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Abstract The vibrational frequency response of a modern lightrail module is considered in a simple model
including dynamical features of the (typically aluminum) body with finite flexural rigidity, which inter alia
reveals additional wheel–rail resonances. The model also allows to calculate the systems acoustic noise emis-
sion spectra, and to study the differences between aluminum and steel coaches.

1 Introduction

State-of-the-art trams are typically modular aluminium low-floor systems (e.g., [1,2]). The use of aluminium
serves the purpose of weight—and, hence, energy consumption—reduction, also needed to compensate for
weight-adding modern components such as computer systems and air conditioning, and the highly standard-
ized modular design should reduce production costs. The last few years have shown a remarkable surge in the
sales of fully low-floor trams. Since in this case the floor is in between the wheels, this concept has prompted
the development of completely new trucks without the conventional wheel axis. In principle the low-floor
wheel units cannot rotate horizontally, a clear disadvantage in, e.g., curves. Mainly for this reason, the vehicles
have as small trucks as possible, which are placed almost rigidly under the center of relatively small modular
units. In practice the novel truck design, in particular in its interaction with the aluminium body construction,
has shown unconventional vibrational response, viz. resonances. Apart from leading to unstable wheel–rail
contact (and increased polygonization of the wheels), this also causes enhanced noise production (e.g., [3]).
In this article a simple mechanical model is studied for an interacting body–truck–wheel–rail system, which
clarifies these fundamental design features from a theoretical physics point of view.

2 The model

Consider the mechanical system shown in Fig. 1. It consists (from bottom to top) of a wheel (with tyres) on
an imperfect rail [specified as φ(t)], a solid wheeltruck, and a flexible chassis body (with flexural rigidity
coefficient γ , and length L). The various parts interact via linear springs (with Hooke constant C) and shock
dampers (with Rayleigh coefficient D). The wheel mass is µ, the truck mass m, and the total static coach mass
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Fig. 1 Vibrational model of a lightrail unit, consisting of a nonrigid wheel (mass µ, internal spring and damping constants C0,
D0), connected by external springs (C1, C2) and dampers (D1, D2) to a rigid truck (mass m) and a coach body (total mass M)
consisting of flexible elastic plates (length L , effective mass density ρ, and stiffness parameter γ )

is M [i.e., the one-dimensional (1D) mass density � = M/L]. The Lagrangian density for this system reads
[4–7]

L = Loδ(x − xo) + 1
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being the Lagrangian for wheel and truck (located at x = xo, with −L/2 < xo < L/2), while the dissipation
function [4] is given by

F = 1

2
D0(η̇ − φ̇)2 + 1

2
D1 (η̇ − ẏo)

2 + 1

2
D2 (ẏo − ẏ(xo))

2 , (3)

with φ(t) being the specified rail profile and where static gravitational effects (body bending and spring bias)
have already been eliminated. The dynamics generated by Eqs. (1)–(3) can be written as

∂2 y

∂t2 + γ
∂4 y

∂x4 = 0 (4)

for the plate (x �= xo, ±L/2),

D2 (ẏ(xo) − ẏo) + C2 (y(xo) − yo) + �γ
∂3 y

∂x3

∣∣∣x+
o

x−
o

= 0 (5)

for the plate at x = xo, and

mÿo + D1 (ẏo − η̇) + D2 (ẏo − ẏ(xo)) + C1 (yo − η) + C2 (yo − y(xo)) = 0, (6)

µη̈ + D0
(
η̇ − φ̇

) + D1 (η̇ − ẏo) + C0 (η − φ) + C1 (η − yo) = 0 (7)

for the wheel–truck unit. For the plate at x = ± L/2 various boundary conditions are allowed [7]. Here the
force-free edge conditions apply, viz.

∂y

∂x

∣∣∣±L/2
= ∂3 y

∂x3

∣∣∣±L/2
= 0. (8)

Equations. (4)–(8) uniquely specify the response of the system on the rail profile φ(t), i.e., on an external force
F(t) = C0φ(t) + D0φ̇(t).
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3 Rigid-body dynamics

3.1 Response functions

Consider the model of Sect. 2 in the rigid-body limit, viz. γ → ∞. In that case, y(x) ≡ y(xo). Hence,
integrating Eq. (4) along the plate, yields

�γ
∂3 y

∂x3

∣∣∣x+
o

x−
o

→ M ÿ(xo), (9)

so that Eq. (5) reduces to the equation of motion of the solid mass M . Setting

η = 1

2π

∞∫
−∞

ηωeiωt dω, yo = 1

2π

∞∫
−∞

Yωeiωt dω, y(xo) = 1

2π

∞∫
−∞

yωeiωt dω, (10)

into Eqs. (5)–(6), one then obtains

−Mω2 yω + (iωD2 + C2)(yω − Yω) = 0,

−mω2Yω + (iωD1 + C1)(Yω − ηω) + (iωD2 + C2)(Yω − yω) = 0, (11)

which allows one to compute the body and truck response to the wheel amplitude. For the truck response (with
ηω ≡ 1) one finds

Yω = (iωD1 + C1)(−Mω2 + iωD2 + C2)/Zω, (12)

where Zω = Uω + i Vω with

Uω = C1C2 − (mC2 + D1 D2 + MC12) ω2 + Mm ω4,

Vω = (C1 D2 + C2 D1) ω − (m D2 + M D12) ω3, (13)

where, e.g., C12 = C1 + C2. The body response reads

yω = (iωD1 + C1)(iωD2 + C2)/Zω. (14)

Finally, using Eqs. (7) and (12), the wheel response can be written as

ηω = Fω/
[
C0 + iωD0 + (C1 + iωD1)(1 − Yω) − µω2] , (15)

where Fω = (C0 + iωD0)φω. Note that ηω→∞ = −Fω→∞/(µω2). On the other hand, since Yω→0 =
1 + (m + M) ω2/C1, one has ηω→0 = −Fω→0/(C0 + iωD0 − Moω

2) with Mo = µ + m + M , e.g., with
D0 = 0, the wheel response on a unit step in the rail profile follows from Fω = −i(π/2ω)C0.

3.2 Basic parameters

Both truck and body resonances follow from Zω = 0. With M � m, the body resonance frequency typ-
ically obeys ω2 � (C1/m)1/2. In that case one obtains Zω/C12 ≈ (C1C2)/C12 + iωD2 − Mω2, so that
ω2 ≈ (C1C2/MC12)

1/2. In practice C2 � C1, hence ω2 ≈ (C2/M)1/2. For the truck resonance one has
ω1 � ω2 and Zω/Mω2 ≈ −(C12 + iωD12 − mω2), so that ω1 ≈ (C12/m)1/2 ≈ (C1/m)1/2. Finally, with
m � µ, at the wheel resonance ω0 � ω1 one has Yω � 1, so that Eq. (15) yields ω0 ≈ (C01/µ)1/2.

The damping must be set at its critical value, viz. neither strong nor weak. Too little is uncomfortable for the
passengers (swaying ride), and gives rise to large forces in the construction near resonance. On the other hand,
too much is uncomfortable as well (bumpy ride), and moreover leads to increasing forces at higher frequencies.
For example, for the body the effective friction coefficient approximately equals D2/M , and critical damping
amounts to D2/2M ≈ ω2. The truck is critically damped if D12/2m ≈ ω1, and for the wheel one should take
D01/2µ ≈ ω0. The rigorous three-body analysis is given in the Appendix.

The total mass of a five-module lightrail tram typically amounts to Mtot ≈ 35 ton when empty and Mtot ≈
55 ton when fully loaded, and has three trucks (two of which are traction units with two electric motors each,
and one of which is free running) with four wheels each. The mass of a wheel is approximately µ ≈ 80 kg.
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The mass of a traction truck is about 1,600 kg, i.e., mtr ≈ 400 kg per wheel, while that of the free-running
truck is roughly half that value, i.e., mfr ≈ 2, 00 kg per wheel. Consequently, in our model the body mass (for
a half-filled module) is taken to be M = (Mtot − mfr − 2mtr − 12µ)/20 per wheel, i.e., M ≈ 2, 000 kg.

The value of the secondary spring constant C2 is basically set by practical constraints on both the body
resonance frequency and the static gravitational bias. The latter amounts to yb = Mg/C2. With, e.g., C2 =
4×105kg s−2 one obtains yb ≈ 5 cm and ω2 ≈ 14 s−1 (i.e., about 2 Hz). The ensuing approximate value
for the secondary damper is D2 ≈ 5.6×104 kg s−1. The secondary suspension typically consists of a helical
compression spring.

The primary suspension is usually made of rubber. An elastic cylinder of length 
 and radius r yields a
spring constant of C = Eπr2/
, where E ≈ 30×106 N m−2 is the Young’s modulus for rubber (see, e.g., [10]).
With r ≈ 
 ≈ 10 cm, this gives C1 ≈ 107 kg s−2 which implies a proper static bias within the wheel-truck unit
of a few millimeter, and a traction truck resonance at ω1 ≈ 160 s−1 (i.e., about 25 Hz). For the primary damper
one may write D1 ≈ (1/ξ − 1)D2, where ξ = (MC2/mC1)

1/2. Clearly, D1 > 0 requires ξ < 1 (see the
Appendix). Since the vehicle has twice as many traction trucks as free running ones, the primary suspension
is designed using mtr . In that case ξ ≈ 1/

√
5, so that D1 ≈ 6.9×104 kg s−1.

A wheel may be shock absorbing using rubber tyres. With thickness 
 ≈ 1 cm, and an effective transverse
area of some A ≈ 5×10 cm2, using C = EA/
 yields C0 ≈ 1.5×107 kg s−2. The wheel resonance frequency
then becomes ω0 ≈ 430 s−1 (i.e., about 70 Hz). Writing D0 ≈ (1/ξo − 1)D1 where ξo = (1 − ξ)ν with
ν = (mC1/µC0)

1/2, and using the above value for ξ , one finds 1/ξo ≈ 0.99 so that D0 � D1. In fact, the
internal damping of rubber is very small, viz. of the order of D ≈ 103
, i.e., D0 ≈ 10 kg s−1. So, D0 ≈ 0.

4 General spectra

4.1 The body mass Mω

The general solution of Eq. (4) with the boundary conditions (8) may be written as in Eq. (10) with

yω(x < xo) = alcos ϕl + blcosh ϕl,

yω(x > xo) = arcos ϕr + brcosh ϕr, (16)

where ϕl = k(x +L/2), ϕr = k(x −L/2), with k = γ −1/4|ω|1/2. Note that this implies a frequency-dependent
(group) velocity vg = 2γ 1/4|ω|1/2. Continuity of y(x), ∂y/∂x , and ∂2 y/∂x2 at x = xo yields

ar = al
cosϕlo

cosϕro
, br = bl

coshϕlo

coshϕro
, bl = al

coshϕro

cosϕro

sinkL

sinhkL
, (17)

with, e.g., ϕro = ϕr(xo). Using Eq. (17) in Eq. (16), one obtains

yω(xo) = 2al focosϕlo,
∂3 yω

∂x3

∣∣∣x+
o

x−
o

= −2alk
3 sin kL

cos ϕro
, (18)

where

fo = 1

2

(
1 + cosh ϕlo

cos ϕlo

cosh ϕro

cos ϕro

sin kL

sinh kL

)
. (19)

Now defining a frequency-dependent effective mass Mω, in line with Eq. (9) and using Eq. (18), as

Mω = M

focos ϕlo cos ϕro

sin kL

kL
, (20)

(where use was made of γ k4/ω2 = 1 and �L = M) the response formulae of Sect. 3 carry over to the general
case, with M being replaced by Mω. Note that Mω→0 = M .
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Fig. 2 Vibrational spectra for a truck and b wheel [Left curves: traction module (shifted to the left over 50 s−1); right curves
free-running units], showing fundamental flexural body resonance and free-running truck enhancement for the wheel. See text
below for system parameter values

4.2 Flexural rigidity

With Mω∈(−∞, ∞), the spectra (e.g., [8])

SW(ω) = ηωη−ω, ST(ω) = YωY−ω, SB(ω) = yω y−ω (21)

for the wheel (with φω = 1), truck (with ηω = 1), and body (at xo) become intricate, e.g., with C2 � C1 one
may write

Yω ≈ (C1 + iωD1)/(C1 + iωD1ω − mωω2), (22)

with D1ω = D1 + Dω, Dω = D2/[1+(D2/ωMω)2], mω = m + Mω/[1+(ωMω/D2)
2]. Clearly, the spectrum

ST(ω) will have a local maximum when Dω drops from its normal rigid-body value D2 to zero, i.e., at some
ωγ = γ 1/2(2πn/L)2 Mωγ = 0 (n = 1, 2, · · · ). Using Eq. (20), one finds Mω ≈ 2M(ω1/2 −ωγ

1/2)/ωγ
1/2, so

that the frequency interval set by Mω ≈ D2/ωγ amounts to δωγ ≈ D2/2M , which equals the body frequency
ω2 ≈ 2 Hz. That is, δωγ � ωγ . If ωγ ≈ ω1, the spectral density ST ≈ (C1 +ω2 D1)/(ωD1ω)2 is thus found to
increase by a factor (D12/D1)

2 (≈ 4) over the small frequency interval δωγ . A similar effect exists, of course,
for the body and SB(ω ≈ ω1) is easily shown to be enhanced by a factor M/mtr (≈ 5) at ω ≈ ωγ .

Substituting Eq. (22) into Eq. (15) for the wheel (at ω ≈ ω1, and with D0 = 0, φω = 1), one finds

ηω ≈ C0/(C0ω + i D0ω − µωω2), (23)

where C0ω = C0 + (Dω/D1ω)C1, D0ω = (D1/D1ω)Dω + (C1/D1ω)mω ω, and µω = µ + (D1/D1ω)m. In
the rigid-body case (i.e., Dω = D2) the ensuing spectrum SW(ω) would have a resonance at ω ≈ ([C0 +
(D2/D12)C1]/[µ + (D1/D12)m])1/2. With m � µ (see Sect. 3.2) this can be rewritten as ω ≈ (ω0ω1)

1/2 �
ω1, so that SW(ω1) ≈ 1. On the other hand, if Dω = 0, this resonance frequency shifts downward to
ω ≈ C0/(µ+m) ≈ ω1; one then gets SW ≈ (C0 D1/mωγ C1)

2. Note the inverse square dependence on m and
ωγ . The enhancement may be rewritten as 4(C0/C1)

2(D1/D12)
2 (ω1/ωγ )2(mtr/m)2 ≈ 2(mtr/m)2, which

amounts to an unfavorable extra factor of four for the free-running truck. Finally, notice that for ωγ ≈ ω0 � ω1

one has Yω ≈ (C1−iωD1)/mω2, which is independent of Dω so that both wheel and truck become independent
of the flexural body resonances at frequencies well above the truck resonance.

The flexural rigidity coefficient γ in Eq. (1) is given by γ = 1
12 (E/ ρ)d2/(1 − σ 2), where [7] E is the

Young’s modulus, ρ = αρb is the effective mass per unit volume (with ρb being the solid bulk density, and α
the filling factor), σ is the Poisson ratio, and d is the plate thickness. In practice, 0 < σ < 1/2. With σ � 1
for metals, one has [7] c‖ ≈ [E/ρb(1 − σ 2)]1/2 for the velocity of propagation of longitudinal acoustic waves
in an infinite medium. Hence, γ 1/2 ≈ c‖d/(12α)1/2. Consequently, k = (12α)1/4(ω/c‖d)1/2. This dispersion
relation holds for all kd � 1. Numerically, c‖ ≈ 6×103 m s−1 for both aluminium and steel. For aluminium
sandwich constructions one has, e.g., α ≈ 1/10 and d ≈ 3 cm, viz. γ 1/2 ≈ 164 m2 s−1. Taking L = 6 m
(one-fifth of the typical vehicle length), one then obtains ωγ ≈ 180 s−1, i.e., about 28 Hz for the fundamental
flexural body resonance, which may thus indeed be close to the truck resonance ω1 ≈ 25 resp. 35 Hz (traction
resp. free-running).

All formula are easy to compute using Mathematica 5. Figure 2a shows the truck spectrum ST(ω) with
ηω = 1, using Eq. (12) [and M replaced by Mω according to Eq. (20)] with M = 2, 000 kg, µ = 80 kg,
L = 6 m, and C0 = 1.2×107, C1 = 107, C2 = 4×105 kg s−2 (see Sect. 3.2); the dampers are set at their
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exact critical values (see Appendix) D0 = 0, D1 = 6.4×104, D2 = 5.4×104 kg s−1. The spectra pertain
(from left to right) to the traction respectively free-running truck (with mtr = 400 and mfr = 200 kg) for an
aluminium coach with γ 1/2 = 164 m2 s−1 (see above), with the former for clarity being shifted to the left over
50 s−1. Figure 2b is similar, but for the wheel spectrum SW(ω) with φω = 1. The extra enhancement factor
(mtr/mfr)

2 ≈ 4 for the free-running wheel has been discussed above. Further, with these parameters one has
SB ≈ ST. Throughout, xo = 0.

4.3 Dynamic stability

While at high speed a wheel running on a bumpy surface—a nonholonomic mechanical problem [4]—will
eventually always fly off due to centrifugal effects, intrinsic system resonances as found in the preceding
section may be a potential hazard at considerably lower speeds. Let us therefore investigate in our model the
dynamic stability of the wheel on the rail.

Let the rail profile (amplitude in the y-direction) be given by φ(t) = φocosκx , where x = Uot with
constant vehicle velocity ẋ = Uo. The total force between the wheel and rail consists of two components, a
force F‖(t) parallel to the surface and a force F⊥(t) perpendicular to it. The former takes care of the traction (to
keep the vehicle at the constant speed Uo), while the latter determines the stability of the wheel–rail contact.
In particular, if F⊥(to) > 0 at some to the wheel will lift off at t = to + 0. For the traction truck the actual
motor force Ftr is parallel to the surface, i.e., it has no normal component and need not be determined in detail.
Hence, F⊥ = (Fw + Fg)cosθ where Fw = C0(η−φ)+ D0(η̇− φ̇) is the instantaneous dynamic force between
the wheel and rail, Fg = −Mog (with Mo = µ + m + M) and θ = arctan(dφ/dx) (with dφ/dx = φ̇/Uo).

On the other hand, the free-running module is kept at the constant speed ẋ = Uo through the pulling (or
pushing) of the traction modules. Hence, the externally applied motor force Ffr lies along the x-axis and, there-
fore, does have a component Ffrsinθ normal to the surface. To determine Ffr, note that due to the constraint
[4] of the motion (up to to), the only dynamic part of the motor force is its component Ffrcosθ tangential
to the surface, which implies an effective driving force Ffrcos2θ in the horizontal x-direction. Similarly, the
constraint also leads to an effective horizontal driving force (Fw + Fg)sinθcosθ due to the module’s vibra-
tions. To maintain free-running at a constant speed, the total dynamic force in the x-direction should be zero,
which yields Ffr = −(Fw + Fg)tanθ. Consequently, in this case one finds F⊥ = (Fw + Fg)secθ. Note that the
free-running module is potentially more violently unstable than the traction unit. In what follows, however,
only small θ � 1 (i.e., κφo � 1) will be considered so that F⊥ = Fw + Fg for both cases.

Given φ(t), the dynamical contact force now becomes

F⊥(t) = Aωcosωt + Bωsinωt − Mog, (24)

with

Aω =−C0φo(1 − Re ηω) − ωD0φoIm ηω,

Bω =−C0φoIm ηω + ωD0φo(1 − Re ηω), (25)

where ηω is given in Eq. (15), and ω = κUo. It is worth noting that Eq. (25) leads to a finite limit for C0 → ∞.
Namely, from Eq. (7) one obtains η ≈ φ + η(1)/C0 +O(1/C2

0 ) with η(1) = C1(φ − yo)+ D1(η̇ − ẏo)−µω2.
This yields FW ≈ η(1), which represents the vibrational force of the truck supplemented with the centrifugal
force of the wheel. The limiting expressions for Aω and Bω are obtained from Eq. (25) by replacing (C0, D0)
by (C1, D1) and ηω by Yω, and adding the centrifugal term −µω2φo to Aω.

The force F⊥(t) in Eq. (24) has extrema at t = ω−1arccot(ωAω/Bω) and its maximum value amounts to

Fmax(ω) =
√

A2
ω + B2

ω − Mog, (26)

which is shown in Fig. 3 (for the same parameter sets as in Fig. 2, and φo = 1 mm). For clarity the plot for the
traction module is again shifted to the left over 50 s−1. At ω = 0 the wheel is pushed firmly on the rails by the
static force Fmax = −Mog, while at frequencies well beyond ωc = √

Mog/µφo (ωc ≈ 103s−1) centrifugal
fly off may set in. Evidently, while the traction wheel is stable for all practically relevant frequencies, the
wheel–rail contact for the free-running wheel is unstable near ωγ ≈ 180 s−1 (see, e.g., [3]). At moderate city
speeds of the order of Uo ≈ 6 m s−1 (i.e., about 22 km h−1) this corresponds to a wavelength λ ≈ 20 cm,
which agrees with recently observed novel wavy rail distortions (see, e.g., http:www.baluw.nl/combino). On
a wheel with a diameter of 60 cm this would amount to a hexagonal deformation (i.e., a ten-sided polygon).
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Fig. 3 Lift force for wheel–rail contact, following Eq. (26), for both traction (left curve displaced over 50 s−1) and free-running
wheel (right) of an aluminium lightrail module. The system parameters are identical to those for Fig. 2

5 Acoustics

5.1 Noise spectra

Imperfect wheel–rail contact produces polygonization (and, hence, wear and high maintenance costs) of the
wheel, and a specific wave-type rail damage. This also leads to enhanced noise emission levels. The physiology
of sound perception is a complicated subject, but a sensible impression of the acoustic characteristics of the
vehicle may be obtained on the basis of the mechanical spectra as follows. First of all, the acoustic spec-
trum Sa(ω) must be calculated by smoothing the mechanical spectrum Sm(ω) using a terts—i.e. a major third
(see, e.g., [9])—filter P(x). In addition, since the human ear only processes frequencies above f
 ≈ 20 Hz,
both input and output of the smoothing process involve a low-pass filter Q(ω). The results are practically
independent of the specifics of the filter functions, and the acoustic spectra are conveniently computed as

Sa(ω) = Q(ω)

∞∫
1

P(x)Q(x ω)Sm[x ω/(1 + w)]dx, (27)

with

P(x) = (x − 1)

w2 exp

[
−1

2

(
x − 1

w

)2
]

, (28)

where w = 2 2/7 − 1 for the temperate musical scale (or w = 1/4 for the absolute scale), and with

Q(ω) = exp[−(ω
/ω)2], (29)

where ω
 = 40π s−1.
The acoustic truck spectrum (with φω = 1) corresponding to the vibrational spectra of Fig. 2 is shown in

Fig. 4a, which is obtained by applying Eq. (27) to the mechanical spectrum STW = STSW. As before, the left
curve applies to the traction module, while the right one pertains to the free-running case. Figure 4b shows
the same spectrum for a welded steel module, which is typically of the monocoque type. In that case, the
effective flexural rigidity in Eq. (1) can be estimated by applying the theory of elasticity (see [7]) to a hollow
tube with Young’s modulus E , filled by a medium of practically zero mass density but with modulus Eo.
For a duct with rectangular cross section (of infinite width) and Eo = E , one recovers the result of Sect. 4.2
for a sandwich construction. However, for a similar tubular element (with infinitesimal wall thickness) with
Eo = 0 one obtains γ 1/2 ≈ c‖d/2. With, e.g., d = 15 cm this yields γ 1/2 = 450 m2 s−1. In fact, the spectra in
Fig. 4b are already practically indistinguishable from the perfectly rigid case (the transition takes place around
γ 1/2 ≈ 300 m2 s−1).

Figure 4 shows that the sound production by the trucks of aluminium coaches tends to be enhanced in
comparison with steel ones, in particular in the low but audible frequency range of 20–50 Hz (ω ≈ 200 s−1).
This feature may now be understood to have the same dynamical origin as the wheel’s tendency to polygonize
(and rumble on self-produced wave-type rail distortions). It is worth remarking that the lightrail body itself
does not emit sound waves at frequencies below ωe = γ −1/2c2

a , but merely drags an exponentially decaying
surface wave along. Note that ωe ≈ 720 s−1 (i.e.,115 Hz) for γ 1/2 = 164 m2 s−1, respectively ωe ≈ 260 s−1

(i.e.,42 Hz) for γ 1/2 = 450 m2 s−1
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Fig. 4 Terts-averaged acoustic spectra for a aluminium [flexural rigidity γ 1/2 = 164 m2 s−1] and b steel [γ 1/2 = 450 m2 s−1]
body, both for traction (left curve, displaced over 50 s−1) and free-running truck (right curve). System parameters other than γ
are identical to those for Figs. 2 and 3

5.2 Loudness levels

Let us estimate the order of magnitude of the loudness. Strictly speaking, this is a rather difficult subject since
the observed power inter alia depends on the frequency (i.e., on the wavelength λa = 2πca/ω in air), on
the dimensions 
 and shape of (and distance r to) the source, as well as on the (frequency and sound-level
dependent) properties of the human ear (e.g., [11]). Nevertheless, some general conclusions can be drawn if
r � 
. In that case, the total energy emitted per unit of time by a source with surface area � may be given in
the dipole approximation as [12]

I (ω) = ρacau2�F(ka
), (30)

with ka = ω/ca, where F(z) ≈ z4/(64 + z4), and u is the normal velocity at the source surface. Fur-
ther, ρa = 1.2 kg m−3 and ca = 344 m s−1. The energy flux on a (half-)sphere of radius r is given by
�(ω) = I (ω)/2πr2.

As in Sect. 4.3, let the rail profile amplitude be φo so that u2 = 1
2ω2Sa(ω)φ2

o . For a truck the vibrating
surface area amounts to � ≈ 2
2, with 
 ≈ 2 m. At the spectral peak near ωm ≈ 200 s−1 (i.e.,ka ≈ 0.58 m−1,
λa ≈ 10.8 m) one then has ka
 ≈ 1.16, so that I (ωm) ≈ 6.6×107Sa(ωm) φ2

o F(1.16) Js−1. With φo = 1 mm
and F(1.16) ≈ 2.8×10−2, the energy flux at the (ISO) standard distance of r = 7.5 m from the source then
yields �(ωm) ≈ 5.2×10−3Sa(ωm)Wm−2. Using Fig. 4 one thus arrives at �(ωm) ≈ 3.1×10−3, respectively
7.8×10−3 Wm−2 for the aluminium traction and free-running case, and �(ωm) ≈ 7.3×10−4 1.1×10−3 Wm−2

for the corresponding steel ones.
Loudness level (measured in phon) is defined as

L(ω) = d(ω)log [�(ω)/�o(ω)] . (31)

At ω = 2π fr with fr = 103 Hz the hearing threshold amounts to �o = 10−12 Wm−2, and with d(ωr) = 10
the loudness level is given in decibels (dB). However, from the standard equal-loudness-level contours (see,
e.g., [13,14]) one infers that for ω < 2π fs with fs ≈ 1014/5 ≈ 630 Hz the threshold approximately scales
as �o(ω) ≈ (ω/ωs)

−ε×10−12Wm−2, with ε = 5. Therefore, at ωm = 200 s−1 (i.e., 31.8 Hz) one has
�o(ωm) ≈ 3×10−6Wm−2. In addition, since all loudness levels L > 0 scale approximately similarly [but
having exponents ε(L) < 5, with dε/dL ≈ 0.05], the coefficient d is found to vary with the frequency as
d(ω) ≈ 20/log (ω/ωd), where ωd = 0.01 ωs. This yields d(ωm) ≈ 28.5 at ωm = 31.8 Hz. Using the above
energy flux values in L(ωm) ≈ 28.5 log (106�/3) one thus arrives at Ltr ≈ 84.5 resp. L fr ≈ 96.9 dB for the
aluminium, and Ltr ≈ 67.6 resp. L fr ≈ 73.2 dB for the steel cases.

While these results are in line with the L values found in practice (see, e.g., http:www.baluw.nl/combino), it
should once more be remarked that absolute sound levels are theoretically less substantiated than differences,
where in, e.g., the relatively strong dependence on φo, ω and 
 [note that �(ωm)∼φ2

oω6
6], which is enhanced
by the large value of d(ωm), drops out in �L = Lfr − Ltr . Note then that �L ≈ 12.4 dB for aluminium, while
�L ≈ 5.6 dB for steel modules. Computing the loudness level L(ω) shows that the exact values are somewhat
bigger, mainly because the traction and free-running trucks have slightly different ωm. One finds �L ≈ 18.5
and �L ≈ 10.5 dB, respectively.

These numbers do not noticeably change upon including the noise from the wheels and the body. Namely,
as already mentioned above Fig. 4, the nonrigid body emits sound waves only for frequencies ωe > γ −1/2c2

a ,
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Fig. 5 Loudness levels of module with flexural rigidity γ 1/2 = 164 m2 s−1 in decibels, as a function of 10log ω. The upper curve
represents L tot for the traction unit. The lower curve gives the difference in loudness level between the free-running unit and the
traction one. System parameters are identical to those for Figs. 2, 3, 4

and presently ωe > ωm. Above ωm, the body’s noise intensity can be calculated using Eq. (30) with � ≈

L and ca being replaced by (e.g., [15]) the group velocity va = 1/[dka(ω)/dω], where ka(ω) = (c/ω)
[1 − (cak(ω)/ω)2]1/2 (with k(ω) = γ −1/4|ω|1/2 being the body’s wave number). In addition, ka(ω) replaces
ka = ω/ca in F. The ensuing body loudness level typically rises fairly steeply to a peak value of the order
of 80 dB somewhat above ωe, and from thereon decreases—in a washboard manner, as a consequence of
higher-order body resonances—to some 40 dB at ω ≈ 104 s−1. These details are, however, not seen anymore
in the total module loudness level.

The noise from the (four) wheels may also be computed by means of Eq. (30). In this case, the effective
vibrating surface area amounts to � = πrw per wheel, with r ≈ 30 cm and w ≈ 5 cm. Further, one should
replace 
 in F by w. The wheels become audible only above ω ≈ 103 s−1, and typically produce some 50 dB
at ω ≈ 104 s−1. Since this is still 10 dB less than the truck’s loudness level at that frequency, the wheel con-
tribution does not much affect Ltot(ω), which is given by Eq. (31) with �(ω) = �B + �T + 4�W. For the
threshold flux use was made of

�o(ω) =
[
1 + (ωs/ω)5

]
�o, (32)

(�o = 10−12 Wm−2) while the coefficient reads

d(ω) = 102/log

[
(ωs/ωd)

5

1 + (ωs/ω)5

]
. (33)

The result for the aluminum traction module (γ 1/2 = 164 m2 s−1) is given in Fig. 5. The upper curve represents
Ltot|tr itself, the lower one gives �Ltot. The free-running module thus yields Ltot|fr = Ltot|tr +�Ltot, viz. shows
an even more pronounced flexural resonance peak at ωm ≈ 190 s−1, and exceeds 100 dB near ω ≈ 550 s−1.
The low-frequency resonance peak at ωm is absent for the steel module (γ 1/2 = 450 m2 s−1).

6 Final remarks

Modular low-floor lightrail systems are becoming the new worldwide standard in modern metropolitan rail-
way developments. Examples can be found all over Europe (from Helsinki to Madrid, and from London to
Athens), in Asia (e.g., in Istanbul), in Africa (e.g., in Tunis), in Japan (e.g., in Hiroshima), in Australia (e.g.,
in Melbourne and Sidney) and in the USA (e.g, in Boston, Los Angeles, San Diego, Houston, Phoenix, Port-
land, Minneapolis, and Seattle). It is a multibillion euro/dollar market, and the leading suppliers feel pressed
to jump in and secure their share. Unfortunately, the new technology turned out to be more intricate than
expected. Customers complaints concern inferior dynamical behavior of the wheels and trucks, substantially
enhanced noise levels, and even cracks in the aluminium construction (see e.g., http:www.baluw.nl/combino).
The present article is an attempt to clarify some of these design features from a theoretical physics point of
view.

The mechanical model of modern lightrail modules defined in Eqs. (1)–(3) generalizes the standard sus-
pension models of rigid vehicles to allow for the vibrational dynamics of a nonrigid coach construction (and for
rubber wheel tyres). In this manner a comparison can be made between trams with steel or aluminium bodies.
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The latter are important in view of recent developments in modular low-floor systems. The model is claimed to
clarify certain novel dynamical instabilities in the wheel–rail contact, as well as related characteristic acoustical
features. Special attention is also given to the problem of critical damping.

Inter alia, two pitfalls in the design of modern lightrail modules have been identified. Firstly, undercritical
damping not only leads to unstable response characteristics (in particular for free-running modules), but also
to significantly higher noise levels (typically 7 dB) over a wide frequency range. Secondly, a near coinci-
dence of the truck resonance with the fundamental flexural body mode strongly enhances both the dynamical
response (e.g., a factor four in the wheel spectrum) and the noise levels (up to an extra 10 dB at low but audible
frequencies).

A Appendix: Critical damping

A.1 Exact analysis

Let us consider the rigid-body dynamics of Sect. 3, and investigate the exact conditions for critical damping. The three modes of this
system follow from the zeroes of the denominator in ηω = Fω Zω/�ω, which using Eqs. (12)–(15) leads to �ω/µm M = Rω+i Iω

with Rω = ∑3
n=0(−1)nαnω2n (i.e., α3 = 1) and Iω = ∑2

n=0(−1)nβnω2n+1, where

α0 = C0C1C2

µm M
,

α1 = C0C1

µm
+

(
1+ m

M

) C0C2

µm
+

(
1+ µ+m

M

)
C1C2

µm
+ C0 D1 D2+C1 D0 D2+C2 D0 D1

µm M
,

α2 = C01

µ
+ C12

m
+ C2

M
+ D0 D12 + D1 D2

µm
+ D01 D2

µM
+ D1 D2

m M
,

β0 = D0C1C2 + D1C0C2 + D2C0C1

µm M
,

β1 = D0C1+D1C0

µm
+

(
1+ m

M

) D0C2+D2C0

µm
+

(
1+ µ+m

M

)
D1C2+D2C1

µm
+ D0 D1 D2

µm M
,

β2 = D01

µ
+ D12

m
+ D2

M
. (A.1)

For critical damping one should have �ω/µm M = −(ω − i�0)
2(ω − i�1)

2(ω − i�2)
2, with real relaxation rates � j > 0.

Comparing this degenerate form with the general expression for �ω given above yields six conditions on the three rates, which
are compatible only if the general coefficients satisfy three constraints, viz.

α1 = β2
0

4α0
+ β2

√
α0, α2 = 1

4
β2

2 + β0√
α0

, β1 = β0β2

2
√

α0
+ 2

√
α0. (A.2)

Given C0, C1 and C2, Eq. (A.2) yields the critical damping values for D0, D1 and D2. Alternatively, e.g., given C1, C2 and D0,
one obtains the critical values for D1, D2 and C0 (see Sect. 3.2). In principal, however, there exist several complex and real but
negative valued solutions, while the relevant physical ones should all be positive. As already noted in Sect. 3.2, e.g., D1 > 0
requires ξ = √

MC2/mC1 < 1. This turns out to be a minimum requirement sufficient only in the limit (µ/m → 0, m/M → 0).
Since the general case ξ < ξc(µ/m, m/M) is too involved for analytic treatment, let us consider the problem for m/M � 1 but
with arbitrary µ/m.

A.2 Physical constraints

Rewriting Eq. (A.2) in terms of ξ , and ν = √
mC1/µC0, X = D0/

√
4mC1, Y = D1/

√
4mC1, Z = D2/

√
4mC1, and then

letting M → ∞, at once yields Z = ξ and gives two equations that are now quadratic in X and Y , and are solved by

X =
[
1+2µ̂ν−µ̂(1+µ̂)ν2

]
νξ± [

1−(1+µ̂)ν
] √

1−2µ̂ν+µ̂(1+µ̂−4ξ2)ν2[
1−2µ̂ν+µ̂(1+µ̂)ν2

]
ν

(A.3)

and

Y =
[
1 − µ̂ν(1 + ν)

]
ξ − (1 − µ̂ν)νX

(1 + µ̂)ν − 1
, (A.4)

where µ̂ = µ/m. With D0 = 0 (i.e., X = 0), Eq. (A.4) immediately gives D1 as

Y = 1 − µ̂ν(1 + ν)

(1 + µ̂)ν − 1
ξ, (A.5)
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Fig. 6 Plot of a χ = 1/ν(µ̂) [ν = √
mC1/µC0] for several fixed values of ξ = √

MC2/mC1 (from left to right: ξ =
0.60; 0.525; 0.505; 0.50), and b ξc(µ̂), showing the borderline between parameter regions where critical damping is mechani-
cally possible (ξ < ξc) and where not

which (for µ̂ < µ̂c, see below) implies the physical constraint ν > 1/(1 + µ̂), while Eq. (A.3) boils down to finding the real
positive zeroes (i.e., C0) of the function

F(ν)=
[

1+2µ̂ν−µ̂(1+µ̂)ν2

1−(1+µ̂)ν
νξ

]2

−[
1−2µ̂ν+µ̂(1+µ̂−4ξ2)ν2] . (A.6)

For µ̂ = 0, the polynomial F(ν) becomes quadratic and the only solution satisfying ν > 1 and ξ > 0 of Eq. (A.6) reads
ν = 1/(1− ξ), withξ < 1. However, from Eq. (A.3) one easily infers that if ξ < ξ c(µ̂) there must be two real solutions (merging
at ν = νc if ξ = ξ c). Forµ̂ → 0, the second solution is found to be ν = µ̂−1/2

√
1/ξ2 − 1. Noticing that these solutions tend to

merge at ν ≈ µ̂−1/3 for 1 − ζ ≈ µ̂1/3, suggests the proper scaling of the critical case in this limit. Indeed [νc and ξ c follow from
F ′(νc) = F(νc) = 0], one finds νc = µ̂−1/3 ∑

nνnµ̂n/3 with ν0 = 1, ν1 = 1, ν2 = 0, ν3 = 1/3, ν4 = −1, ν5 = 0, and so forth.
Similarly, ξ c = ∑

nξnµ̂n/3 with ξ0 = 1, ξ1 = −3/2, ξ2 = 15/8, ξ3 = −43/16, ξ4 = 667/128, ξ5 = −2, 213/256, etc. Apart
from the case µ̂ � 1, another simple critical solution is immediately seen in Eq. (A.3), viz. ν = 2 at ξ = µ̂ = 1/2. In fact, ν = 2
and ξ = 1/2 is a solution for all µ̂.

In fact, using e.g., Mathematica 5, one easily obtains exact general (for M → ∞) expressions for ξ(ν, µ̂) [or ν(ξ, µ̂)], and
for ξ c(µ̂) [and νc(µ̂)]. Figure 6a shows plots of ν(µ̂|ξ) for several fixed values of ξ , according to

ξ = 1

ν

(1 + µ̂)ν − 1√
1 + 4µ̂ − 2µ̂ν + µ̂(1 + µ̂)ν2

, (A.7)

which clearly demonstrates the existence of two solutions for ν(µ̂|ξ) when ξ < ξ c. The critical curve ξ c(µ̂) is plotted in Fig. 6b
using Eq. (A.7) with ν being replaced by

νc = µ̂ + [
µ̂(1 + 2µ̂)

]2/3

µ̂(1 + µ̂)
. (A.8)

The above analysis is strictly valid only up to µ̂ = µ̂c. First of all, for µ̂ > 4 the physical constraint on Eq. (A.6) becomes either
1/(1 + µ̂) < ν < ν− or ν > ν+, where ν± = 1

2 (1±√
1 − 4/µ̂). A new critical situation then occurs when νc(µ̂ → µ̂c) = ν+.

This yields exact numerical expressions for µ̂c ≈ 4.61, νc(µ̂c) ≈ 0.68, while for all µ̂ ≥ µ̂c one has ξ c = √
ν+, following from

F(ν+) = 0 only.
Note that the free-running module with µ̂ = 0.4 and ξ = 0.63 does not fall in the physically allowed region below the curve

ξ c(µ̂) in Fig. 6b, while the traction unit with µ̂ = 0.24 and ξ = 0.45 does.
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