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Abstract
Bisphenol A (BPA) is one of the primary chemicals produced by volume worldwide. Extensive literature has raised many 
concerns about its possible involvement in the pathogenesis of kidney diseases, but its contribution has not been extensively 
studied. During cellular senescence, the interference of lipofuscin with cellular functions promotes further senescence, 
causing cellular malfunction. Insulin-like growth factor-1 (IGF-1) plays an important protective role in the setting of kidney 
injury. The goal of the present work was to evaluate the effects of short-term treatment with low doses of BPA on cellular 
senescence in adult rat kidneys. Male Wistar rats were injected with vehicle (CONTROL group) or 50 or 500 μg/kg/day 
of BPA for 1 week (BPA50 and BPA500 groups, respectively). The kidneys were fixed in 4% buffered formaldehyde and 
embedded in paraffin. Immunohistochemical analyses were performed, and an immunoreactive score (IRS) was calculated. 
Lipofuscin autofluorescence was used for the study of cellular senescence. The renal cortex showed diffuse autofluorescent 
lipofuscin signal in the proximal convoluted tubules (PCTs) of males in the BPA50-treated (weak intensity) and BPA500-
treated (strong intensity) groups, but not in CONTROL males. Labeling of cortical PCTs with anti-IGF-1 antibodies showed 
an IRS of 0 in the CONTROL group, but IRSs of 4 and 6 in the BPA50- and BPA500-treated groups, respectively. The 
present results suggest that low, “safe” doses of BPA induce renal injury, as measured by histological signs of renal changes, 
increased cellular senescence, and activation of cellular repair systems in PCTs.
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Introduction

Bisphenol A (BPA) is one of the main volume chemicals 
produced worldwide. BPA is a “xenoestrogen” that has weak 
estrogenic activity due to binding to estrogen receptors and 
disturbing estrogen metabolism (Varticovski et al. 2022). 
Extensive literature has raised many concerns about its pos-
sible implications in the origin of some chronic diseases 
such as kidney diseases (Moreno-Gómez-Toledano et al. 
2021). Physiologically established pharmacokinetic models 
suggest that renal tubular reabsorption of BPA conjugates 
contribute to serum BPA levels, but the contribution of this 
pathway to renal injury has not been deeply studied (Habeeb 

et al. 2022). Proximal tubule cells (PTCs) in renal cortex, 
which reabsorb many filtered molecules, are the primary site 
of kidney injury associated with nephrotoxicity (Treuting 
et al. 2018). Tissue markers associated with senescence are 
increased in injured and aging rodent kidneys (Luo et al. 
2018; Docherty et al. 2020).

Cellular senescence is a permanent state of cell cycle 
arrest that promotes tissue remodeling during develop-
ment and after injury. Senescent cells remain viable but 
show altered morphology, greater heterogeneity, developed 
hypertrophy, expression of SA-β-gal, accumulation of lipo-
fuscin granules, and lack of response to mitogenic stimuli. 
Interactions of lipofuscin with cellular functions are able to 
increase its rate of formation, resulting in a vicious cycle, 
causing cellular malfunction and death (Di Guardo 2015). 
The evidence so far from in vitro and in vivo studies suggests 
that cellular senescence acts as a tumor barrier, whereas it 
contributes to the processes of tissue aging and age-related 
diseases (Rodier and Campisi 2011; Kowald et al. 2020). 
Actively proliferating cells efficiently dilute lipofuscin 
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during successive divisions (Terman 2001). However, when 
proliferation of normally mitotic active cells is inhibited by, 
for example, growth factor starvation or confluency, lipofus-
cin starts to accumulate. It is known that tubular epithelial 
cells that survive damage secrete growth factors are involved 
in kidney repair mechanisms (Terman and Brunk 1998).

Insulin-like growth factor 1 (IGF-1) is a major regulator 
of postnatal somatic growth, mediating many of the effects 
of growth hormone. Circulating levels of IGF-1 reach their 
peak at mid-teen years and then decline with age (Allard and 
Duan 2018). When the concentrations of IGF-1 are high, 
the signal is mitogenic and anti-apoptotic (Valentinis and 
Baserga 2001). Apoptosis is a form of programmed cell 
death that results in the orderly and efficient removal of dam-
aged cells. IGF-1 plays a protective role against apoptosis 
and regulation of cell growth, which facilitates recovery 
from acute kidney injury (AKI) (Peruzzi et al. 1999). Exper-
imental evidence supports a pathogenic role for apoptosis in 
AKI. Proximal tubule epithelial cells are highly susceptible 
to apoptosis, and injury at this site contributes to organ fail-
ure (Havasi and Borkan 2011).

Many clinical and epidemiological studies have described 
the recurrent exposure of the general population to BPA as 
well as its harmful effects, but its contribution to renal injury 
has not been studied sufficiently. The goal of the present 
work was evaluated the effect of short-term treatment with 
low doses of BPA, similar to population levels, on cellular 
senescence in the adult Wistar rat kidney.

Material and methods

This study was performed in accordance with guidelines 
established by the Institutional Animal Care and Use Com-
mittee at the University of Oviedo (PROE-15/2016). Rats 
were obtained from the Vivarium Unit of the University of 
Oviedo. Adult male Wistar rats (350–400 g, aged 4 months) 
were housed individually under standard conditions at 
22 ± 3 °C with light/dark periods of 12 h and a minimum 
relative humidity of 40%. Rats were maintained on 2014 
Teklad Global 14% protein rodent maintenance diet (Har-
lan Laboratories, Barcelona, Spain), which does not contain 
alfalfa or soybean meal (chow diet). The composition of the 
diet was as follows: calories from protein, 18%; calories 
from fat, 11%; calories from carbohydrates, 71%; energy 
content, 2.9 kcal/g. Rats were acclimatized to their housing 
conditions for at least 15 days.

BPA (Sigma, cat. number 239658) was dissolved in 
tocopherol-stripped corn oil (Panreac Química, cat. num-
ber 8001307) and administered subcutaneously during the 
early light phase for 7 days. Male Wistar rats were subcu-
taneously injected with vehicle (tocopherol-stripped corn 

oil, CONTROL group), or 50 or 500 μg/kg/day of BPA for 
1 week (BPA50 and BPA500 groups, respectively). The 
sample size was five to six animals per group.

Rats were sacrificed under deep anesthesia (0.5 mL of 
sodium pentobarbital), blood samples were collected by 
cardiac puncture and then rats were immediately perfused 
via the left ventricle. One capillary tube was filled for hema-
tocrit determination. Blood samples were centrifuged and 
serum was stored at −20 °C. Serum osmolality was deter-
mined using a Wescor 5100C Osmometer. The kidneys were 
removed and fixed (4% paraformaldehyde in 0.1 M phos-
phate buffer, pH 7.4) for 4 h. Next, they were washed in 
running water and incubated in 70% ethanol until processing 
(Nuñez et al. 2015). The kidneys were then embedded in 
paraffin, serial sectioned at a thickness of 5 μm, and stained 
with periodic acid–Schiff (PAS) stain and anti-insulin-like 
growth factor-1 (IGF-1) antibodies (1:100, Santa Cruz Bio-
technology, cat. number sc-713). The Dako EnVision+ Sys-
tem kit (DAKO Corporation, cat. number K4003) was used 
according to the manufacturer’s instructions. The extent of 
renal damage on each slide was evaluated in several fields 
(Olympus BX53 microscope with cellSens image analysis 
software) with semi-quantitative histological and immuno-
histochemical analyses, and an immunoreactive score (IRS) 
was calculated. An average of ten light microscopic fields 
(with one or two glomeruli per field) per section was evalu-
ated using a 20× objective.

We visualized green autofluorescence from lipofuscin 
(emission wavelength 450–490 nm) in 1 µm optical sections 
by confocal microscopy (Espectral Leica TCS SP8 X). This 
confocal laser scanning microscope is a spectral confocal 
microscope with an acousto-optical tunable filter, an acou-
sto-optical beam splitter, and a spectral detector. It does not 
use a camera; images are serially constructed on the basis of 
the output from a photomultiplier tube. The objective lens 
specifications were: HC PL APO 40×/1.30 OIL PH3 CS2; 
magnification, 40×; numerical aperture, 1.30; spherical 
aberration (three to four colors); chromatic aberration (four 
to five colors); field curvature; cover glass, 0.17. The acqui-
sition software was Leica Application Suite X version 1.8.1.

The semi-quantitative analysis of the stained sections 
was performed using a modified IRS originally developed 
by Remmele and Stegner (1987). The evaluation was based 
on the semi-quantitative immunoreactive, which was calcu-
lated by multiplication of optical staining intensity (graded 
as 0, none; 1, weak; 2, moderate; and 3, strong staining) and 
the percentage of positively stained cells (0, no staining; 
1, ≤ 10% of the cells; 2, 11–50% of the cells; 3, 51–80% of 
the cells; and 4, ≥ 81% of the cells). In our study, the modi-
fied IRS evaluated the grade of staining intensity as well 
as the fraction of cells in each intensity category. The pre-
dominant intensity grade was used and the IRS (range 0–12) 
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was adapted to an additional 4-point scale derived from the 
latter score (Supplementary Table 1) (McCarty et al. 1985; 
Kaemmerer et al. 2012; Naipal et al. 2015).

A widely accepted internationally standardized nomen-
clature for urinary tract lesions in laboratory animals was 
used in the present study to decrease confusion among 
regulatory and scientific research organizations in different 
countries, and provide a common language with which to 
facilitate and enrich international exchanges of information 
among toxicologists and pathologists (Frazier et al. 2012).

The data were analyzed using the Statistical Package 
SPSS 22.0 (IBM Corp., Armonk, NY, USA). We used the 
Kruskal–Wallis test to assess differences between treatment 
groups. Results were considered significant at p < 0.05. Data 
are shown as mean ± SEM.

Results and discussion

Senescent cells accumulate in the kidney in three general 
settings: with age, with any insult causing acute kidney 
injury, and in chronic kidney disease. In each case, higher 
levels of senescent cells are associated with worsened kid-
ney function and outcomes (Docherty et al. 2020). BPA is a 
ubiquitous environmental toxin; it is detectable in the urine 
samples of most adults and children because it is primarily 
removed by the kidneys (Doerge et al. 2010). Some reports 
have demonstrated that serum BPA levels are negatively cor-
related with annual changes in estimated glomerular filtra-
tion rates, identifying BPA as a renal damage biomarker 
(Azzouz et al. 2016). Previous studies have also shown that 
injection of 25 or 50 mg/kg/day of BPA resulted in albumi-
nuria and podocytopenia. Although the exact cause of BPA-
induced albuminuria is unclear, it may arise from oxidative 
stress-induced endothelial dysfunction.

In vitro studies have demonstrated that BPA causes 
mitochondrial injury, oxidative stress, and apoptotic 
death in tubular cells. However, in vitro models may not 
account for the interactions between cells and biochemi-
cal processes that occur during BPA metabolism in vivo 
(Priego et al. 2021). Previous work has shown that BPA 
participates actively in mechanisms of accelerated cell 
aging. For example, administration of toxicologic doses 
of BPA (e.g., 21.2 or 120 mg/kg/day, i.p. for 5 days/week) 
affected the vascular endothelium and promoted cardiovas-
cular diseases in mouse models (Moreno-Gómez-Toledano 
et al. 2021; Priego et al. 2021). Several in vivo toxicity 
studies have also indicated that BPA exposure displays 
an inverted-U-shaped dose–response curve (a hormetic 
dose–response curve), often with no responses at high 
exposure levels (Lagarde et al. 2015). In 1993, the US 
Environmental Protection Agency defined the lowest 
observed adverse-effect level for BPA as 50 mg/kg/day and 

the “safe dose” as 50 μg/kg/day. However, the daily BPA 
intake of adult humans was found to be approximately 
500 μg/kg/day (Taylor et al. 2011). Thus, the aim of the 
present work was to evaluate the effect of short-term treat-
ment with low doses of BPA (50 or 500 μg of BPA/kg/
day)—similar to the exposure levels of the human popula-
tion—on cellular senescence in the adult rat kidney.

Lipofuscin

Deposits of lipofuscin autofluorescence in proximal tubule 
cells (PTCs) of the renal cortex have been established as 
a biomarker for premature stress-induced senescence in 
the kidney (Georgakopoulou et al. 2013). Previous studies 
have shown that lipofuscin is a senescence biomarker com-
parable to senescence-associated β-galactosidase (SA-β-
gal) activity. Some features of senescence in the aging 
kidney, such as the appearance of SA-β-gal or lipofuscin, 
are present even without morphologic changes, suggest-
ing that some aspects of cell senescence are common in 
the aging kidney (Yang and Fogo 2010). Lipofuscin is a 
waste product that originates from a variety of intracellu-
lar structures and accumulates in the lysosome. Although 
lysosomal degradation occurs in all cells, only post-mitotic 
and slowly dividing cells accumulate lipofuscin. Hence, 
lipofuscin accumulation within post-mitotic cells is a hall-
mark of aging.

In the present study, the PTCs in the renal cortex of 
the BPA-TREATED group exhibited diffuse cytosolic 
lipofuscin autofluorescence, whereas the CONTROL 
group did not (Fig. 1). Specifically, the kidney sections 
from the CONTROL group were negative for green lipo-
fuscin autofluorescence (IRS: 0; Fig. 1), those from the 
BPA50-TREATED group showed mild green lipofuscin 
autofluorescence (IRS: 3; percentage of positive cells: 
3; intensity of staining: 1; Fig. 1), and those from the 
BPA500-TREATED group revealed strong green lipo-
fuscin autofluorescence (IRS: 6; percentage of positive 
cells: 2; intensity of staining: 3). No significant differ-
ences in lipofuscin IRSs were observed among the groups 
(p > 0.05; Fig. 1); however, IRSs tended to be higher in 
the BPA-TREATED groups. Lipofuscin increases with age 
in human kidneys and is present in tubular cells but not 
glomeruli. The distribution of lipofuscin and its increase 
in aged kidneys (Melk et al. 2004) are similar to what we 
observed in rat kidneys exposed to BPA. Although cells 
constantly recycle damaged components, the proportion 
of poorly functioning structures increases with age, par-
ticularly in post-mitotic cells, suggesting that the recycling 
machinery is imperfect (Glaumann et al. 1981). Our results 
suggest that low doses of BPA induced cellular senescence 
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in the kidney and could play an important role in the devel-
opment of kidney complications during aging.

Insulin‑like growth factor‑1

Tubular epithelial cells that survive damage, secrete growth 
factors that can interact with resident cells such as renal 
and extrarenal stem cells, accelerating tubular repair mecha-
nisms. It has a remarkable capacity for morphogenic regen-
eration after severe toxic or ischemic aggression (Anglani 
et al. 2004). The IGF system is expressed in a complicated 
manner within the kidney and has profound effects on kidney 
growth, structure, and function.

IGF-1 staining revealed negative cytosolic expression 
in the cortical PTCs of animals in the CONTROL group, 
moderate expression in the BPA50-TREATED group, and 
strong expression in the BPA500-TREATED group (Fig. 2). 
Specifically, IGF-1 expression was negative (IRS: 1; per-
centage of positive cells: 1; intensity of staining: 1) in the 
CONTROL group, moderate in the BPA50-TREATED 
group (IRS: 4; percentage of positive cells: 2; intensity of 
staining: 2; Fig. 2), and strong in the BPA500-TREATED 
group (IRS classification: 9; percentage of positive cells: 3; 
intensity of staining: 3; Fig. 2). We observed statistical dif-
ferences in the IRSs of BPA500-TREATED and CONTROL 
groups (p < 0.05; Fig. 2). These results suggest that IGF-1 
may play an important role in protecting the kidney from 

BPA-induced damage. Other studies using animal models 
of acute kidney injury have been performed by administer-
ing growth factors such as IGF-1. These studies reported 
reduced mortality due to the restoration and normalization 
of kidney function (Hammerman and Miller 1994). In fact, 
it is well accepted that tubular epithelial cells that survive 
damage secrete growth factors involved in kidney repair 
mechanisms. This system can have several mechanisms 
of action, including autocrine (the kidney cells themselves 
secrete growth factors), paracrine (renal and bone marrow 
stem cells secrete growth factors), and endocrine (soluble 
factors are found in the circulation) (Flaquer et al. 2010).

Kidney histopathology

PTCs are energy-demanding cells sensitive to energy dis-
ruption, and loss of PTCs contributes to chronic kidney 
progression. Localization of the lesion to a specific seg-
ment within the kidney may be of great value in helping to 
determine the mechanism underlying xenobiotic-induced 
lesions in rodents (Treuting et al. 2018). The kidney is 
a common target organ for therapeutic and diagnostic 
agents. Renal injury may occur as a result of direct effects 
on tubules or glomeruli or indirectly via altered hemody-
namics (Frazier et al. 2012). Representative micrographs 
of PAS-stained cortical kidney sections (proximal tubules) 
from the CONTROL and BPA-TREATED groups were 

Fig. 1  The immunoreactive score (IRS) of immunohistochemistry for the lipofuscin of CONTROL and BPA-TREATED GROUPS. Values are 
expressed as mean ± SEM. The sample size was five to six animals per group. Scale bar: 30 μm
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Fig. 2  The immunoreactive score (IRS) of immunohistochemistry 
for insulin-like growth factor 1 (IGF-1) of CONTROL and BPA-
TREATED groups. Values are expressed as mean ± SEM. *p < 0.05 

versus CONTROL group. The sample size was five to six animals per 
group. Scale bar: 20 μm

Fig. 3  Representative micrographs of PAS stained cortical kidneys 
(proximal tubules) sections from CONTROL and BPA-TREATED 
groups were examined. Red arrow: tubular dilatation distension 
attenuated epithelial lining. Tubular/general lesions score (performed 

on ten-field  ×20 microphotographs of five slides of different renal 
heights, containing one to two glomeruli per photograph/field): 0: 
normal, < 10% tubular damage and 26–50% tubular damage. Scale 
bar: 20 μm. *p < 0.05 or **p < 0.01 versus control group
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examined (Fig. 3). Histopathological signs of acute epithe-
lial cell injury were observed, including diffuse damage, 
involving less than 50% of the proximal tubules studied 
(p < 0.01), and tubular dilation, distension, and attenuated 
epithelial linings involving less than 10% of the tubules 
studied in the BPA-TREATED groups (p < 0.05; Fig. 3). 
Atrophic tubules showed flat, simple epithelial linings 
with thickened and wrinkled tubular basement mem-
branes (Grgic et al. 2012). Tubular dilation most often 
accompanies other forms of renal damage (e.g., necrosis 
or degeneration) (Schetz et al. 2005). The pathogenesis 
of tubule dilation has been linked to tubular stasis, exces-
sive renal hemodynamic changes, or electrolyte and water 
loss (Lameire 2005). However, these damages appear in a 
very small percentage (< 10%) in the BPA-treated groups. 
This kidney histopathology could contribute in part to the 
development of kidney problems in aging when cellular 
repair systems lose efficiency. It is known that cellular 
senescence is a beneficial compensatory response to dam-
age that becomes deleterious and accelerates aging when 
tissues exhaust their regenerative capacity (Lopez-Otin 
et al. 2013).

Serum osmolality is the serum concentration of ions 
and elements dissolved in body fluid to reflect the body 
fluid balance and renal function. Serum osmolality is a 
useful and valuable indicator to predict a kidney injury 
(Yang et al. 2021). A decrease in hematocrit is obvious 
even among patients with mild to moderate renal insuf-
ficiency (Hsu et al. 2001). No significant differences were 
observed in serum osmolality and hematocrit between 
CONTROL and BPA-TREATED groups (Fig. 4). A recent 
study showed that animals exposed to very low doses of 
BPA (0.5, 2, 4, 50, and 100 μg/kg BW/day) presented 
kidney alterations, such as increased urea and creatinine 
levels with respect to the controls, but these values are 
within the normal ranges; they did not produce clinical 
signs (Molina-López et al. 2022). In another experiment, 
mice exposed to a low dose of BPA (25 μg/kg BW/day) 
showed decreased urine volume, but no change in cre-
atinine or plasma clearance was detected (Esplugas et al. 
2018). One study in rats (Kobroob et al. 2021) and another 
in mice (Olea-Herrero et al. 2014) demonstrated that at 

least chronic exposure to 50 mg/kg BW/day is necessary 
to see changes in renal function (for example, an increased 
serum or urine creatinine or total urine proteins) and sug-
gested that the renal functional impairment observed may 
lie in the damaging action of BPA on the kidney glomeruli. 
In the present study, the BPA-treated groups did not show 
glomerular damages.

Conclusions

We found for the first time that the green autofluorescence 
from lipofuscin is a useful biomarker to improve the evalu-
ation of cell senescence and monitor the responses to an 
endocrine disruptor in the kidney. The present results sug-
gest that low “safe” doses of BPA induce signs of renal 
injury, including renal histological changes, increased cel-
lular senescence, and activation of cellular repair systems 
in cortical PTCs. Further studies are needed to clarify the 
potential role of BPA in the pathogenesis and progression 
of renal diseases and aging.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00418- 022- 02178-x.
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