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Abstract The paper is devoted to radial and out-of-plane vibration of railway wheels and to wheelset stability
as key elements affecting high-speed vehicle dynamics, noise emission, and safety. In the present study, railway
wheel tire is treated as a curved beam with various beam models, and the wheel plates are modeled as Winkler’s
elastic foundation. New results are presented concerning the influence of the residual stresses on the corrugation
and poligonalization of wheels as well as wave propagation in the wheel tire.
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1 Introduction

The cost-efficiency, maintenance, comfort and safety of railway operation depend strongly on the quality of
the wheelset—track interaction. The wheel rim movement has a great impact on the above-mentioned subjects;
thus, the study of wheel rim behavior is of very great importance. Design of rotating elements of modern
high-speed railway vehicles requires deep understanding of the behavior of wheels and wheelsets as rotors
and wave propagation phenomena in wheel rims, responsible for noise being emitted, corrugation, wheel
poligonalization, and wear of a wheel-rail system. The contact problems of wheel-rail interaction in majority
of investigations are limited to the dynamic effects caused by the vertical motion of the contact points under
assumption that the contact stiffness is linearly dependent on the load. The speed of the contact point is assumed
to be constant and equal to the velocity of the rail vehicle motion. In the real systems, many simplifications
are not acceptable, that is why further investigations are necessary. In the present paper, some of the results of
previous studies are overviewed that are essential for the understanding of the basic phenomena of vehicle—truck
interaction from the point of view of the rotor dynamics.

The first part of the paper aims at generalization of the study undertaken by Mahrenholtz [1] to the larger
spectrum of rim parameters and wheel dynamics. The second part is devoted to traveling waves’ analysis with
attention paid to qualitatively different solutions in different regions of £2, V plane. The other parts of the paper
are devoted to influence of residual stress on configuration of this regions, wheels dynamics, and wheelset
stability.
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2 Effect of curvature of wheel rim modeled as a beam on elastic foundation

Consider a railway wheel with the wheel—tire modeled as a simple Bernoulli-Euler beam and the wheel plate
treated as Winkler’s elastic foundation as shown in Fig. 1. The wheel rim height is assumed to be small in
comparison with the wheel radius, and the wheel rim cross section is symmetric.
The static normal (circumferential) force in the wheel rim as a curved beam can be described by the equation
(see Mahrenholz [1]):
N 1 d*N AN
ds® + R? ds* ds?
where the notations are as follows: N—normal force, s—arc coordinate (s = R¢), c—elastic Winkler’s
foundation coefficient, A* = ¢/EI, R and EI—rim radius and bending stiffness, respectively, and E—Young’s
modulus.
The solution of Eq. (2.1) has the following form:

N(s) = Cexp(rs) 2.2)

—0 2.1)

The solutions of the characteristic equation are as follows:

1
i 4=i\/_ﬁ (1ii\/)»R«/§—l’ (ARV2 > 1) (2.3)

or in rearranged explicitly complex form

r,.4=+x0@=%i)/L (2.4)

with §[1/m] and L[m] defined by transformation of (2.3) into (2.4).
The solution of Eq. (2.1) can be expressed as follows:

8 8
N(s) = exp (Zs) [N1 cos (%) + N> sin (%)] + exp (_Zs) [N3 cos (%) + Ny sin (%)] 2.5
where N 23 4 are constants to be calculated from the boundary conditions for the radial displacement w:

F
ws=0=0, wE=nR) =0, —Elw"(s=0)= 7 w’'(s=n7R)=0 (2.6)

where F is the external contact force, as shown in Fig. 1.
Under assumption that the normal force is constant (Ny), the curved beam equation has the following form:

d5w+ 1 No d3w+cdw_0 @)

ds? R? EI) ds®  Elds '
It is enough to neglect the first term in the brackets to obtain the equation for a straight beam subjected to
longitudinal force Nj.

Fig. 1 Railway wheel rim model



On some rotor-dynamical phenomena of high-speed trains 1345

0.0002

0.0001

20 40 140 160
-0.0001

-0.0002

-0.0003
——— curved beam

w[m]

-0.0004 -
= straight beam
-0.0005
-0.0005
-0.0007

-0.0008

-0.0009

¢ [deg]

Fig. 2 Comparison of displacements w(®) for straight and curved beams for ¢ = ¢; = 2.26 x 108 N/m?
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Fig. 3 Comparison of displacements w(®) for straight and curved beams for ¢ = ¢ = 2.26 x 107 N/m?

To generalize the results obtained in Ref. [1] and show that the results of deformation strongly depend
on wheel plate stiffness parameter ¢ and the normal force Ny, we consider some examples for the following
parameter values:

E=21x10"N/m?1=393x10°m* A=926x1073m? R=0.4325m, F = 1.2 x 103N, and
three values of Winkler’s foundation stiffness: ¢; = 2.26 x 10° N/m?, ¢ = 10~! x ¢ and ez = 1072 x ¢;. The
results are shown in Figs. 2, 3, and 4, where the displacements of the rim are compared for two models—straight
and curved Euler beam.

One can see that lowering wheel plate stiffness, e.g., by placing rubber interconnection between rim and
wheel plate to reduce vibration has to be undertaken together with the assumption that the rim must be modeled
as a curved beam.

3 Phase velocity of wave propagated in the rim

After including inertia term into Eq. (2.1) with p denoting rim mass density and the following notations:

, EI 1 c N
W(S,t)ZU)(S,t)_wo, a = —:, ksz—’ = —"7, T:_a (31)
PA R pPA A
we obtain the equation of the wheel rim radial motion in the form:
PwW LW 5 Pw
WJraWJr(aks—T)WJrcoW:o. (3.2)
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Fig. 4 Comparison of displacements w () for straight and curved beam for ¢ = ¢3 = 2.26 x 10% N/m?
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Fig. 5 Influence of rim curvature (1/Rp) on the phase velocity, vy for ¢ = 2.26 x 108 N/m?

Now, we are looking for solution of Eq. (3.2) in the form of a traveling wave:
W(s,t) = Bsink(s —vyt), (3.3)

where k and v denote wave number and phase velocity, respectively. The phase velocity can be expressed as:

\/azk“ + k2 (T — a?k2) + co

v == .

(3.4)

Relation (3.4) between the phase velocity and the wave number for exemplary parameter values £ = 2.1 x
10" N/m?, A = 9.26 x 1073 m2, p = 7,800 Ns?/m* are presented in Figs. 5 and 6, like in Ref. [2].

The above results allow one to evaluate the influence of the beam curvature and residual stress on the
phase velocity and its critical value in the wheel-tire. These results comprise a first step to determine traveling
waves generated by a moving and oscillating force and a next step for investigating stability of wheelset—track
and train—track interaction. The oscillatory load results from periodical wheel structure, periodicity of sleeper
spacing, and corrugations.

The equation of motion of the Bernoulli-Euler beam subjected to moving oscillating force can be described
as follows:

qW + PRals H(E_p 82W+ W oW = Fos (s — vt) cos ot (3.5)
—_— —_— —_— — —_— C = S — VI) COS .
3t TP T\ R2 1 0 @

952 ot



On some rotor-dynamical phenomena of high-speed trains 1347

1000
\ —— 400MPa ~— 300MPa
800
200MPa 100MPa
—— O0MPa
— 600 =
w
£ =
[ =
e 400 5
200
0

k[1/m]

Fig. 6 Phase velocity vs. wave number for various residual stress and for wheel plate elastic coefficient ¢ = 2.26 x 107 N/m?
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Fig. 7 Phase and group velocity versus wave number, k and directions of wave propagation for various frequencies of excitation,
2 =(0-1.2)

After transformation of Eq. (3.5) to a moving coordinate system connected with the contact force and intro-
ducing dimensionless variables, we obtain the equation of motion in the form:

W,
X2

1%

W, 32w, W, Zw,
8X4r+ 812r_ 8X8; 4v? 8X2r + +4W, =85 (X)cos 21, (3.6)

wre 2 N
R2 i
B

where Rp and Np are dimensionless radius of the rim and dimensionless residual stress resultant, respectively,
and

8Ela3 [pA [ (pA)? [ [c
W, =W 0, 2 =w 'O—, V=v4('0), ao=4L, X=((¢—vay, 1=t i
Foy c 4cEI 4E1 pPA

To determine the proper solution of the problem formulated in Ref. [3], one has to find solution in the form
of a traveling wave that satisfies the Sommerfeld condition of radiation [4], taking into account that energy is
transported with the group velocity.

As shown in the graph on the left-hand side of Fig. 7, for a given value of speed V| and for positive values
of wave number ki, the group velocity, Vg, is smaller than the phase velocity, V¢—that is why this wave
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Fig. 8 Amplitude of displacement as function of speed V and frequency £2. An exemplary resonance curve as cross section of
the spatial graph V = £21/2x is visible
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Fig. 9 Regions of qualitatively different solution as function of the velocity V, excitation frequency §2 and curvature (1/Rp)
with the residual stress Ng = 0

should propagate from the source of excitation. The wave with wave number k, can propagate to the source
of excitation because value of group velocity is greater than that of phase velocity.

In the case of straight Bernoulli—Euler beam, the dependence of displacement on velocity of force motion
V oscillating with frequency 2 is shown in Fig. 8. The resonance curves divide the speed—frequency plane
into the three regions of qualitatively different solutions.

It can be seen in Fig. 9 that large values of wheel-tire curvature (1/Rp) considerably influence the config-
uration of the three regions with qualitatively different solutions.

The influence of the residual stress is more important because compressive stresses reduce the critical wave
velocity. This effect is shown in Fig. 10.

The visualization of the qualitative difference of the solutions in the first and second regions is shown in
Fig. 11.

The tire of the wheel can be modeled in a more complicated way, i.e., as the Rayleigh beam or the
Timoshenko beam, as the rail can be modeled. A very complicated wheel model was investigated in Ref. [5],
where the curved beam could exhibit radial and circumferential displacements as well as lateral ones as a
result of out-of-plane bending and torsion. The wheel plate was modeled by an elastic Winkler foundation.
The crucial result of that investigation is connected with a very high resonance of the wheel rim at the vehicle
speed of about 200 km/h in the case when the wheel is excited in the contact area by a force or a spin moment.
An example is shown in Fig. 12. It can be seen that for the speed greater than zero, each eigenfrequency is
divided into two values, corresponding to the waves traveling in the direction of the rolling motion and to the
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Fig. 10 Regions of solutions depending on velocity V, excitation frequency 2, and residual normal force Ny for straight beam
(1/Rp =0)

Q=0.85,v=03

Fig. 11 The traveling wave solution in the first and second regions of the speed—frequency plane

waves moving in the opposite direction. The waves with increasing frequency are much more amplified than
the other ones.

The description of such a complicated model is made by four partial differential equations, and the solution
is obtained in the form of traveling wave. More details can be found in Ref. [5]. The solution of wheel dynamics
makes possible an investigation of motion of a wheelset as a flexible system. For such an analysis, in case of
rigid axle one will need 14 coupled differential equations for the wheels and the wheelset.

Using the fixture of symmetry (S) and anti-symmetry (A) and assuming constant speed along the track, it
is possible to reduce the number of equations to nine. Solving the set of equations, we obtain trajectories of
wheelset motion with positions of the wheelset axles as shown in Fig. 13. In Ref. [5], top and front views of a
wheelset are presented.

The four situations shown in Fig. 13 correspond to the following motions:

e S-S—wheels vibrate in-phase, symmetrically with respect to the wheelset center, the wheelset center
moves vibrating sinusoidally in the vertical direction. The trajectory seen from the top is a straight line,
and the axle is perpendicular to the track.

e S—A—wheels vibrate in-phase, anti-symmetrically with respect to the wheelset center, the wheelset center
moves vibrating sinusoidally in the horizontal direction and the axle is perpendicular to the track, as in the
S-S case.
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Fig. 12 Three-dimensional wheel model and flexural radial displacements at the speeds V = 0 and V = 200km/h
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Fig. 13 Trajectories of wheelset center and positions of axles in chosen points of motion

e A-S—wheels vibrate out-of-phase, symmetrically with respect to the wheelset center, the wheelset center
moves vibrating sinusoidally in the horizontal direction and the axle rotates with an oscillating inclination
with respect to its initial position.

e A-A—wheels vibrate out-of-phase, anti-symmetrically with respect to the wheelset center, the wheelset
center moves vibrating sinusoidally in the horizontal direction and axle rotates horizontally and vertically
with oscillating inclination with respect to the position perpendicular to the track. Details of various wheels

eighenmodes are given in Ref. [6]. Two exemplary modes of wheelset according to Ref. [7] are shown in
Fig. 14.

One can notice that in the case of anti-symmetric modes lateral forces are acting on the rail what needs further
analysis (which does not belong to rotor-dynamical problems). In the case of modern light railway vehicles
with independent drive systems the above mentioned instability phenomena do not appear, but the dynamic
electromechanical coupling occurs [8].
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Fig. 14 Symmetric (left) and anti-symmetric (right) modes of wheelset vibration
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Fig. 15 Corrugated rail and trajectory of wheel center motion

4 Remark on wheel-rail contact with corrugation

Another very important dynamical effect is related to corrugated or poligonalized wheel motion on straight or
wavy rail. Majority of investigations were conducted assuming that the wheel radius is small in comparison
with the radius of the rail roughness. A study addressing this problem is devoted to the change of velocity of
the load motion (horizontal) and the acceleration of the wheel center in the vertical direction.

The position of the contact point and the wheel center and the trajectory of the wheel center in case of
sinusoidal corrugation are shown in Fig. 15 left and right, respectively. It is interesting that in the ideal case of
stiff contact and wheel curvature approaching curvature of corrugation, the acceleration tends to infinity. The
elastic wheel-rail contact limited such picks of acceleration, but introduces resonance phenomena connected
with the contact stiffness. A detailed discussion on this topic can be found in Ref. [9]. Some results of wavelets
application one can find in Ref. [10].

5 Concluding remarks

The results presented in this paper demonstrate the importance of rotor-dynamical effects in high-speed train
wheel-track interaction. Some of the considered effects are related to the fundamental phenomena of train—track
dynamics in general, like traveling wave solution with regard to the group velocity of waves and particularly
the wheel-rail and wheel-set-track interaction. The wheel-rail interaction is influenced by the load which
causes deformations of the wheel plate and the wheel rim, what in turn changes the contact point position.
This problem is discussed in Ref. [11].
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