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Abstract
Electron tomography allows one to obtain 3D reconstructions visualizing a tissue’s ultrastructure from a series of 2D projec-
tion images. An inherent problem with this imaging technique is that its projection images contain unwanted shifts, which 
must be corrected for to achieve reliable reconstructions. Commonly, the projection images are aligned with each other by 
means of fiducial markers prior to the reconstruction procedure. In this work, we propose a joint alignment and reconstruction 
algorithm that iteratively solves for both the unknown reconstruction and the unintentional shift and does not require any 
fiducial markers. We evaluate the approach first on synthetic phantom data where the focus is not only on the reconstruction 
quality but more importantly on the shift correction. Subsequently, we apply the algorithm to healthy C57BL/6J mice and 
then compare it with non-obese diabetic (NOD) mice, with the aim of visualizing the attack of immune cells on pancreatic 
beta cells within type 1 diabetic mice at a more profound level through 3D analysis. We empirically demonstrate that the 
proposed algorithm is able to compute the shift with a remaining error at only the sub-pixel level and yields high-quality 
reconstructions for the limited-angle inverse problem. By decreasing labour and material costs, the algorithm facilitates 
further research directed towards investigating the immune system’s attacks in pancreata of NOD mice for numerous samples 
at different stages of type 1 diabetes.

Keywords Electron microscopy · Electron tomography · Joint alignment and reconstruction algorithm · Fiducial-less 
alignment · Primal-dual iterative reconstruction · Inverse problem

Introduction

Electron tomography is an imaging technique based on 
transmission electron microscopy (TEM) that enables the 
investigation of 3D cellular and molecular structures and 
interactions. A series of projection images is acquired 

by tilting a sample between approximately −60 and +60 
degrees, which is followed by reconstructing the volume 
of interest from the tilt series. Tilting the imaged object to 
angles larger than ±60◦ is seldom done in practice, because 
the path that electrons travel through the biological speci-
men would be much longer owing to increased thickness 
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at higher tilt angles, which obstructs the transmitting elec-
trons. This is also known as the missing wedge effect since 
a substantial amount of information in the Fourier domain 
cannot be measured (Frank 2006). Hence, the reconstruc-
tion of a tilt series is a limited angle problem, similar to 
limited angle in computed tomography. A major issue of the 
measurement process is the sensitivity to instabilities in the 
microscope’s specimen stage during tilting but also to exter-
nal environmental influences such as mechanical vibrations. 
These interfering factors lead to inaccuracies such as distinct 
translations among each projection image due to the tilting 
of the goniometer or shearing caused by the interaction of 
incident electrons with biological matter.

To enable an accurate reconstruction process, the projec-
tion images must be aligned with each other. The accuracy 
of the alignment process highly influences the quality and 
resolution of the reconstruction. The gold standard used for 
alignment of biological samples is to label each sample with 
gold particles prior to the acquisition process. The fiducial 
gold markers are clearly distinguishable in their intensity 
in the projection images and thus allow for a global align-
ment. While this has already been proposed in the 1980s 
by Berriman et al. (1984), it prevails as a very commonly 
used practice (Mastronarde 2006; Han et al. 2017) and is 
implemented in the IMOD package (Kremer et al. 1996), 
an open-source programme for 3D reconstructions. Label-
ling the tissue with gold particles must be done manually 
and might induce streaking artefacts in the reconstruction, 
thus potentially covering areas of interest. Furthermore, it 
is a time-consuming process that relies on costly material. 
In contrast, there are also fiducial-less alternative align-
ment strategies. Starting as early as 1989, Dengler (1989) 
addressed the problem using a coarse-to-fine bootstrap 
control strategy and thus paved the way for iterative recon-
struction and alignment methods. There are various different 
iterative approaches that can broadly be divided into align-
ment based on projection matching and cross-correlation. 
Yang et al. (2005) propose an alignment technique by projec-
tion matching using a quasi-Newton algorithm to iteratively 
search for optimal translation parameters. On the other hand, 
cross-correlation is also used to align projection images 
iteratively paired with alternating reconstruction methods 
(Frank and McEwen 1992; Owen and Landis 1996; Gürsoy 
et al. 2017).

The second aspect in recovering the underlying sample 
apart from a suitable alignment of the projection images 
is the reconstruction procedure. There are a variety of 

reconstruction techniques that can generally be classified 
into analytical and algebraic methods. Filtered back-pro-
jection (FBP) is considered to be the standard analytical 
method for tomographic reconstruction, but the increase in 
computational power has led to a more frequent use of alge-
braic methods such as the algebraic reconstruction technique 
(ART) and the simultaneous iterative reconstruction tech-
nique (SIRT) (Gordon et al. 1970;  Sluis and Vorst  1990; 
Sorzano et al. 2017).

In this work, we propose a fiducial-less alignment and 
reconstruction algorithm (FLARA) for electron tomogra-
phy that jointly solves for the unknown reconstruction vol-
ume and the disruptive shift. The reconstruction is based 
on an iterative primal-dual algorithm, which enables an 
effective shift computation. In contrast to existing fiducial-
less approaches, the shift is refined by solving a linearized 
approximation in each iteration. The limited angle recon-
struction process is further improved using total variation 
regularization, a very common choice for regularization 
in imaging problems that was introduced already in 1992 
by Rudin et al. (1992). As a result, no fiducial markers 
are needed for alignment, thus saving material and labour 
costs.

The proposed algorithm FLARA is suitable for any lim-
ited angle problem accompanied by translatory shifts in 
the measurement data. We plan to use it in future research 
uncovering cellular interactions in pancreatic islets in clini-
cal and preclinical models of type 1 diabetes. Obtaining 3D 
reconstructions therefore provides the possibility of iden-
tifying first interactions between beta cells and immune 
cells, which initiates the autoimmune response leading to 
full destruction of beta cells, diminished insulin produc-
tion and onset of type 1 diabetes (Roep et al. 2021). This 
will give insight into the dynamic immune cell attack on 
beta cells, including the role and fate of the insulin-secre-
tory granules, and can thereby aid in the design of better 
approaches tailored to type 1 diabetes treatment. To set up 
and test the newly designed algorithm, tomograms from 
healthy pancreatic islets from C57BL/6J mice were used 
and compared with islets from non-obese diabetic mice 
(NOD/ShiLtJ), which are widely used in type 1 diabetic 
research (Mathews et al. 2015). The fact that no fiducial 
markers are needed while the alignment problem requires 
only computation of 2D translation vectors facilitates the 
algorithm’s application for larger amounts of NOD samples 
to visualize the immune system’s attack at different stages 
for several islets.
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This effect can be diminished to some extent by regular-
izing the ill-posed inverse problem, thus introducing prior 
knowledge of the sample of interest into the reconstruction 
problem. Here, we facilitate the well-studied total variation 
regularizer, which is a simple but effective regularizer that 
enforces sparsity in the gradients of the reconstruction. The 
reconstruction of the 3D volume u ∈ ℝ

zmn and the shift 
f ∈ ℝ

2×n� , which is two-dimensional per projection image, 
is cast as a joint minimization problem composed of a data 
fidelity and a regularization term

where ∇ ∶ ℝ
zmn

→ ℝ
3×zmn is the 3D finite difference oper-

ator. The warping operator W ∶ ℝ
n�mn × ℝ

2×n�
→ ℝ

n�mn 
t ranslates the projection images b ∈ ℝ

n�mn by 
shifts  f ∈ ℝ

2×n� . The mask M ∶ ℝ
n�mn

→ ℝ
n�mn is 

applied pixel-wise to exclude not reconstructed regions on 
the boundary of the projection images depending on the tilt 
angle, thus compensating for the fact that higher tilt angles 
imply a compression of the imaged structures within the pro-
jection images. The parameter � ∈ ℝ

+ controls the influence 
of the regularizer with respect to the data fidelity term. The 
ASTRA toolbox (Aarle et al. 2015) is used to model the for-
ward and backward projections A and A ∗ . In this model, the 
projection images are assumed to have an underlying transla-
tion, which is a global translation  f�i ∈ ℝ

2 per projection 
image b�i ∈ ℝ

mn , which shifts the projections in either of 
the two planar dimensions. This is a reasonable assump-
tion, since by virtue of the orthonormal projection only the 
projected 3D translation – a 2D translation in the projec-
tion plane – can be measured. Furthermore, the sample was 
exposed to electron radiation before acquiring the tilt series, 
a process which is often referred to as ‘baking’ (Pinali and 
Kitmitto 2014). This ensures sufficient stability during the 

(2)
min

u ∈ ℝ
zmn

,

f ∈ ℝ
2×n�

1

2
‖M(A u − W(b, f ))‖2

2
+ �‖∇u‖2,1,

Materials and methods

In the following section, the alignment and reconstruction 
problem and the proposed algorithm FLARA used to solve 
it are explained. In addition, the dataset and instrumentation 
are defined.

Joint alignment and reconstruction

Reconstruction problem

Reconstructing inverse problems is the process of recovering 
the underlying data that led to a given observation. A linear 
inverse problem is generally formulated as

where b is measured observations, the linear operator A 
models a forward operation, and u is the ground truth data 
that have to be recovered. In the available case of elec-
tron tomography, the dimensions z, m and n denote the 
size of the 3D object u ∈ ℝ

zmn that was imaged, where 
z represents the number of slices of size m × n , and n� 
represents the number of tilt angles used in the measure-
ment. Thus, the measured observation b ∈ ℝ

n�mn is the tilt 
series and the forward operator A ∶ ℝ

zmn
→ ℝ

n�mn mod-
els the projection operation arising from the discretized 
Radon transform. The corresponding adjoint operator is 
denoted by A ∗ . There are two issues that impede a direct 
reconstruction of Equation (1). Firstly, the unintended 
shift in the projection images significantly deteriorates 
the reconstruction and has to be corrected before or dur-
ing the reconstruction process. Moreover, the fact that A 
only covers a tilt angle span of up to ±60◦ leads to the 
aforementioned limited angle problem, which is ill-posed. 
A substantial amount of information in the Fourier domain 
is not captured, and reconstruction artefacts will originate 
from the missing wedge.

(1)A u = b,

Algorithm 1: Total variation regularized reconstruction and shift computation with a primal-dual algo-
rithm (FLARA).

Data: initial u0, p0, q0, f0, prealigned projection images b, number of iterations N , regularization
parameter λ, step sizes τ , σ1, σ2

Result: uN , fN

while i < N do
bfi = W(b, f i)
ui+1 = ūi − τ(∇∗pi +A∗(M qi))
ūi+1 = 2ui+1 − ui

pi+1 = proj‖·‖2,∞≤λ(pi + σ1∇ūi+1)
qi+1 = proxσ2

2 ‖q‖2
2
(qi + σ2 M(A ūi+1 − bfi))

f i+1 =
( ∑

m,n
D bfi MD∗ bfi

)−1( ∑
m,n

D bfi M(Aui+1 − bfi + 〈D bfi , f i〉)
)
;

end
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measurement process and prevents any beam damage and 
subsequent shearing processes.

In a pre-processing step, the projection images are aligned 
using cross-correlation between two successive projections 
starting from the 0 ◦ projection image. Each projection image 
is dilated with the cosine of its respective tilt angle (Dierksen 
et al. 1992) to compensate for compression of the object’s 
spatial dimensions at higher tilt angles, since the electron 
beam and detector position remain unchanged whilst the 
object is tilted. Since the remaining shifts in the projection 
images are small, it is justifiable to linearize W(b, f ) with a 
first-order Taylor expansion (Mastronarde 1981) such that

where bf i = W(b, f i) are the projection images shifted by 
an estimate of the shift  f i ∈ ℝ

2×n� . The central difference 
operator D ∶ ℝ

n�mn
→ ℝ

2×n�mn is used to obtain the cur-
rently shifted projection images’ spatial gradients D bf i . It is 
crucial to use a finite difference operator based on central 
differences to ensure that the resulting pixel grid positions 
match the position of the shift vector. Inserting the linearized 
warping operator from Equation (3) into the joint alignment 
and reconstruction problem in Equation (2) yields the fol-
lowing minimization problem

which can be solved iteratively for i ∈ {1, ...,N} iterations.
Note that the minimization with respect to f and u can 

be split into two separate sub-problems defined in the next 
sections, where one variable is held constant while solving 
for the other in an alternating manner.

Shift sub‑problem

The first sub-problem targets the computation of the 
unknown shift f and is obtained by considering only the data 
fidelity term in Equation (4) since the regularization term 
does not contain the shift. It reads as

where the previously estimated shift is denoted by  f i . Recall 
that bf i = W(b, f i) denotes the translated projection images. 
The first-order optimality condition �g

�f

!
=0 can be used to 

solve for the optimal shift f given the reconstruction u. The 
expression to compute the new shift estimate  f i+1 then reads 
as

(3)W(b, f ) ≈ bf i + ⟨D bf i , f − f i⟩,

(4)

min

u ∈ ℝ
zmn

,

f ∈ ℝ
2×n�

1

2
‖M(A u − W(b, f i) − ⟨D W(b, f i), f − f i⟩)‖2

2
+

�‖∇u‖2,1,

(5)min
f∈ℝ

2×n�

�
g(f ) ∶=

1

2
‖M(A u − bf i − ⟨D bf i , f − f i⟩)‖2

2

�
,

Note that this is computationally inexpensive, as it requires 
one only to invert a 2 × 2 matrix for each projection angle.

Reconstruction sub‑problem

The second sub-problem emerging from the joint minimiza-
tion problem solves for u. By warping the projection images 
with the shift estimate  f i , Equation (2) simplifies to

To apply an effective optimization procedure, we first trans-
form this minimization problem into a saddle-point prob-
lem by dualizing both the data fidelity and regularization 
term using the Legendre–Fenchel transform. This yields 
the following sub-problem in u and the two dual variables 
p ∈ ℝ

3×zmn and q ∈ ℝ
n�mn

where �‖⋅‖2,∞≤� denotes the indicator function of the 
ball ‖ ⋅ ‖2,∞ ≤ � . This saddle-point problem is solved using 
a primal-dual algorithm (Chambolle and Pock 2011) with 
diagonal preconditioning (Pock and Chambolle 2011) to 
reconstruct u.

Optimizing solely Equation 8 would not provide a reliable 
reconstruction u; therefore, exactly one primal-dual iteration 
is performed before recomputing the shift f. Solving jointly 
for both sub-problems in f and u is summarized in detail in 
algorithm 1. In each iteration, the mismatched projection 
images b are translated by the current shift f i . This is fol-
lowed by the primal-dual updates for ui+1 , pi+1 and qi+1 . The 
update steps for the dual variables are followed by implicit 
steps arising from the proximal maps. Note that the defini-
tion of a proximal mapping for a function h with step size 
� ∈ ℝ

+ (Beck 2017) reads as

which is a projection operator for the indicator function. 
The proximal maps for both the data term and the indicator 
function are shown in more detail in the Appendix. Finally, 
the shift f i+1 is computed from the new reconstruction ui+1 . 
These steps are carried out for N iterations.

(6)

f i+1 =

��

m,n

D bf i M D∗bf i

�−1

��

m,n

D bf i M
�
A ui+1 − bf i + ⟨D bf i , f

i⟩
��

.

(7)min
u∈ℝ

zmn

1

2
‖M(A u − bf i)‖22 + �‖∇u‖2,1.

(8)

min
u∈ℝ

zmn
max

p ∈ ℝ
3×zmn

,

q ∈ ℝ
n�mn

�
⟨M(A u − bf i), q⟩ −

1

2
‖q‖2

2
+

⟨∇u, p⟩ − �‖⋅‖2,∞≤�(p)
�
,

(9)prox �h(x) = argmin
u

1

2
‖u − x‖2 + �h(u),
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Datasets

Synthetic data

With inverse problems in imaging applications and bio-
logical settings, it is often hard to evaluate an algorithm 
owing to the lack of ground truth data. Therefore, we apply 
FLARA in a first step to a synthetic 3D phantom to vali-
date the shift computation and whether it is in accordance 
with the reconstruction. The phantom is inspired by the 
well-known Shepp–Logan phantom (Rudin et al. 1974) and 
thus consists of a few basic geometric shapes such as cubes, 
cuboids, spheres and ellipsoids that are assembled randomly 
in a volume of size 512 × 512 × 512 pixels. To simulate a 
realistic measurement scenario in electron tomography, the 
projection data were generated only for a limited tilt angle 
series covering �i ∈ {−60◦,−59◦,… , 60◦} . Artificial shifts 
fi were drawn from a standard normal distribution and were 
then induced in both horizontal and vertical directions on 
each projection image. Applying algorithm 1 results in a 
reconstructed volume and a computed two-dimensional 
shift for each projection image, where an actual ground 
truth exists for this setting. Further, we want to compare 
the reconstruction quality and, in particular, the shift com-
putation to a different joint approach. Therefore, the joint 
iterative reconstruction and re-projection method proposed 
by Gürsoy et al. (2017) is used, where the authors alternate 
between shift correction based on cross-correlation and 
reconstruction in an iterative scheme. A major motivation 
to use this method to compare our approach against is the 
fact that it also assumes two underlying shift components in 
the projection images, whereas other works model the shift 
within the object. Furthermore, a huge advantage is its avail-
ability in the open-source project TomoPy (Gürsoy et al. 
2014). Moreover, a comparison with IMOD (Jayasimhan 
et al. 1996) is also included, which is obtained from using 
the SIRT algorithm after pre-aligning the projection images 
using cross-correlation.

C57BL/6J and NOD mice

The algorithm was then qualitatively tested on samples 
containing pancreatic islets of a healthy female C57BL/6J 
mouse and a female NOD mouse. The healthy mouse was 
sacrificed at 15 weeks with a blood glucose value of 119 mg/
dl, and the NOD mouse was sacrificed at 35 weeks with a 
blood glucose value of 123 mg/dl. Pancreatic tissue con-
taining endocrine and exocrine pancreas was embedded for 
further electron microscopical investigations. The endocrine 
pancreas consists of islets comprising alpha cells, beta cells 
and delta cells.

Electron microscopy

Pancreatic tissue was fixed in 2.5% (wt/vol) glutaraldehyde 
and 2% (wt/vol) paraformaldehyde in 0.1 M cacodylate 
buffer, pH 7.4, for 2 h, post-fixed in 1% (wt/vol) osmium 
tetroxide for 2 h at room temperature (RT). After dehydra-
tion (dehydrated in graded series of ethanol), tissues were 
infiltrated (ethanol and TAAB epoxy resin, pure TAAB 
epoxy resin) and placed in TAAB epoxy resin (8 h), trans-
ferred into embedding moulds, and polymerized (48 h, 60 ◦ 
C). Ultrathin sections (70 nm and, for electron tomogra-
phy, 300 nm) were cut with a UC 7 Ultramicrotome (Leica 
Microsystems, Vienna, Austria) and stained with lead citrate 
for 5 min and platinum blue (Inaga et al. 2007) for 15 min.

Electron micrographs and electron tomograms of islets 
were taken using a Tecnai G2 transmission electron micro-
scope (FEI, Eindhoven, Netherlands) with a Gatan ultras-
can 1000 charge coupled device (CCD) camera (-20 ◦ C, 
acquisition software Digital Micrograph, Gatan, Munich, 
Germany). Acceleration voltage was 200 kV for electron 
tomography on 300-nm-thick sections. Electron tomograms 
were generated by the use of the SERIAL EM programme 
(Mastronarde 2003), and the measured tilt angles covered a 
span of ±60◦ with tilt angle increments of 1 ◦ resulting in 121 
projection images with a magnification of 3, 500×.

Scanning transmission electron microscopy (STEM) 
imaging mode of a field emission scanning electron micro-
scope (ZEISS FE-SEM Sigma 500) with an acceleration 
voltage of 15 kV in combination with ATLAS TM was used 
to perform imaging on large areas of beta cells with high-
resolution AZoNano (2021). This provides an overview of a 
more extensive area to better localize sections imaged with 
electron microscopy and tomography within the pancreas. 
Furthermore, reversing the procedure by first obtaining an 
overview of the entire section followed by subsequent elec-
tron tomography of a selected area of interest will be inte-
grated into our future workflow in the context of correlative 
electron microscopy.

Results and discussion

Before presenting reconstruction results obtained for pan-
creatic healthy C57BL/6J and NOD samples, we want to 
test our algorithm on a synthetic dataset. This allows us to 
validate the shift computation against known induced shifts 
in projections of a generated phantom, which is not possible 
in real-world applications.

Evaluation on synthetic data

The resulting reconstruction and shift computation for the 
synthetically generated phantom is depicted in Fig. 1. The top 
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row shows the ground truth (a), the reconstructions obtained 
from IMOD’s SIRT algorithm (b), the joint iterative alignment 
method based on cross-correlation by Gürsoy et al. (2017) (c) 
and FLARA (d). The peak signal-to-noise ratio (PSNR) val-
ues of the reconstructed volumes are 21.24 dB, 24.87 dB and 
29.2 dB, respectively – note that using clean projection data in 
the same reconstruction procedure without shift computation 
only marginally increases the PSNR to 29.41 dB. We notice 
a clearly improved reconstruction quality with respect to both 
the SIRT reconstruction and the joint reconstruction (Gür-
soy et al. 2017) in terms of PSNR. This is confirmed by the 
enhanced visual quality exhibited in sharper edges and con-
tours. This difference highlights the importance of carefully 
selecting a correction scheme for shifted projection images. 
Shift correction based on the linearization scheme delivers 
improved results compared with a cross-correlation scheme, 
which can be explained by the fact that our method obtains 

global information from all projection images. The bottom 
row shows for both shift components the true shift for each 
projection angle �i , accompanied by the absolute error of the 
computed with respect to the true shift for each projection 
angle for all three methods, recalling that shifts are computed 
with IMOD’s alignment protocol, the joint algorithm from 
Gürsoy et al. (2017) (termed ‘TomoPy’ in this work for con-
venience only), and with FLARA. The mean squared error 
(MSE), mean absolute error (MAE) and maximum occur-
ring absolute error (max. AE) for both shift components are 
denoted in Table 1. The quantitative values remarkably imply 
that the remaining error from our proposed algorithm FLARA 
is at a sub-pixel level, even though it cannot be eliminated 
completely, while also showing that FLARA delivers better 
quantitative results. The mean and maximum absolute error in 
the shift components from IMOD and the TomoPy algorithm 
is also at a sub-pixel level for component f1 ; however, for f0 

Fig. 1  Reconstruction and shift computation for a synthetic phantom 
(best viewed on screen). The top row shows the ground truth (a) and 
the reconstructions with IMOD’s SIRT algorithm with a PSNR of 
21.24 dB (b), the toolbox TomoPy with a PSNR of 24.87 dB (c) and 
FLARA with a PSNR of 29.2 dB (d). For all reconstructed volumes, 

central virtual slices of each orthogonal direction are shown. The bot-
tom row shows true shifts for both horizontal ( f0 ) and vertical ( f1 ) 
shift components, together with the respective absolute differences 
for all three methods (e)
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a substantial deviation from the true shift can be observed. In 
general, remaining shift errors are due to the fact that the shift 
computation depends on the current reconstruction, which 
naturally deviates slightly from the ground truth phantom 
owing to the limited angle setting. Further, due to the fact that 
the alignment procedure cannot be used to recover the abso-
lute ground truth position of the phantom in 3D, the difference 
in the horizontal component f0 of the computed shift depends 
on the tilt angle, whereas the vertical component f1 will con-
tain only a minor constant offset. This effect has also been 
described in literature (Dengler 1989; Gürsoy et al. 2017).

The reconstruction obtained with FLARA still contains 
some artefacts, which is a well-known issue in limited-angle 
tomography. In this scenario, only 121 projections cover-
ing angles of ±60◦ are acquired instead of 181 projections 
covering all angles of ±90◦ , which would be required to 
generate an artefact-free reconstruction. However, the qual-
ity of the reconstruction is reasonably good, as indicated 
by the reported PSNR value, which is in accordance with 
other well-established iterative reconstruction algorithms 
(Goris et al. 2013; Chen et al. 2013). Improving the limited 
angle problem is a different research question in itself, and 
there are numerous works that tackle this (Bubba et al. 2019; 
Würfl et al. 2018; Gu and Ye 2017). However, the purpose of 
this work is to demonstrate the shift computation in a joint 
manner with the reconstruction. The method of comput-
ing the shift can naturally be included in any other iterative 
reconstruction framework.

Application to C57BL/6J and NOD mice

The algorithm was then applied to real-world electron 
tomography data to obtain qualitative results on acquired 
tilt series. Virtual sections of tomographic reconstructions 
of 300-nm-thick sections from healthy C57BL/6J and NOD 
mice are shown in Fig. 2, left and right, respectively. For 
both reconstructions, virtual slices through each of the three 
orthogonal directions are shown, where selected visualized 
virtual slices are indicated by the red lines in plane. The 
choice of depicted virtual slices is arbitrary, ensuring only 
that the profile of beta cell granules is visible to indicate the 
quality of the reconstruction throughout the entire volume. 

Moreover, a qualitative comparison of the reconstructed 
pancreatic NOD sample using IMOD’s SIRT algorithm fol-
lowing fiducial-less alignment prior to reconstruction and 
FLARA is shown in Fig. 3. In both reconstructions, all ultra-
structural details, especially the immune cells’ interaction 
with the insulin-secretory granules in the beta cell, can be 
clearly seen. However, it is noteworthy that the IMOD recon-
struction contains some artefact-prone structures visible in 
the orthogonal view that are most likely originating from the 
alignment procedure.

In the second row of Fig.  2, the central virtual slice 
of each reconstruction is visualized with an emphasis on 
important key components of beta cells such as blood ves-
sels (coloured in yellow), insulin-secretory granules (g), 
immature granules (ig), mitochondria (m) and endoplas-
mic reticulum (er). The reconstructed sample of the healthy 
C57BL/6J mouse contains insulin-secretory granules and 
also depicts a blood vessel (coloured in yellow) but does not 
contain any immune cells. This reflects the general state of 
healthy C57BL/6J beta cells. 

As highlighted in red in Fig. 2, the beta cell of the NOD 
mouse is invaded by an immune cell that reaches the beta cells 
via blood vessels (Zinselmeyer et al. 2018). This is a good 
indicator for the active process in the development of type 1 
diabetes, where cytotoxic immune cells attack beta cells in the 
pancreas. This leads to beta cell stress followed by apoptosis 
and inhibition of insulin secretion (Jayasimhan et al. 2014). 
Even though the direct causes of this autoimmune attack are 
still unknown, the phenotypical characterization obtained by 
electron tomography can be used to gain more insight into 
this process. It is worth mentioning that the NOD mouse is 
pre-diabetic and thus has normoglycemic blood glucose. This 
is due to the fact that it is generally difficult to find remain-
ing islets within diabetic mice; for this reason, we resorted to 
investigating islets of a pre-diabetic mouse, which can already 
exhibit the active stage of type 1 diabetes development.

Interestingly, an internalization of an insulin-secretory 
granule into the cytoplasm of the immune cell and a further 
interaction with two granules can be observed visually when 
looking at different virtual slices of the reconstructed volume 
of the NOD mouse in Fig. 4. An enlarged view of the area of 
interest is also included. Although the exact boundaries of 

Table 1  Comparison of the joint algorithm by Gürsoy et al. (2017) (TomoPy), IMOD’s alignment protocol and FLARA regarding shift compu-
tation

Mean squared error (MSE) and standard deviation (std.) as well as mean absolute error (MAE) and maximum absolute error (max. AE) for both 
shift components with respect to the true shift are denoted for all methods. Units for absolute errors are in pixels

MSE ± std. for f0 MSE ± std. for f1 MAE ± std. for f0 MAE ± std. for f1 max. AE for f0 max. AE for f1

Tomopy (Gürsoy et al. 2017) 0.8324 ± 0.3576 0.0125 ± 0.012 0.913 ± 0.2228 0.1117 ± 0.0554 1.3182 0.229
IMOD (Kremer et al. 1996) 0.0018 ± 0.0677 0.0372 ± 2.5446 0.16 ± 0.1305 0.3399 ± 0.0449 0.6388 0.45
FLARA 0.0003 ± 0.0006 0.00198 ± 0.00099 0.0188 ± 0.0126 0.0445 ± 0.011 0.055 0.062
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Fig. 2  Virtual slices of tomographic reconstructions of 300-nm-
thick sections of healthy C57BL/6J (top left) and pre-diabetic NOD 
(top right) pancreata. For both reconstructions, virtual slices through 
each orthogonal direction are shown, as indicated by the in-plane red 
lines. The presence of an immune cell that attacks the beta cells can 
be clearly seen within the NOD islet, which leads to inhibited insu-
lin production. The bottom row shows the central virtual slice with 
overlaid components of interest, where the presence of a vessel is 

highlighted in yellow, and the red colour denotes an invading immune 
cell. Lowercase letters ‘g’, ‘ig’, ‘m’ and ‘er’ are labels for granules, 
immature granules, mitochondria and endoplasmic reticulum, all of 
which are organelles found within the cytoplasm. The insulin-secre-
tory granules are particularly interesting in this analysis as they are 
the insulin-containing units of the beta cells, while immature granules 
contain proinsulin, a precursor of insulin. Scale bar is 2 μm

Fig. 3  Virtual slices of 300 nm 
reconstructions of pre-diabetic 
NOD pancreata using FLARA 
(a) and IMOD’s SIRT recon-
struction following fiducial-less 
alignment based on cross-cor-
relation prior to reconstruction 
(b). For both reconstructions, 
the same virtual slices through 
each orthogonal direction are 
shown, as indicated by the in-
plane red lines. Scale bar is 2 μm
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the immune cell, especially in the lower part of the recon-
struction, cannot be fully delineated, it is highly probable to 
assume that the process of internalization has been captured. 
The invading immune cell certainly has ingested the upper 
granule, and there seems to be a close interaction with the 
two granules beneath. This is presumably a key step in per-
petuating the autoimmune attack on the beta cell and will 
continue to maintain the ongoing autoimmune process. Note 
that reconstructing 300-nm-thick samples allows for more 
information along the third dimension, which makes such a 
visual analysis of the interaction between immune cell and 
beta cell more informative. The three virtual slices are cho-
sen from the entire volume such that they are not adjacent 
to contain more information of the ingestion and interaction 
of the immune cell with the insulin-secretory granules. An 
additional visualization of the described process is shown 
in Fig. 5, where the internalization processes of the insu-
lin-secretory granules into the cytotoxic immune cell that 
already occurred and that are currently ongoing are high-
lighted in different colours. Owing to damage inflicted on 
the NOD sample while inserting it into the microscope grid, 
it was not possible to fully exploit the benefit of the STEM 
technology in this case. Therefore, we resorted to investi-
gating an adjacent section with STEM. Nevertheless, this 

allows for a more profound analysis by locating the beta cell 
and the immune cell within the islet, whereby more informa-
tion can be found in the supplementary material.

Discussion and outlook

In this paper, we present FLARA, a fiducial-less alignment 
and reconstruction algorithm for electron tomography, and 
in parallel present a phenotypical characterization of the 
pathophysiologic processes of type 1 diabetes, a life-threat-
ening disease. To the best of our knowledge, this is the first 
time that the internalization of beta cell secretory granules 
in the immune cell’s cytoplasm has been directly visualized, 
a process that will most likely ignite further autoimmune 
processes.

FLARA offers some major advantages over standard 
reconstruction following alignment based on fiducial mark-
ers. First and foremost, it enables fiducial-less alignment 
and thus alleviates the need to label the sample with fiducial 
markers in a pre-processing step. Even though an alignment 
prior to reconstruction based on fiducial markers deliv-
ers precise reconstruction results and is considered to be 
the gold standard, we argue that it is always desirable to 
omit a pre-processing step if comparable results can still 

Fig. 4  Depiction of three distinct virtual slices of the reconstructed 
volume of the NOD beta cell with an enlarged view of the selected 
area of interest for each slice. For the lower two granules shown in 
the zoomed area, we assume some form of contact or interaction 
with the immune system, but the granules have probably not been 

ingested. However, the black circular structure above is strongly sus-
pected to be an enclosed granule internalized within the cytoplasm of 
the immune cell, as hinted by the enlarged view, especially in virtual 
slice 12. Scale bar is 2 μm
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be achieved, because it saves time and material resources. 
Moreover, the computed shift is expected to get more accu-
rate in subsequent iterations as the reconstruction improves, 
which in turn leads to an enhanced alignment accuracy. 
For the conventional procedure of first aligning projection 
images followed by reconstruction, the possibility of further 
refinement or corrections to the initial alignment does not 
exist once the reconstruction has started. Additionally, it is 
worth mentioning that our method of computing the shift is a 
global alignment technique, as each shift component is influ-
enced by all projection images and their spatial finite differ-
ences. This is also beneficial compared with other fiducial-
less reconstruction techniques based on cross-correlation 
where successive images are aligned only to each other and 
possible alignment errors can accumulate. Finally, it is note-
worthy that the shift is not estimated in an iterative update 
scheme, but is re-computed in each iteration based on the 
current reconstruction and the linearized warping operator. 
Successive iterations thus involve a re-computation of the 
shift based on the updated reconstructed volume instead of a 
gradient-based update. The proposed algorithm FLARA can 
naturally be used for any reconstruction task that involves 
joint alignment and reconstruction of projection images. In 
this work, it was used to visualize the interaction between 
immune cells and beta cells in the pancreas in NOD mice; 
however, it is also equivalently well suited to investigate 
any other cell-to-cell or cell-to-tissue interaction. To high-
light the versatility and generality of our algorithm, there are 
numerous further possible applications such as visualizing 
the interaction between macrophages and endothelial cells 
or the plaque formation in arteriosclerosis, to mention but 
a few.

The browser link for the STEM atlas of an adjacent slice 
of the demonstrated NOD sample and the accompanying 
source code is available online1. The implementation of 
FLARA embeds ASTRA’s projection operators (Aarle et al. 
2015) into a PyTorch (Paszke et al. 2019) framework, and it 
provides modularity and flexibility compared with existing 
reconstruction programmes. The source code can be variably 
extended to contain further quantification and direct post-pro-
cessing routines that may tackle other research questions such 
as machine-learning tasks on the granules in the beta cells.

As a future direction, we plan to use FLARA to analyse 
the interaction between the immune cells and beta cells 
within the pancreas in NOD mice in more detail. It is of 
particular interest to investigate whether there are differences 
in this destructive interaction amongst different stages of 
type 1 diabetes, where the pathology and the mechanisms 
that trigger autoimmune attacks are not yet understood in 
detail. Combined with the established STEM workflow, we 
plan to set up a routine allowing for a detailed analysis of 
the temporal evolution of pancreatic islets in NOD mice.

Appendix

Proximal maps for the dualized data term 
and regularizer

To derive a closed-form expression of the proximal opera-
tors for the dualized data term and regularizer, we first recall 

Fig. 5  Different views on a 3D visualization of the internalization of 
insulin-secretory granules (blue) in the cytotoxic immune cell (red) 
showing the ongoing and already occurred uptake of the granules 

into the cytoplasm. The presence of the vessel near the immune cell 
within the beta cell is highlighted in yellow

1 Source code and browser link for STEM atlas: https://
github.com/leabogensperger/tem-reco
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the definition of proximal map for a function h which reads 
as

where � ∈ ℝ
+ denotes the step size. For the data term, 

the function h is the squared �2 norm of the dualized 
least squares data fidelity norm. The proximal map for 
h(q) =

1

2
‖q‖2

2
 is thus computed by

For the dualized regularizing function, the proximal map is 
computed for the indicator function and reads as

where |p| denotes the pixel-wise �2 norm over the three finite 
difference components.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00418- 022- 02095-z.
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