris may carry significant risks for both civilians and military personnel.
Previous studies were focused on ballistic resistance of single-layered targets and on potential improvements
from replacing monolithic plates by multi-layered structures. However, there are not that many studies of
more complex shapes of the component plates and of effectiveness of this solution with respect to ballistic
perforation, especially by improvised projectiles.

The behaviour of multi-layered panels made of mild steel, stainless steel and aluminium plates under
impact was studied in [1]. It was found that layered structures may offer better performance than monolithic
plates due to change from plastic energy dissipation to perforation and stretching sheets of metal. Radin and
Goldsmith [2] found that the ballistic resistance of a monolithic plate is superior to the structure of the same
thickness but made of adjoined layers. It was also found that spaced layers usually displayed lower resistance
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than plates in contact. Almohandes et al. [3] conducted extensive experimental studies to determine the effects
of target configuration on ballistic performance. Through many perforation tests it was established that single
steel plates were more effective than multi-layered targets, with or without spacing. In the paper by Ben-Dor
et al. [4] investigation of ballistic performance of layered targets was performed. They found that the width
of the air gap between the layers had no effect on the resistance of target for the conical-nosed impactors. In
the corresponding paper [5] it was concluded that the increase in the width of the air gaps and the increase
in the number of layers raised the ballistic limit velocity of the target (understood as the velocity required
for a projectile to penetrate a particular piece of material). The effect of air gaps upon ballistic properties
of the shield was further discussed in [6], where the authors concluded that for the non-conical shape of the
projectile changes in the ballistic limit velocity were in the range of several per cent. Woodward and Cimpoeru
[7] investigated perforation of laminated and homogeneous plate targets by flat-ended and conical penetrators.
The comparison of calculated and experimental ballistic limit showed that superior resistance occurred for
the target system with two plates. In the work of Zukas and Scheffler [8] numerical results of the impact
effect in monolithic and layered targets were presented. It was revealed that layering significantly weakened
thin and intermediate thickness targets. Liang et al. [9] conducted studies of the resistance performance of
multi-layered structures based on three conservation laws. They validated their results with the experimental
data from Almohandes et al. [3]. Another comparative analysis of computational results and experimental data
was presented by Elek et al. [10] where perforation of monolithic and layered targets was considered. They
showed that for flat-ended cylindrical penetrator increasing the number of layers caused degradation of ballistic
resistance of the target. Gupta et al. [11] presented experimental and numerical investigation of the ballistic
performance of the layered aluminium plates under impact of flat-, ogive- and hemispherical-nosed projectiles.
They showed that residual velocity of the projectile was similar for targets of equivalent thickness with one
or two layers. Also, the ogive-nosed projectile was found to be the most efficient for multi-layered panel.
Dey et al. [12] investigated perforation resistance of double-layered steel plates impacted by blunt and ogival
projectiles. They found that double layering of the target increased the ballistic limit velocity for spaced plates
by nearly 40% compared to a monolithic target of equal thickness. In contrast, based on numerical investigation
of monolithic, double- and triple-layered plates Flores-Johnson et al. [13] concluded that monolithic plates had
a better ballistic performance than a layered target. Multi-layered structures in different combinations were
also considered in research conducted by Deng et al. [14]. Results of an experimental test of panels with one,
two, three or four plates showed that monolithic targets had higher ballistic resistance than layered targets if
the total thickness was smaller than the value where petaling or bulging becomes the dominant failure mode.
Finally, Ben-Dor et al. [15] presented a comprehensive survey of experimental and numerical investigations
of multi-layered targets and also delivered a review of analytical methods for optimization of layered panels.

It is crucial to use a material model that can mimic a mechanical response that is in good agreement
with the behaviour of a physical target. In this study, the computational model is based on the constitutive
model proposed by Johnson and Cook [16, 17]—the one which assures good global damage approximation (cf.
[18,19]), thus appropriate for herein considerations. Since the time it was published, a number of modifications
have been proposed but the original formulation is still used for research of perforation [20]. It should be
emphasized that the same class of models was developed earlier by Litoniski in [21] where the torsion of tubes
made of strain rate-sensitive plastic material was examined. Li et al. [22] proposed a modified Johnson—Cook
model that can provide better coupling for the influence of temperature and strain rate on flow behaviour. The
proposed model showed good ability to track the flow behaviour of T24 steel over the entire temperature and
strain rate range. A modified version of the Johnson—Cook constitutive relation (the MJC model) was used
in research conducted by Bgrvik et al. [23], where perforation of five different steel plates was investigated.
Material constants for the steel plates were based on various material tests, and the data for bullets were
mainly taken form the literature. Samantaray et al. [24] performed a comparative study of Johnson—Cook,
modified Zerilli-Armstrong and Arrhenius-type constitutive models. The experimental data from compressive
tests were used to establish material constants for each of those formulations. In contrast to the previous
works it was found that the Johnson—Cook model was incapable of providing a good description of flow
behaviour of 9Cr—1Mo steel over the entire range of strain rates, temperatures and strains. The significance
of the use of strain rate and temperature parameters in the model was confirmed in the work presented by
Bgrvik et al. [25]. The fully coupled model where thermal and strain rate effects were included showed best
agreement between experimental and numerical results. A comprehensive study of the extruded aluminium
panels was presented by Bgrvik et al. [26]. The experimental results were used to calibrate a modified version
of the Johnson—Cook constitutive relation and failure mode. This computational effort delivered a very good
agreement between numerical and experimental data since the mechanical behaviour of the target was captured.
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In the corresponding study by Holmen et al. [27] perforation of empty and sand-filled aluminium panels was
investigated. It was shown that though the combination of the finite element analysis (Johnson—Cook plasticity
and failure models) and the discrete particle method can be used to describe interaction between solid and
granular media, still some challenges remain.

In the work done by Corran et al. [1] it was shown that the nose shape, in particular the nose radius,
was extremely important in regard to likelihood of the target penetration. Wingrove [28] found that flat-
ended projectiles penetrate the target with less resistance than spherical- and ogive-shaped impactors. This
phenomenon was attributed to the change in failure mode from adiabatic shear zones for the blunt projectiles, to
the plastic tearing for the spherical- and ogive-shaped objects. Wilkins [29] showed that the minimum ballistic
velocity was lower for a sharp projectile perforating thick targets than for a blunt projectile. In case of thin
targets, an opposite dependence was found. In papers [30] and [31] perforation of steel plates by three different
projectiles was examined. Both experimental and computational experiments showed that hemispherical and
conical shaped impactors gave ballistic limit velocity close to 300 m/s, while for the blunt projectile this
parameter was about 185 m/s. Furthermore, it was stated that at the highest impact velocities, deformation of
the projectile might become a significant factor and might influence the overall resistance of the panel. Gupta
et al. [32] presented experimental and numerical investigations of perforation of thin aluminium plates by
blunt and hemispherical-nosed projectiles. The results obtained in that study were similar to those previously
discussed; namely higher ballistic limit was found for the hemispherical projectile. In the investigation by
Arias et al. [33] good agreement between experimental and numerical results was obtained for the cylindrical,
conical and hemispherical projectiles. It was shown that residual velocity after perforation was similar for
a conical- and a hemispherical-shaped object, while the lowest value was found for a cylindrical projectile.
Visible correlation between the projectile shape and the energy absorption capacity of a target was presented in
the paper by Kpenyigba et al. [34]. It was found that the hemispherical-nosed impactor was the least efficient,
followed by conical and two double nosed. In the work by Rusinek et al. [35] primary focus was on studying
the conical projectile diameter in relation to its perforation performance. Numerical and experimental analysis
revealed that a linear relation existed between ballistic limit velocity and projectile diameter. In the paper
by Igbal et al. [36] the influence of the target-to-projectile diameter ratio D/d on the ballistic resistance and
failure mechanism was investigated. For the blunt-nosed projectile the increase in the ballistic limit velocity
was observed up to the point where D/d was equal to 10; after that the change in the value of ballistic limit
velocity was negligible. For the ogive-nosed projectile the value of limit velocity was increasing up to the point
where D/d was 25; after that, the relation between ballistic limit velocity and the target-to-projectile ratio was
not observed.

The influence of strain rate and temperature on material parameters was investigated by Klepaczko [37] and
formulated into a power law constitutive relation. In [38] four constitutive models for metals were researched
in terms of the work hardening limitations. It was concluded that the original form of Johnson—Cook model
may be inadequate for describing the behaviour of metals that exhibit inversely proportional relation between
work hardening and strain rate. In the work by Rusinek et al. [39] energy absorption properties of a target
under various strain rates were examined. It was observed that the work hardening of the analysed material
(AISI 304 steel) was independent of plastic strain. Pothnis et al. [40] found that for both aluminium alloy 7075
T651 and IS 2062 mild steel tensile yield strength was enhanced when different strain rates were applied, if
compared to quasi-static loading. Hor et al. [41] conducted a number of compression and shear tests involving a
wide range of temperatures (20-1000°C) and strain rates (1072—10° 1/s). They found strong coupling of three
main phenomena: effect of the temperature, effect of the strain rate and the strain hardening—softening. Thus,
the material model that includes those effects was required in case of dynamic loading. In [42] the dynamic
mechanical response of Fe-based high-temperature alloy over a wide range of strain rates and temperatures
was investigated. The effects of strain rate hardening and thermal softening were visible in the presented data
and were the base for the formulation of power law constitutive model.

One of the goal of this study is to provide a set of guidelines for those who are interested in the properties
of computational models of spaced multi-layered targets (composed of thin metallic sheets) perforated by the
improvised impactors. We have examined the behaviour of layered structures including or excluding thermal
and strain rate effects in various configurations. Rigid and deformable projectiles were also used to establish
how these constraints translated to the ballistic resistance of the panel. The ballistic performance of numerical
models of nail-, nut- and ball-shaped impactors in different orientations was examined. Furthermore, ballistic
performance of four different shapes of the component layers was tested against projectiles in three different
points of impact.
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This paper extends previous research of the authors regarding perforation of multi-layered panels by rigid
projectiles [43]. Here, the results include the study of the impact of deformable projectiles, and new shapes
of panel layers are considered as well. Moreover, different combinations of the work hardening and thermal
softening effects in the computational model and their impact on mechanical response of the layered panel are
examined.

2 Mathematical modelling
2.1 Fundamental concepts
The Clausius—Duhem inequality is stated in the form
o:d—p(lﬁ—i—nﬁ)—%q-gradl‘}zo, 1)
where o is the Cauchy stress, d is the symmetric part of the velocity gradient, p is the current density,

¥ = e — ¥n denotes the free energy function, e is the specific internal energy, ¢ is the temperature, 1 is the
specific entropy, and q is the heat flux. Under the assumption that the free energy function has the form

v =vF, 9 a), )
where F is the deformation gradient, and « is a set of k-th internal variables, Eq. (1) obtains the form
_ oY . oV . oy . 1
F T —p—=):F- — )P —p—= — —q-grad® >0, 3
(0 paF> p(n+aﬂ> paak*ak 54 gradv = (3)

where () denotes the appropriate product operation. For an adiabatic process, assuming the additive decom-
position of the total strain into the elastic part and plastic part, namely

e=¢"+el, 4)
the free energy function takes the form
U =1(e el &7) = Y (e — &f) + Y (&7), )
and Eq. (3) can be rewritten as
oYy L, . _oyP .
(J—page).s‘-i-a.s”—pagfps”zO, (6)

where p is a reference density, « = {¢”}, and £” denotes the equivalent plastic strain. Therefore, the elastic
stress relation is

_oye
o= , 7
P e (7
and the evolution of temperature reduces to
pepd = xo i &P, (8)

where ¢, denotes the specific heat, x is the irreversibility coefficient, and assuming isotropy of the elastic

range we have pi¢ = %se 1 L€ 1 e, where L€ is the standard isotropic elasticity tensor.
Finally, the evolution of plastic strain is assumed in the form

0 =59 9
=i ©)

where A denotes the intensity of the plastic flow, and f denotes the Huber—-Mises—Hencky yield surface. For
Eq. (9) the following constraints apply, which define when the evolution of plastic strain and internal variables
(A # 0) may occur: ) )

f—0y,E") <0, A>0, A(f—o0y(E")=0, (10)

where o, denotes the yield stress.
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Table 1 List of material parameters and mechanical properties of the steel and the aluminium [44,45]

Parameters Material

Aluminium Steel
A (MPa) 324 640
B (MPa) 113 113
n(—) 0.42 0.42
m(—) 1.34 1.34
Pmelt (°C) 925 1200
Piransition (°C) 293.2 2932
5 (kg/m?) 2703 7850
Young’s modulus (GPa) 69 209
Poisson’s ratio (—) 0.3 0.3
C(—) 0.002 0.002
g (1/s71 1 1
cp (J/kg - K) 910 460
x (—) 0.9 0.9

2.2 Evolution function for yield stress

As mentioned earlier, the Johnson—Cook model was chosen to describe the evolution of the yield stress for both
aluminium target and steel impactor. The model takes into account the strain rate hardening and the thermal
softening effects [16]. The yield stress o, can be written as

oy = [A+B(§P1)"][1+cm<i—j)](1 —dm), (11

where A, B, m and n are the material parameters measured at temperature lower than the transition temperature,
C is a dimensionless strain rate hardening coefficient, P! is an equivalent plastic strain, & is a reference rate

of strain, and ¥, a dimensionless temperature parameter, is defined as

R 0 for ¥ < Uransition
¥ = { (¥ — Dyansition)/ (Pmelt — Puansition) for Dyansition < ¥ < Umelt » (12)
1 for ¥ > Vet

where )¢ 1s the melting temperature of metal and Dyapsition denotes the limit below which the yield stress in
Eq. (11) is not temperature dependent. The parameters required for the proper implementation of the Johnson—
Cook model are given in Table 1.

2.3 Damage initiation and fracture conditions

The dynamic failure model for the Johnson—Cook plasticity supplied by Abaqus was used [17]. It assumes
that a fracture is initiated when the accumulated damage parameter w exceeds 1. The damage parameter w is

defined as ]
AgP
w=3" <—_p1 ) (13)
€D
where A&P! is an increment of the equivalent plastic strain, é%l is the strain at the moment the damage is initiated,
and the summation is performed over all increments in the analysis. The strain at failure (éIf)l) depends on the

dimensionless stress ratio 1, dimensionless plastic strain rate gP! /€0 and the previously mentioned temperature

parameter ¥:
_ gp! .
ell’)l = [d1 +dzexp(—d3n)][1 +dyln (8—)](1 +d519). (14)
0
Stress triaxiality 7 is given as a ratio of pressure stress p and von Mises equivalent stress 6. The parameters
for the Johnson—Cook failure model used in perforation analysis are presented in Table 2.
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Table 2 Input parameters for the Johnson—Cook dynamic failure model [44]

Parameters Material
Aluminium Steel
di (—) —0.77
dy (—) 1.45 0
ds (—) 0.47 0
dy (=) 0.00314 0
ds (—) 1.6 0
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Fig. 1 Numerical model of the multi-layered panel and the projectile

In the present study, when the failure initiation criterion was met, the stress components were set to zero (in
each Gauss point), which is equivalent to removing an element from the mesh. This behaviour was imposed
by setting the fracture energy parameter to zero.

The projectile was additionally modelled as a rigid body for the purpose of certain analyses as mentioned.
In those cases steel density was the only property required by the FE solver to calculate the projectile behaviour.
Hard contact formulation was used to define the pressure—clearance relationship.

3 Description of the numerical experiments

The main tool used in our research is the numerical model of the multi-layered panel and the projectile which
was subjected to many perforation tests. An example of a perforation test is presented in Fig. 1. The speed of
the projectile and its current position relative to the initial position were recorded throughout the simulation.
The objects were modelled in the three-dimensional space; hence, these parameters were tracked for three
axes. The analysis was iterative, which means that the simulation started with an initial number of layers in the
panel and if the object was not stopped by the panel (i.e., at the end of the analysis it had a non-zero speed),
the number of layers was increased and the analysis repeated. The basic analysis time was set at 9.6 x 107 s
and was modified if necessary.
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The model was created and examined in the environment of Abaqus/Explicit software. For the purpose
of efficient computation of many hundreds cases a specialized plug-in (called PMP) was developed which
enabled fast assembly of the panel, as well as the setting of required parameters (Fig. 2). This software suite
also has a powerful scripting mechanism which was extensively used in the course of our research. The
computational model generated with the PMP plug-in allowed setting the tilt (the angle between the projectile
and the outermost layer) and angular speed of the projectile; hence, the usage of model symmetry reduction
was impossible.

In this study we considered three shapes of the projectile: nail, nut and ball, as depicted in Fig. 3. For the
first two various orientations in space at the time of impact were taken into account (Fig. 3). It was assumed
that either the nail head or pin can be directed towards the panel. The same reasoning was extended to the nut:
both the edge and side positions were included in the simulations. As it was previously mentioned, both a rigid
model and a deformable model of the projectile were examined. The dimensions were selected so that despite
different shapes the objects had similar masses, approximately 2 g. The initial velocity was fixed and equal to
500 m/s.
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(a) (b)
Concave : Arc-shaped profile
Convex Rectangular-shaped profile

Intermediate point V-shaped profile

U-shaped profile

A ANV

Plane sheet of aluminium

Fig. 4 A projectile’s position relative to the panel (a) and profile shapes (b)

In our research we examined properties of barriers built with plane sheets of metal and also more compli-
cated shapes, as shown in Fig. 4b. Therefore, for some panels more than one initial position of the projectile
had to be included in the simulations. For every non-flat plate three different places of impact were identified:
concave, convex and intermediate between these two—see Fig. 4a. Every panel used in the simulations was
rectangular cuboid with a square base that was 0.25 x 0.25 m? in size and had a casing made of two additional
flat plates placed at the front and back of the multi-layered structure. The thickness of the panel was 0.16 m
and was constant, while the thickness of a single layer was variable and changed with the number of layers.
The thickness of aluminium plates used in this study was 1.5 mm. The basic dimensions were chosen to ensure
an adequate distance from the place of impact to the edges of barriers; thus, boundary effects were eliminated.

Aluminium layers were modelled with S4R (shell, 4-node, reduced integration) elements, whereas C3D8R
(continuum, 3-D, 8-node, reduced integration) elements were used for modelling the projectile. The maximum
number of elements in the FE mesh was ~1.3 x 10°.

4 Results

In the numerical analysis the material model is a key element that significantly influences the outcome. In
general, the more accurate the model, the closer to the behaviour of the real object is the behaviour of the tested
structure. Introducing thermal and rate effects to the basic Johnson—Cook formula increased the complexity
and the number of model parameters but did not yield better results in terms of engineering significance.

In the first part of the study we examined the relation between thermal and strain rate effects and the
behaviour of the panel made of metal plates. Plane sheets were chosen since any profile could compromise the
results by changing the trajectory of the projectile. The different perforating objects (ball, nut and nail) and
different impact orientations assured that our research was independent of the shape of the projectile. At this
stage the impactors were modelled as rigid bodies. The impact of the previously mentioned phenomena was
assessed by recording the number of layers required to stop the impactor.

The results of attempts of the projectile to break through the panel are shown in Fig. 5. The results are
divided into three separate groups. The first group in Fig. 5a concerns the simulations without thermal softening
or strain hardening, the second group in Fig. 5b presents the results for the analysis with strain hardening (but
no thermal dependence), and the third, plotted in Fig. 5c, shows results for thermal softening (without strain
hardening). Figure 5 also shows how the weight of the panel changes with the number of layers. We can see
that for the nut and ball the number of layers required to prevent the penetration is constant and independent of
the effects included in the numerical model. The nail is the only projectile that changed the number of layers
required to stop the perforation. Therefore, the nail was chosen for further study of the impact of thermal
softening and strain hardening on the ballistic resistance of the target.

As shown above, changes in the model parameters are not necessarily reflected in the behaviour of multi-
layer structures for the selected projectiles. As in the first part of the study rigid impactors were used, we went
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Fig. 6 Perforation results for the aluminium panel—material model with strain rate and thermal dependence

on to investigate whether the deformable projectile would trigger any change in the results. Figure 6 presents
the perforation simulations with rigid and deformable objects; both thermal softening and strain hardening
were included in the material model. Rigid and deformable projectiles require the same number of layers for
the pin and head orientation. On the other hand, we noted a significant increase in the time needed to perform
the calculations; it will be discussed later in this section.

Comparison of different shapes revealed that only the nail is worth investigating further (Fig. 5). Moreover,
the mechanical model of the projectile does not introduce any noticeable change (Fig. 6). In other words, a
rigid impactor is stopped by the panel of the same design, which is sufficient to stop the deformable object.
This last conclusion was unexpected regarding our previous experience; so it was be developed in the following
(second) part.

In the first series of numerical studies the barriers were built with flat plates. In the second series we focused
on more complex shapes. On the one hand this allowed us to observe the differences in the behaviour of the
deformable and rigid impactors and review the ability of these shapes to dissipate the energy of the projectile.
Because the cross section of the layer was now more complex, we had to consider different piercing points, as
mentioned earlier. Previous analysis had shown that the nail, particularly when the pin was directed towards
the panel, was an effective tool for testing multi-layered structures. The aluminium model included rate and
thermal dependence. The panels investigated in this part were closed with two additional sheets of aluminium,
forming a uniform casing for the target, as mentioned before.

We notice that eight layers were required when the projectile punctured the concave part of the arc-shaped
panel (cf. Fig. 7a). In this layer arrangement the same number of layers is effective only for the case of convex
position. The intermediate point was recognized as a spot where the difference in projectile behaviour was
the greatest. The rectangular shape (Fig. 7b) was a much more stable solution as an equal number of layers
for the rigid and deformable objects was sufficient to prevent perforation. Again, the biggest difference in the
behaviour of different models of projectiles can be observed in the intermediate point. For both of these cases
the difference exists because in the intermediate position the impactor had to perforate additional material,
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which caused significant deformation of the projectile, resulting in considerable loss of its velocity. The same
phenomena occurred in the convex point of the V-shaped panel but with less intensity, as there is only two-layer
gap—see Fig. 7d. In other cases the perforation by the rigid or deformable objects had the same intensity in
a specific position. The barrier with the U-shaped layers required seven layers to stop the projectile if it hits
the concave part. Moreover, it was the only case where there was a difference between the results for the rigid
and deformable objects.
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Fig. 7 continued

Table 3 Simulation time depending on the shape of the aluminium plates

Shape of the sheet Rigid body Deformable

Arc shape 00:52:00 18:59:00

U shape 01:29:00 18:16:00

V shape 01:00:00 25:51:00

Rectangular shape 01:01:00 20:04:00
(hh:mm:ss) (hh:mm:ss)

In conclusion, it can be noticed that in general the concave part of panel is the weakest one; if the projectile
hits this particular spot, the biggest number of layers was required to stop it. However, for the rectangular-
shaped panel the worst-case scenario occurred in the convex part (Fig. 7b). Therefore, in the search for the
detail solution one should investigate different points of impact. The rectangular-shaped panel also provided
the biggest difference in the behaviour of rigid and deformable projectiles. This difference can be attributed
to the amount of aluminium that the projectile encountered puncturing this particular part; as a result, the
deformations of the projectile were significant. Finally, the V-shaped panel with five layers is an optimal
solution for stopping fast-moving debris. It can provide required protection and the best strength-to-weight
ratio. It is worth noting that in six out of twelve results presented in Fig. 7 the rigid projectile required more
layers than the deformable one. Application of a rigid projectile places us on the safe side even if the final
design may be oversized. Because of this it is possible to omit the thermal effect and strain rate hardening
while drafting the first prototype of the panel constructed of thin metallic layers.

The simulations were carried out on the Intel 64-bit PC (CPU 8x2.33 GHz Inter(R) Xeon(R), 16 GB RAM,
OS GNU Linux). As it was mentioned earlier, the simulation time can increase significantly for deformable
projectiles, as shown in Table 3. This is due to the increase in computational complexity resulting from the
deformation of the projectile and creation of a new contact surface due to erosion, two factors which were not
present in analysis of a rigid body behaviour. In some cases it can take 25 times longer to finish calculations
for the same set-up with a different model of impactor.

It is worth noting that erosion of deformable objects requires defining the interior surface, which is not yet
supported in the Abaqus/CAE. Therefore, first a model with the exterior surface has to be created and then
changes have to be introduced in the resulting input file using the keyword INTERIOR.

5 Conclusion

Based on a significant number of numerical simulations the ballistic perforation of multi-layered targets
impacted by improvised projectiles has been investigated. The following major conclusions can be stated:

e among various shapes of the component layers tested the V-shaped fulfilment of the panel was found to
have the best strength-to-weight ratio,
e the impact position of the projectile was significant for the ballistic resistance of the target,
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the shape of the projectile had a strong impact on the number of layers required to stop the perforation,
among different combinations of the strain rate hardening and the thermal softening effects applied in the
constitutive model, the most noteworthy change in the performance of the target was observed when both
were included in the calculations,

for the flat component layers there was no striking difference in the number of layers required to stop the
perforation in the case of rigid and deformable projectiles,

the ballistic resistance of targets made of various shapes of the component layers was greater for the
deformable impactor, and

the structured component layers are much more efficient than the flat one keeping the overall structure
lightweight.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate
if changes were made.
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