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ex vivo muscle tissue. Consistent with our previous results, 
hyperspectral CarS microscopy showed an increase in 
lDs in tissues where lD proteins were overexpressed, and 
further chemometric analysis showed additional features 
morphologically (and chemically) similar to mitochondria 
that colocalized with lDs. CarS imaging is shown to be 
a very useful method for label-free stratification of ectopic 
fat deposition and cellular organelles in fresh tissue sec-
tions with virtually no sample preparation.

Keywords lipid droplet · Microscopy · Chemical 
imaging · raman spectroscopy · Multivariate analysis · 
Hyperspectral

Introduction

Obesity is one of the major health risks in Western coun-
tries, with an increasing prevalence above 1.4 billion adults 

Abstract The accumulation of lipids in non-adipose tis-
sues is attracting increasing attention due to its correlation 
with obesity. In muscle tissue, ectopic deposition of specific 
lipids is further correlated with pathogenic development of 
insulin resistance and type 2 diabetes. Most intramyocel-
lular lipids are organized into lipid droplets (lDs), which 
are metabolically active organelles. In order to better 
understand the putative role of lDs in pathogenesis, insight 
into both the location of lDs and nearby chemistry of mus-
cle tissue is very useful. Here, we demonstrate the use of 
label-free coherent anti-Stokes raman scattering (CarS) 
microscopy in combination with multivariate, chemomet-
ric analysis to visualize intracellular lipid accumulations in 
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worldwide (World Health Organisation). One associated path-
ologic outcome of chronic obesity is insulin resistance, which 
is a first step in the development of type 2 diabetes. While the 
exact cause of insulin resistance is unclear, fat accumulation 
in non-adipose tissues (ectopic fat storage) is likely to play 
a role (lee et al. 2009). ectopically stored lipids in tissues 
such as liver and skeletal muscle are predominantly packed 
in discrete lipid droplets (lDs). Skeletal muscle lDs contain 
so-called intramyocellular lipids (IMCl), and elevated IMCl 
has been correlated with reduced insulin sensitivity in pre-
vious in vivo and in vitro investigations (aguer et al. 2010; 
goodpaster et al. 2000). This correlation potentially links 
ectopic fat deposition in skeletal muscle with the onset of 
insulin resistance and the transition to type 2 diabetes.

Intramyocellular lipids in lDs comprise esterified fats, 
cholesterol, and other lipid species, many of which are 
derivatives of fatty acids (Fas) with varying chain length 
and level of saturation. The specific lipid composition of 
intramuscular lDs has been shown to profoundly affect 
their pathological potential. While elevated levels of intra-
muscular triacylglycerides (Tags) do not necessarily lead 
to insulin resistance (goodpaster et al. 2001), accumulation 
of specific lipids such as sphingolipids, especially cera-
mides, has repeatedly been linked to insulin resistance in 
muscle (Chavez et al. 2003; Stratford et al. 2004). Moreo-
ver, it has been speculated that the subcellular spatial distri-
bution and interorganelle interaction of lDs play a role in 
the insulin-desensitizing effect (nielsen et al. 2010; Shaw 
et al. 2008; Sollner 2007). To better understand the link 
between ectopic lipid accumulation and insulin desensitiza-
tion, detailed information on the composition, biochemis-
try, and cellular localization of lDs is highly desirable.

Classically, evaluation of lipid species in tissues involves 
extraction and subsequent gas chromatography to quan-
titatively determine the amount of each individual chemi-
cal compound present in a sample (Seppanen-laakso 
et al. 2002); regrettably, loss of all spatial information 
is inevitable in this type of analysis. More recently, mass 
spectroscopic imaging methods such as matrix-assisted 
laser desorption ionization–imaging mass spectrometry 
(MalDI-IMS) and time-of-flight secondary ion mass 
spectrometry (ToF–SIMS) have emerged as attractive com-
promises between spatial localization and chemical speci-
ficity. MalDI-IMS permits detection with high sensitivi-
ties (femto- to attomolar) in a local region of the sample 
(~3–10 μm voxel size) for a large range of masses (from 
~100 Da to ~300 kDa). However, achieving such high 
resolution requires careful matrix embedding and sample 
preparation, which may affect tissue structure and locali-
zation of biomolecules. Furthermore, the spatial resolution 
is insufficient to interrogate individual myocellular lDs 
(0.05–3 μm diameter) at this time (rompp and Spengler 
2013). On the contrary, ToF–SIMS that uses a high-power 

ion beam is focused in the sample causing ejection of 
atoms and molecular fragment as well as secondary ions, 
the latter being then resolved in a ToF analyzer. given 
that a focused ion beam is used for ionization, the spatial 
resolution on the 100-nm scale is theoretically available in 
SIMS; however, practical limitations have limited the spa-
tial resolution to ~1 μm for biological samples. Similar to 
MalDI-IMS, ToF–SIMS has enormous power for molecu-
lar identification of relatively low molecular weight species 
(up 10 kDa) but is destructive and requires sample prepa-
ration that is not trivial for maintaining the sample integ-
rity (Boxer et al. 2009; Fletcher and Vickerman 2013). The 
probing depth for secondary ion detection is 1–2 nm below 
the surface, which makes applications to standard (clinical) 
histological samples more challenging due to the relatively 
thick (micron) slices.

Studies focused on lD localization, tissue composi-
tion, and interorganelle interaction within fresh tissues 
are scarce as suitable techniques capable of simultane-
ously addressing these parameters are not prevalent. While 
immunohistochemistry (IHC) approaches provide useful 
information on interorganelle interaction between lDs, lD 
spatial distribution, and lD size, this requires specific labe-
ling of the distinct components. Fluorescent IHC typically 
supports up to three or four probes to be imaged simulta-
neously, ultimately limited by the probe emission spectra 
and microscopy instrumentation. a few approaches exist 
for localization of bulk protein and lipid staining for tissue 
stratification. For lipid imaging, fluorescent and chromo-
phore probes can provide localization information about 
the presence or absence of lipids in the sample; however, 
visualization of all lipid species in a sample is heavily 
dependent on sample preparation. Unfortunately, simi-
lar holistic imaging of all proteins in either tissue or cell 
samples is quite challenging with IHC approaches. While 
IHC provides very useful information for specific macro-
molecular and organelle distribution, localization of whole 
molecular classes (e.g., all proteins, Dna, and lipids) and 
their organization relative organelles is not trivial.

Thus, to further elucidate the role of intramyocellular 
lDs in the development of insulin resistance and type 2 
diabetes, a method is required that combines quantitative 
spatial information about lD size and content at submi-
cron resolution, local chemical composition of the sam-
ple, and the ability to examine interorganelle interaction. 
Such requirements are potentially fulfilled by microscopy 
techniques based on vibrational (chemical) contrast. These 
approaches use the intrinsic vibrations of molecules for 
contrast and allow generation of chemically specific images 
with diffraction-limited optical resolution (Puppels et al. 
1990). Spontaneous raman microscopy is a well-estab-
lished vibrational (hyperspectral) microscopy technique—
similar to imaging mass spectrometry—and has been 
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extensively used to study the local chemical composition 
of lDs in cultured cells (Matthaus et al. 2012; Vaandrager 
et al. 2009). However, the application of hyperspectral 
raman microscopy to study fresh tissue sections has been 
limited by two principle challenges: (1) the large autofluo-
rescence response of tissues (Wang et al. 2012) and (2) the 
limited penetration depth of the visible excitation wave-
lengths (Centonze and White 1998).

Coherent anti-Stokes raman Scattering (CarS) micros-
copy overcomes these limitations and has been shown to 
produce chemically specific images of lD composition 
in cultured cells (Day et al. 2010). CarS is a multipho-
ton analog of spontaneous raman scattering in which 
anti-Stokes (blue-shifted) light is generated by interaction 
between a pump, Stokes, and probe photon within the sam-
ple (Fig. 1a). If the energy difference between the pump 
and Stokes photons is resonant with a vibrational mode in 
the sample, the anti-Stokes light is resonantly enhanced and 
can be 6 orders of magnitude stronger than spontaneous 
raman scattering (Tolles et al. 1977). Because the detected 
light is blue-shifted, contamination from autofluorescence 
is minimized in CarS. Furthermore, most implementa-
tions use near-Ir excitation, which can penetrate several 
100 s of microns due to minimal absorption and scatter-
ing relative to visible wavelengths often used in raman 
microscopy (Helmchen and Denk 2005; Centonze and 
White 1998; Weigert et al. 2010).

While hyperspectral CarS microscopy potentially 
alleviates many data acquisition challenges incurred with 

hyperspectral raman microscopy, the beneficial qualities 
of CarS come with data interpretation ambiguity. Until 
recently, it was impossible to use CarS data quantitatively. 
We and others have developed mathematical algorithms 
(liu et al. 2009; Vartiainen et al. 2006) to render CarS 
spectra similar to spontaneous raman spectra, whose sig-
nals scale linearly with signal intensity. With quantita-
tive CarS spectra, it is possible to construct images from 
individual vibrational modes, analogous to imaging mass 
spectrometry. In addition, multivariate (chemometric) ana-
lytical methods, which are well developed for hyperspectral 
raman (van Manen et al. 2005; Matthaus et al. 2007) and 
mass spectrometry imaging, are also applicable to quantita-
tive hyperspectral CarS data (Pohling et al. 2011a, b).

In the present study, we take advantage of the applica-
tion of hyperspectral CarS microscopy and chemometric 
analysis to image the chemical composition of myocellular 
fibers and localize intracellular lDs in excised muscle tis-
sue. We study lDs and composition in tissue sections from 
a model system where myocellular lD formation was pro-
moted by a nutritional and genetic intervention (via perilipin 
5, PlIn5, overexpression) (Bosma et al. 2012). We find 
that hyperspectral CarS microscopy data from biochemi-
cally complex tissue sections can be reliably analyzed with 
both direct integration of vibrational peaks and unsuper-
vised chemometric analysis. Both analyses produced simi-
lar results for lD localization showing greater abundance 
of lDs in PlIn5-overexpressing fibers. These findings 
match with data obtained in the same muscles via classical 
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Fig. 1  a energy diagram of coherent anti-Stokes raman scatter-
ing (CarS). Three photons (ωpump, ωStokes, and ωprobe.) interact 
with the sample to produce a fourth CarS photon (ωCarS). When 
ωpump − ωStokes = evib, the process is resonantly enhanced, thereby 
giving a strong signal corresponding to vibrational modes in the sam-
ple, similar to raman scattering. b Simplified optical schematic of the 
hyperspectral CarS microscope. The pump and probe photons are 
from the same laser, λ = 1,064 nm, and the Stokes laser spans from 

λ = 1,100−1,600 nm after being spectrally filtered (lPF). These 
beams are combined by a dichroic mirror (DM) and then focused by 
the excitation objective (exc obj, 100X, 0.75 na) into the sample. 
The CarS light is collected by the collection objective (Col obj, 
10X, 0.25 na), filtered (nF/SPF) from the pump and Stokes lasers, 
and detected by the monochromator and CCD. The sample is then 
moved in the x, y, z, or directions to the next position, and another 
spectrum is collected. The insets show a raw CarS spectrum
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morphometry using transmission electron microscopy and 
immunofluorescence (Bosma et al. 2012). Furthermore, we 
show that chemometric analysis of the hyperspectral CarS 
data revealed additional mitochondrial-like features in over-
expressing fibers that were invisible with direct peak inte-
gration. Together, these data show the combined spatial and 
chemical specificity of hyperspectral CarS microscopy for 
label-free, biochemical imaging of tissue samples.

Materials and methods

experimental model system

In the present study, we took advantage of a rat model of 
augmented lD content. In this particular model, unilateral 
gene electroporation of a gene involved in lD maintenance 
(PlIn5) was applied. Briefly, 8-week-old male Wistar rats 
were fed a high-fat diet (45 % energy from fat, D01060502, 
research Diets) for the duration of the 3-week intervention. 
Two weeks after the start of the diet, overexpression of 
PlIn5 in either the right or left tibialis anterior (Ta) mus-
cle of the rat was accomplished by an in vivo Dna elec-
trotransfer technique to obtain overexpression of mouse 
PlIn5 in one leg (Bosma et al. 2012); the unsuccessfully 
transfected fibers in the same Ta muscle slice served as an 
internal control in this study. rats were killed 8 days post-
electroporation. Ta muscles were excised and rapidly fro-
zen in melting isopentane. The animal Care and Use Com-
mittee of Maastricht University approved the experiments 
(approval number 2010-036), and the study complied with 
the principles of laboratory animal care.

Tissue excision and immunofluorescence

Frozen Ta muscles were transferred to a cryostat and cut 
transversally into serial sections (5 and 20 μm). after 
mounting on uncoated glass slides, sections were allowed 
to dry for 30 min at room temperature and then stored at 
−20 °C until imaging. Consecutive sections were cut 
from each sample of muscle tissue. a 20-μm section and 
adjacent 5-μm section were used for CarS measure-
ments. a second 5-μm section was used for immunofluo-
rescence. The sections used for CarS were imaged in air 
directly after warming to room temperature without further 
processing.

The 5-μm section used for immunofluorescence was 
stained for lipid droplets, nuclei, and sarcolemmal cell 
borders. all staining procedures were carried out at room 
temperature. Sections were fixed for 1 h (4 % PFa in PBS, 
pH 7.4) and washed three times for 5 min in PBS. The sec-
tions were then incubated with primary antibody against 
laminin (l9393, Sigma-aldrich) diluted 1:80 in abDil 

buffer (150 mM naCl, 20 mM Tris, and 2 % BSa, pH 7.4) 
for 1 h in a humidified chamber. after washing three times 
with PBS, sections were incubated with an alexa Fluor 594 
secondary antibody (a-11037, Invitrogen) diluted 1:200, 
1 μg/ml Bodipy 493/503 (D-3922, Invitrogen), and DaPI 
diluted 1:1,000 in abDil buffer. Following three washing 
steps with PBS, sections were mounted in fluorescence 
mounting medium (Dako, glostrup) and imaged on an 
Olympus IX80 inverted microscope (Olympus) using Cell 
F imaging software. Images were processed and overlays 
created using ImageJ.

Hyperspectral CarS microscopy

a dual-output laser source (leukos-CarS, leukos) pro-
vides the pump and Stokes beams. The source is a passively 
Q-switched 1,064-nm microchip laser, delivering sub-nano-
second pulses at 32 kHz repetition rate and ~300 mW aver-
age power. This beam is divided into two parts internally: 
one part is introduced into a photonic crystal fiber that 
creates supercontinuum emission from 420–2,400 nm for 
Stokes beam, with more than 100 μW nm−1 spectral power 
density from 1,050 to 1,600 nm, and the second part is used 
as the pump and probe beam at 1,064 nm. Both beams are 
provided from the leukos-CarS source with the Stokes 
beam emerging from a fiber and the pump beam provided 
in free space. The Stokes beam is long-pass-filtered to have 
a bandwidth from 1,100 to 1,600 nm and routed on the 
optical table to match pump beam in time and space at the 
focus of the microscope (Fig. 1b). each beam has an aver-
age power of ~30 mW at the sample.

The sample was raster-scanned across the focal volume 
with steps of 0.25 μm in plane (Mad City labs). large 
images were reconstructed from adjacent tiles with in-plane 
dimensions of 20 × 20 μm (corresponding to 81 × 81 pix-
els). For each position in the sample, a CarS spectrum in 
the range between −3,100 and −600 cm−1 was acquired on 
a cooled CCD (andor). CarS spectra were acquired with 
pixel dwell times of 1 s (Fig. 1b, inset). The spatial resolu-
tion of the instrument was independently measured to be 
~0.6 × 0.6 × 3.5 μm3, and the spectral pitch was ~4 cm−1 
per CCD pixel.

raw CarS data analysis

raw CarS spectra were analyzed with custom routines 
in Igor Pro 6.22a (Wavemetrics). Pretreatment of the 
data with the maximum entropy method (MeM) algo-
rithm retrieves the imaginary component of the third-order 
raman susceptibility (Vartiainen et al. 2006), here referred 
to as raman-retrieved CarS (rr CarS) spectra. Images 
of rr CarS modes were generated in Igor Pro. all other 
image handling was done using ImageJ software.
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Chemometric analysis

Principal component analysis (PCa) was used to reduce the 
number of variables in the rr CarS hyperspectral dataset 
to a limited number of PC spectra that contain the majority 
of the variance in the data. The calculated PCs were ranked 
based on their total loading, or eigenvalue (eV). The num-
ber of relevant PCs was determined by selecting those PCs 
that accounted for 80 % of the variance. a side benefit of 
PCa is reduction in spatially uncorrelated noise from the 
rr CarS dataset.

after PCa, a hierarchical cluster analysis (HCa) algo-
rithm was used to identify raman frequencies that showed 
strongly correlated loadings across multiple PCs. This 
approach was used to recognize intraspectral correlations, 
e.g., from raman features coming from the same molecular 
class, rather than interspectral correlations among spectra 
obtained from different spatial locations, which is typically 
done with HCa (van Manen et al. 2005; Matthaus et al. 
2007). Using PCs ensured the most robust identification of 
common peaks since substantial noise reduction occurred 
as a result of the PCa.

Clustering with the unweighted pair group method with 
arithmetic mean (UPgMa) algorithm was performed on 
the correlation matrix of the PC spectra using 1 minus 
the correlation as distance metric. Those frequencies with 
smallest distance were grouped, and the process was boot-
strapped to bin spectral features correlated across the PC 
spectra, resulting in a dendrogram of raman frequencies. 
Final clusters were defined by thresholding the dendrogram 
to retain clusters with distances smaller than a threshold 
distance, which was chosen empirically. groups in the den-
drogram with larger distances than the threshold were not 
included into any clusters. Finally, a single-cluster spec-
trum for each dataset was constructed by (1) computing the 
summed, normalized spectrum for the entire hyperspectral 
dataset and (2) scaling this spectrum at each frequency with 
the so-called communality value that accounts for the rela-
tive variance for a particular frequency element that was 
captured by the PCs used for clustering (see eqs. 1 and 2, 
below).

where nS(ω) is the normalized, summed spectrum at fre-
quency ω, computed by adding the values from each indi-
vidual m spectra (or equivalently, spatial positions) in the 
normalized rr CarS hyperspectral dataset D. The cluster 

(1)NS(ω) =

m
∑

k=0

Dk(ω)

(2)CS(ω) =

√

√

√

√

n
∑

j=1

PCj(ω)
2
∗ NS(ω)

spectrum, CS(ω), is calculated by multiplying nS by the 
root mean square value at the corresponding ω, summing 
over n PC spectra used for clustering. This weighting factor 
scaled NS by the contribution (via harmonically summed 
loadings) of each frequency to the PC subset used for HCa 
clustering. Finally, HCa score for a single cluster at each 
spatial position was produced by projection of the normal-
ized data (D) on the cluster spectrum (see eq. 3)

where q is the number of raman frequencies in the selected 
cluster, D is the normalized rr CarS dataset, and CS is 
the value of cluster spectrum, respectively, at raman fre-
quency ωii.

Plotting scores at each x–y location essentially forms a 
denoised, chemically specific image (called an HCa scores 
map) similar to that from peak integration of rr CarS 
data. The PCa and HCa in this work were done using Che-
momeTricks toolbox for MaTlaB version 7.0 (The Math-
Works, natick, Ma) developed at FOM Institute aMOlF 
and will be described in detail in an upcoming publication.

Results and discussion

Tissue morphology shown by bright field, CarS, 
and fluorescence microscopy

The experimental procedure used to investigate the mus-
cle tissues is outlined in the chart in Fig. 2a. as mentioned 
before, we use a model experimental system genetically 
modified to overexpress PlIn5 to stimulate lD forma-
tion upon receiving a high-fat diet. after killing rats, serial 
transverse sections in the following order were excised 
from the tibialis muscle: 20, 5, 5, 5, and 5 μm. The sec-
ond 5-μm section was stained to visualize lipids, cell bor-
ders (sarcolemma), and nuclei by immunofluorescence. 
This section was used as a histological scout image for the 
CarS measurements. all hyperspectral CarS micros-
copy data presented in this study were obtained from the 
first 5-μm or 20-μm section without further preparation. 
The resulting hyperspectral dataset was analyzed by first 
converting the raw CarS data into quantitative rr CarS 
data, after which two separate analyses were performed. 
Initially, chemically specific vibrational maps (images) 
were obtained from the rr CarS spectra by integration of 
specific raman peaks. This yielded an image correspond-
ing to the distribution of specific compounds. next, HCa 
was performed and maps were plotted.

Figure 2b shows the bright-field image of a 20-μm-
thick muscle section. as in typical transverse skeletal 

(3)Score =

q
∑

i=1

D(ωi) ∗ CS(ωi)
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muscle sections, the fibers appear as enclosed shapes with 
dark sarcolemmal borders. Visual inspection of the image 
indicates that fibers can be divided into two groups. Fib-
ers from the first group, e.g., the large fiber in the center 
of the image, show generally uniform intensity within the 
fibers compared to the second group, which contains a 
large number of elongated dark features. Immunostaining 
of the third 5-μm slice for PlIn5 (not shown) revealed that 
the second group corresponds to fibers where PlIn5 was 
efficiently overexpressed. Hence, in the following text, the 
two groups of fibers will be referred to as “native” (labeled 
“n”) or “overexpressing” (labeled “O”) cells, respectively, 
for cells without and with PlIn5 overexpression. We note 
that native fibers express PlIn5 as well, albeit at a basal 
level that is much lower than upon overexpression (Bosma 
et al. 2012). Thus, we were able to take full advantage of 
the CarS imaging approach allowing detailed examination 
of lDs present in muscle fibers with native and abundant 
overexpression of PlIn5 within the same tissue sample. as 
such, native fibers effectively served as an internal control 
for comparison with overexpressing fibers.

as mentioned in the methods, a CarS spectrum from 
−3,100 to −600 cm−1 is acquired at each spatial position 
in the image. after processing raw CarS data into rr 

CarS spectra (see Methods section), whose signal inten-
sity is proportional to molecular concentration (Fig. 2b, 
inset), chemical maps were generated to highlight cellular 
structures. Figure 3a is a map showing the concentration of 
all CH resonances in the tissue section consisting of 8 × 8 
“tiles,” as described in the Methods section. Since most 
organic material in tissue contains carbon and hydrogen, 
CH maps are used to provide an overview of cellular struc-
tures. High-intensity (white) deposits of CH-rich structures 
were primarily observed in overexpressing fibers, and these 
deposits presumably contain lipid species since lipids con-
tain the highest concentration of CH groups. Comparing 
the CH map with the immunofluorescence image from the 
histological scout shows that lDs (green) also appear pre-
dominantly in the same overexpressing cells (Fig. 3b). The 
coincidence of elevated CH signals in hyperspectral rr 
CarS data and the strong lD fluorescence confirms that 
overexpressing muscle fibers show abundant intracellular 
CH deposits, whereas the native fibers display uniform, 
rather low CH intensity. Interestingly, the low-contrast, 
elongated features within overexpressing fibers in bright 
field (Fig. 2b) also show relatively little CH contrast in the 
hyperspectral CarS map (Fig. 3a). This observation is dis-
cussed further below.
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HCa identification of lDs and chemical heterogeneity 
from CH CarS

Figure 3 identifies CH-rich (and poor) structures in muscle 
fibers from inspection of a single chemical map binning all 
CH-related intensities (−3,100 to −2,800 cm−1) into pixel 
intensity values. Because the CH region contains a collec-
tion of overlapping vibrations arising from the CH, CH2, 
and CH3 groups abundant in most biological compounds, 
we chose to focus on the CH2 vibration to highlight lipid 
molecules that typically have long acyl chains with many 
CH2 groups. a chemical map from the hyperspectral rr 
CarS data of this vibration (−2,845 cm−1) is presented 
in Fig. 4a. note these data are from the corresponding 
5-μm section covering the same area as shown in Figs. 2 
and 3. The small punctate features with high intensity in 
Fig. 4a are lDs and have a maximum lateral diameter of 
2–3 μm, consistent with the fluorescence imaging in the 
scout sample. lDs in the PlIn5-overexpressing fibers are 

homogeneously distributed but are generally located in 
the vicinity of rod-like, low-intensity CH2 regions. native 
fibers are characterized by a weaker and uniform CH2 
response.

as an initial test for our chemometric analysis (see “Meth-
ods” section), we generated an HCa scores map for the 
strongly correlated cluster of frequencies between −2,844 
and −2,863 cm−1, essentially covering the CH2 vibrational 
mode. The HCa scores map (Fig. 4b) shows similar features 
with the −2,845 cm−1 intensity map from the hyperspectral 
rr CarS data as well as other smaller, punctate lipid accu-
mulations. lDs and sarcolemmal regions are visible in the 
HCa scores map with even higher contrast than compared 
to Fig. 4a, likely because of the noise reduction in the HCa 
process. Furthermore, the membrane-rich subsarcolemmal 
regions (Spangenburg et al. 2011) also show much stronger 
contrast as compared to the crude CH2 image plot.

When inspecting spectra from four different regions 
in the tissue (Fig. 4c), distinct, conserved features are 
seen in the spectra of lDs such as the CH2 shoulder at 
−2,845 cm−1 and the peak at −2,880 cm−1. Indeed, HCa 
scores maps from two other frequency clusters, −2,871 
to −2,876 cm−1 and −2,880 to 2,905 cm−1, show similar 
image features as Fig. 4b. When considering the molecu-
lar entities corresponding to these vibrational modes 
(CH2 asymmetric (2,874 cm−1) and CH2 Fermi resonance 
(2,888 cm−1)) and the biochemistry of long acyl chains in 
lipids, this observation makes sense. rr CarS spectra 
from lDs in cultured adipocytes also show both of these 
features (rinia et al. 2008). Coincidence of HCa image 
features (Fig. 4b) with those in the chemical map obtained 
by direct integration of the CH2 mode in the rr CarS 
data (Fig. 4a) strongly supports the applicability of chemo-
metric analysis to hyperspectral rr CarS data for chemi-
cal imaging of as-prepared tissue sections.

HCa scores maps reveal mitochondria-like features 
in overexpressing fibers

Up to this point, our analysis has focused solely on the CH 
region (−3,100 to −2,800 cm−1) of the hyperspectral rr 
CarS data. However, rr CarS spectra contain numer-
ous other resonances, specifically in the fingerprint region 
of the vibrational spectrum (−700 to −1,750 cm−1), which 
have been assigned to specific macromolecular classes, 
e.g., proteins, nucleic acids, and lipids. not unlike the CH 
region, these peaks often overlap, so HCa analysis should 
be useful tool to decipher recurring patterns in the sam-
ple. In Fig. 5, we show images from HCa scores maps 
and chemical maps from modes in the fingerprint region to 
highlight cellular structures with distinct biochemistry.

Using hyperspectral rr CarS data from the 20-μm 
section, HCa systematically returned a set of three 
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Fig. 3  a Intensity map of the integrated rr CarS spectra over the 
entire CH region (−2,800 to −3,100 cm−1) of the 20-μm section; 
color bar shows the linear intensity scale b Immunofluorescence 
image of the corresponding region from the 5-μm “scout” section 
showing lipids (green), nuclei (blue), and sarcolemma (red). as in 
Fig. 2, N and O markings depict native and overexpressing fibers, 
respectively. Scale bar = 20 μm in all images
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frequency clusters with identical scores maps, one of which 
is shown in Fig. 5a. These clusters correspond to the fre-
quency ranges −3,005 to −3,042, −1,260 to −1,356, and 
−1,000 to −1,003 cm−1. although the second cluster is 
difficult to unequivocally associate with a molecular class, 
the first and last clusters correspond to the = CH and ring 
breathing mode of the benzene ring in phenylalanine, 
respectively, which is highly specific for proteins. Figure 5a 
shows the HCa scores map for −1,000 to −1,003 cm−1 
cluster and shows high contrast (rather than low contrast) 
elongated structures inside overexpressing fibers in the sar-
colemma. native fibers have a relatively homogenous con-
trast without elongated structural features. These elongated, 
rod-like structures in Fig. 5a are particularly interesting as 
they are morphologically similar to mitochondria in mus-
cle fibers and cultured cells (MKCH and SHP, unpublished 
data). While native fibers certainly have mitochondria, their 
size and abundance are especially augmented in overex-
pressing fibers (see Supplemental Material). In addition to 
the elongated features near the lDs in Fig. 5a, the extrasar-
colemmal region between fibers, which consists of a dense 
network of laminin (gawlik and Durbeej 2011), also pro-
duces a strong protein signal.

Comparing the HCa scores map with the corresponding 
chemical map from the −1,003 cm−1 peak in the rr CarS 
data (Fig. 5b), no positive contrast elongated features are 
seen in the chemical map from the rr CarS data. The aver-
age spectrum from the entire field of view (Fig. 5c) shows a 
clear peak at −1,002 cm−1, which confirms the presence of 
proteins in the section. given the dense packing of myofibrils 
(and their constituents) in the sarcoplasm, a protein signal 

is expected from within the muscle fibers as reflected in 
Fig. 5b; however, the elongated features are only visible with 
positive contrast after multivariate analysis. This is likely due 
to refractive index mismatches and scattering that reduces 
the overall CarS intensity from these locations (supported 
by their low contrast in bright field in Fig. 2b). This demon-
strates the ability of chemometric analysis applied to hyper-
spectral rr CarS data to decipher subtle changes in other-
wise noisy or highly inhomogeneous datasets.

Figure 5d shows the HCa scores map of the CH2 sym-
metric cluster (from −2,844 to −2,863 cm−1) for this tis-
sue section, which again specifically highlights lDs and 
lipid-rich regions. The lDs appear mostly in overexpress-
ing fibers, similar to the protein-rich structures. an overlay 
of the HCa image of proteins (Fig. 5a) and the lD image 
(Fig. 5d) shows that the protein-rich structures colocalize/
border the lDs (Fig. 5e). Based on our immunofluorescence  
staining of mitochondria and lDs in PlIn5-overexpress-
ing tissues (Supplemental Material), the morphological 
appearance of the elongated protein-rich structures, and the 
evidence that protein concentration in the mitochondrial 
matrix is 1.5-fold higher than the cytoplasm (Srere 1980; 
Soboll et al. 1976), we suggest that the protein-rich features 
near lDs represent mitochondria.

Unlike immunofluorescence imaging, no exogenous 
labels were used in Fig. 5 to identify lDs or protein-rich 
features as this was accomplished solely based on inherent 
chemical compounds present in these organelles as meas-
ured by hyperspectral CarS imaging. While additional 
experiments, such as a correlative study of fluorescence and 
hyperspectral CarS, are required to definitively identify 
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ear intensity scales in panels a and b
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the protein-rich features as mitochondria, the results pre-
sented here combined with our previous work (Bosma et al. 
2012) constitute strong evidence that HCa of the protein 
band revealed features representing mitochondria in the 
vicinity of the lDs.

Conclusions

Hyperspectral CarS microscopy was shown to be a label-
free and non-invasive method to simultaneously localize 
macromolecules and cellular organelles in biochemically 
complex tissue samples without complex sample prepara-
tion. Using chemical imaging of specific vibrational modes, 
we showed lipid accumulations in PlIn5-overexpressing 
muscle fibers of freshly prepared tissue sections. additional 
chemometric analysis with HCa enhanced image con-
trast for lipid accumulations and revealed mitochondria-
like features in overexpressing fibers that were otherwise 
unobservable with direct peak integration of hyperspectral 
rr CarS data. Taken together, these results demonstrate 
identification of organelle interaction with lDs in bio-
chemically heterogeneous tissue environments using purely 
vibrational contrast.

While the resolving power of hyperspectral CarS is 
limited compared to electron microscopy and the macromo-
lecular identification suffers compared to mass spectrom-
etry, the data presented here demonstrate that hyperspectral 
CarS data can be processed to highlight features similar to 
those seen in electron micrographs without extensive super-
vision or sample preparation (e.g., immunogold labeling, 
critical-point dehydration, matrix deposition). Furthermore, 
CarS imaging did not suffer from the same challenges as 
raman microscopy, and we were able to successfully obtain 
data of sufficient quality for reliable organelle identification 
with both CH and fingerprint spectra.

Future studies will focus on using hyperspectral CarS 
for the determination of the chemical composition of indi-
vidual lDs within muscle tissues to identify whether over-
expressing fibers contain different neutral lipid species 
than those in native tissues. The use of CarS microscopy 
provides a complementary capability to localize biological 
components within tissues based on intrinsic sample bio-
chemistry without laborious sample preparation and should 
be useful as diagnostic platform in tissue pathogenesis.
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