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Abstract
Originally discovered in the nineteenth century, hyalocytes are the resident macrophage cell population in the vitreous body. 
Despite this, a comprehensive understanding of their precise function and immunological significance has only recently 
emerged. In this article, we summarize recent in-depth investigations deciphering the critical role of hyalocytes in various 
aspects of vitreous physiology, such as the molecular biology and functions of hyalocytes during development, adult homeo-
stasis, and disease. Hyalocytes are involved in fetal vitreous development, hyaloid vasculature regression, surveillance and 
metabolism of the vitreoretinal interface, synthesis and breakdown of vitreous components, and maintenance of vitreous 
transparency. While sharing certain resemblances with other myeloid cell populations such as retinal microglia, hyalocytes 
possess a distinct molecular signature and exhibit a gene expression profile tailored to the specific needs of their host tissue. In 
addition to inflammatory eye diseases such as uveitis, hyalocytes play important roles in conditions characterized by anoma-
lous posterior vitreous detachment (PVD) and vitreoschisis. These can be hypercellular tractional vitreo-retinopathies, such 
as macular pucker, proliferative vitreo-retinopathy (PVR), and proliferative diabetic vitreo-retinopathy (PDVR), as well as 
paucicellular disorders such as vitreo-macular traction syndrome and macular holes. Notably, hyalocytes assume a significant 
role in the early pathophysiology of these disorders by promoting cell migration and proliferation, as well as subsequent mem-
brane contraction, and vitreoretinal traction. Thus, early intervention targeting hyalocytes could potentially mitigate disease 
progression and prevent the development of proliferative vitreoretinal disorders altogether, by eliminating the involvement 
of vitreous and hyalocytes.
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Key messages

What is known:

What is new:

Hyalocytes have been recognized as resident tissue macrophages of the vitreous body since the middle 
of the nineteenth century. Nevertheless, knowledge is limited about their development,  turnover, and function 
in health and disease.   

Recent in-depth investigations have deciphered the role of hyalocytes in various aspects of vitreous 
physiology, demonstrating that hyalocytes are involved in fetal vitreous development, hyaloid vasculature 
regression, surveillance and metabolism of the vitreoretinal interface, synthesis and breakdown of vitreous
components, and maintenance of vitreous transparency.  

While sharing certain resemblances with other macrophage populations in the eye, such as retinal microglia,
hyalocytes possess a distinct molecular signature and exhibit a gene expression profile tailored to the 
specific demands of their host tissue. 

In addition to their role in ocular immune privilege and immune surveillance, hyalocytes play
important roles in conditions characterized by anomalous posterior vitreous detachment and
vitreoschisis such as macular pucker, macular hole, proliferative vitreo-retinopathy, and proliferative
diabetic vitreo-retinopathy and thus may therefore serve as potential therapeutic targets in the future. 

Introduction

Hyalocytes are mononuclear phagocytes residing in the 
vitreous cortex that have fascinated researchers for nearly 
two centuries. Extensive scientific investigations have been 
conducted since the early 1800s to unravel the true essence 
and origins of hyalocytes, yielding diverse and subject-to-
interpretation findings spawning numerous theories regard-
ing their function. The initial identification of hyalocytes in 
1840 is commonly attributed to Hannover, a Danish anato-
mist, who introduced hyalocytes as a distinct cell population 
of macrophages that resides within the vitreous body [1]. 
Rudolf Virchow observed these cells in 1852 and proposed 
that they are responsible for producing the extracellular 
matrix of the vitreous body [2]. In 1874, hyalocytes were 
identified as macrophages based on their morphology and 
the ability to proliferate after antigen inoculation [3, 4]. The 
hypothesis suggesting a developmental connection between 
hyalocytes and retinal microglia (known as Hortega cells 
at that time) was first proposed in 1931 [5]. However, the 
intricate relationship between hyalocytes, retinal microglia, 
and blood-derived monocytes remains enigmatic, spurring 
investigations utilizing diverse assays and models. Finally, 
the term “hyalocytes” was introduced by Balazs and col-
leagues to describe a homogeneous cell population in the 
cortical layer of the vitreous body throughout various animal 
species [6].

Despite the pioneering efforts of these early investigators, 
who were constrained by the limitations of then available 
methodologies, recent advances in imaging techniques [7, 
8] and high-throughput transcriptional and protein analyses 
have provided a more comprehensive understanding of the 
unique characteristics of hyalocytes. The origin, turnover, 
localization, structure, and expression profile of hyalocytes 
have undergone examination using various techniques, 
including dark-field slit-, light-, phase contrast-, and elec-
tron microscopy; as well as immunohistochemistry, immu-
nofluorescent labeling, transgenic reporter lines applica-
tion combined with fluorescent microscopy, and confocal 
microscopy [9]. Furthermore, the utilization of proteomic 
studies including imaging mass cytometry has propelled our 
understanding forward [10–12]. While these techniques have 
produced invaluable insights into hyalocyte physiology, the 
advent of optical coherence tomography (OCT), scanning 
light ophthalmoscopy (SLO), and adaptive optics (AOSLO) 
has paved the way for imaging single hyalocytes in vivo over 
time, particularly in human subjects [13]. Collectively, these 
recent advances in available approaches have not only vali-
dated established knowledge but have also uncovered novel 
notions about the immunomodulation properties of this cell 
population. These findings demonstrate that although hya-
locytes exhibit certain resemblances to other macrophages 
and microglial cells in specific tissue niches, they constitute 
a unique population specialized in meeting the specific needs 
of the vitreous body, most notably preserving transparency.
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In this article, we summarize current understanding of 
the molecular biology and functions of hyalocytes during 
both development and adult homeostasis, including their 
roles in immune surveillance and privilege. Furthermore, 
we explore the role(s) of hyalocytes in various diseases and 
delve into the potentially beneficial and detrimental features 
of activated hyalocytes in proliferative vitreoretinal condi-
tions. The scientific observations of the past decade raise 
intriguing questions regarding the dual nature of hyalocytes 
throughout an individual’s lifespan. What mechanisms gov-
ern the delicate balance between their advantageous and 
harmful properties? Do hyalocytes act as allies or adversar-
ies in the pathophysiology of vitreoretinal disorders? Is it 
possible that multiple subpopulations of hyalocytes exist, 
with some being actively involved in disease while others 
remain quiescent until triggered by pathological condi-
tions? These thought-provoking inquiries and others will 
be explored herein. However, it is important to note that 
definitive answers to these questions will likely necessitate 
further extensive scientific and clinical investigations during 
the years to come.

Origin and turnover of hyalocytes

Starting from the 4th week of gestation in humans, mesoder-
mal cells enter the developing eye through the ocular cleft and 
contribute to the formation of the hyaloid vascular system, 
which ultimately includes the hyaloid artery, the vasa hya-
loidea propria, the tunica vasculosa lentis, and the pupillary 
membrane [14, 15]. Accompanying this vascular system, the 
mesodermal cells secrete extracellular components of the pri-
mary vitreous and express cell surface markers such as major 
histocompatibility complex (MHC) molecules and CD45, 
indicating their status as precursor cells to macrophages that 
eventually become hyalocytes [16]. After reaching its devel-
opmental peak around the 10th week of gestation, the hyaloid 
vasculature begins to regress [16]. This involution process, 
which is critical for creating a clear optical pathway, is medi-
ated by primitive macrophages, i.e., hyalocyte precursor cells. 
Its failure can lead to significant impairments in vitreoretinal 
and ocular development. Experimental investigations indi-
cate that dysfunction of these macrophages, such as through 
the use of toxic liposomes applied within the eye [17, 18] or 
through genetic manipulation, as observed in PU.1-deficient 
mice [19], is linked to a prolonged persistence of hyaloid ves-
sels and the pupillary membrane, which normally represent 
transient structures. This evidence strongly suggests that mac-
rophages and more specifically hyalocytes play a crucial role 
in the programmed remodeling of hyaloid vessels [14].

The intriguing phenomenon of hyalocyte regeneration 
within the confines of the blood-ocular barrier has sparked 

considerable curiosity, giving rise to a multitude of queries. 
The origin of hyalocytes and the mechanisms underlying 
their replenishment remain enigmatic. Does the pool of hya-
locytes undergo a perpetually repeated cycle of apoptosis, 
followed by replenishment with mitotically active regenerat-
ing cells? Alternatively, could circulating progenitor cells, 
such as monocytes, infiltrate vitreous from the bloodstream 
and differentiate into hyalocytes, thus providing continued 
vibrance of this cell population? In recent decades, there has 
been a surge of research focusing on the origin and turno-
ver of macrophages during both developmental stages and 
adulthood. This scientific exploration has been driven by the 
emergence of innovative techniques, including transferring 
labeled bone marrow cells after lethal irradiation to differ-
entiate it from the recipient’s bone marrow, parabiosis, and 
fate mapping in transgenic mice [20, 21].

Early studies revealed that hyalocytes exhibit a low 
mitotic rate and do not incorporate 3H-thymidine when it is 
introduced into the eye. However, increased mitotic activ-
ity has been observed under pathologic conditions such 
as following retinal photocoagulation [22, 23]. Attempts 
have been made to replenish vitreous cells with hematog-
enous cells that transform into hyalocytes by transplanting 
labelled bone marrow cells from a transgenic mouse into 
a wild-type mouse. These endeavors achieved some suc-
cess, implying that hyalocyte renewal predominantly occurs 
through the bloodstream [24]. Nevertheless, this technique 
has inherent limitations, as transplantation has only been 
feasible after lethal irradiation of the mice to deplete the 
recipients bone marrow before transplantation, potentially 
affecting the integrity of the blood-ocular barrier leading 
to side effects and an overestimation of the turnover rate. 
Additionally, intravenous transfer of bone marrow introduces 
exogenous hematopoietic stem cells and myeloid progenitors 
into the blood stream, resulting in promotion of artificial tis-
sue infiltration and potentially confounding interpretations 
regarding the origin of these cells.

Another experimental approach involves parabiosis, a sur-
gical technique that joins two mice to establish a shared cir-
culation. This method enables leukocytes, including mono-
cytes, to course between the two animals. Parabiosis offers 
advantages over bone marrow chimeras as it closely mimics 
the physiologic condition without the need for lethal irradia-
tion. Utilizing parabiosis, investigations have suggested that 
hematogenous re-population of microglial cells in the retina 
and brain is improbable [25] suggesting that this may also 
be the case for hyalocytes.

Finally, conditional transgenic reporter mouse lines have 
been developed as valuable tools for investigating the turnover 
of resident macrophages by enabling the inducible removal of 
specific gene sequences. While some models have targeted 
microglia-specific genes, their application to hyalocytes 
remains unexplored. Identifying a distinct gene signature that 



 Graefe's Archive for Clinical and Experimental Ophthalmology

is unique to hyalocytes, as suggested by Wolf and colleagues 
[26], would greatly enhance our understanding of their rela-
tionship to retinal microglia and other tissue macrophages.

In summary, diverse experimental approaches have sig-
nificantly contributed to our understanding of macrophage 
turnover. Recent evidence indicates that hyalocytes possess 
long lifespans and that their regeneration, albeit at a slow 
pace, primarily occurs autonomously, similar to microglia 
[9]. However, further exploration utilizing these and other 
methods is needed to unravel the intricate dynamics of 
hyalocytes.

Imaging hyalocytes

Initial investigations revealed that hyalocytes exhibit mor-
phologic characteristics similar to macrophages when 
observed with electron microscopy [27, 28]. They possess a 
distinctive star-shaped structure with serrated edges, pseu-
dopodia, a lobulated nucleus, a well-developed Golgi appa-
ratus, and numerous lysosomal granules and phagosomes 
(Fig. 1). In the eye, hyalocytes are located within the vitre-
ous cortex and align in parallel layers, forming a phalanx-
like arrangement positioned at a variable distance anterior 
to the inner limiting membrane (ILM) and in proximity to 
the ciliary body. Hyalocytes can also be found floating freely 
within the vitreous body, although in smaller numbers.

Clinically, hyalocytes can be visualized using spectral-
domain and swept-source OCT, appearing as highly reflec-
tive round dots, typically requiring minimal image enhance-
ment. However, specific modifications to standard image 
acquisition and post-processing procedures can be advan-
tageous for accurate localization of hyalocytes within the 
cortical vitreous fiber meshwork. Enhanced vitreous imag-
ing (EVI) has been introduced to average a large number of 

scans using the automatic real-time function on the Heidel-
berg Spectralis device. Notably, coronal plane (en face) OCT 
imaging specifically visualizes hyalocytes in the cortical 
vitreous close to the retinal surface, while their presence is 
less prominent in more anterior regions of the vitreous body. 
Furthermore, recent advances in adaptive optics OCT imag-
ing enable direct visualization of human hyalocytes in vivo 
(Fig. 2). With this innovative approach, researchers, such 
as Migacz et al. [8], described the dynamic movement and 
morphologic changes of hyalocyte cell bodies and processes 
within the living human eye. These studies demonstrate that 
hyalocytes have a branched morphology with projections 
resembling filopodia that exhibit continuous movement sug-
gestive of a role in environmental monitoring. The motion 
of hyalocytes themselves occurs in rapid bursts, averaging 
a speed of 0.23 ± 0.29 µm/min and reaching a maximum 
of 2.0 µm/min. It appears that hyalocytes operate within a 
relatively confined area, with their projections constantly 
extending and retracting as they survey their surroundings 
for foreign antigens.

Hyalocyte functions

Hyalocytes play various vital roles in the vitreous body of 
the developing and aging eye (Fig. 3). While our understand-
ing of their function(s) is still evolving, several key roles 
have already been identified (for a detailed review, see [14]).

Regression of fetal hyaloid vasculature

The mechanisms underlying the involution of the hyaloid 
vasculature are not yet fully understood, but several experi-
mental studies provide insights into the role of hyalocytes 
in this process. Existing knowledge suggests an involvement 

Fig. 1  Human hyalocytes in situ and imaged by electron microscopy. 
A A hyalocyte within the posterior vitreous cortex, in proximity to 
the inner limiting membrane (ILM), as captured by transmission 
electron microscopy. The hyalocyte exhibits classic characteristics 
of cells of the macrophage lineage, e.g. lysosome-like granula, mito-

chondria, and micropinocytotic vesicles. B A scanning electron 
micrograph shows a hyalocyte with a few processes entangled in a 
collagen fiber network. Scale bars: A 6000 × , 1 µm, B 4300 × , 1 µm. 
. Reproduced with permission from  Qiao et  al., Br J Ophthalmol 
2005 [24]



Graefe's Archive for Clinical and Experimental Ophthalmology 

of hyalocyte migration into the adventitia of primordial vit-
reous blood vessels and a destruction of endothelial cells 
adjacent to hyalocytes [16]. For this effect, the activation 
of Wnt signaling by Wnt7b, expressed in murine hyaloid 
macrophages, appears to initiate cell apoptosis in endothelial 
cells, ultimately resulting in the regression of hyaloid ves-
sels [19]. This concept is supported by the observation of 
persistent hyaloid vasculature in mice deficient in Ndp, Lrp5, 
or Fzd4, which indicates a critical regulatory role for Wnt 
signaling [29]. Other factors implicated in hyaloid regression 
and modulation of hyalocyte function include von Hippel-
Lindau protein, hypoxia-inducible factor 1 alpha, vascular 
endothelial growth factor, collagen XVIII, angiopoietin-2, 
and bone morphogenetic protein-4 [14, 30]. Furthermore, 
vitreous hyalocytes have been identified as the sole cell type 
expressing all four forms of transforming growth factor beta 
(TGF-β) in the eye [31]. The production of TGF-β by hya-
locytes may contribute to apoptosis during the regression 
of hyaloid vasculature, as evidenced by the localization of 
TGF-β2 in the human vitreous during early developmental 
stages correlating with receding hyaloid vessels [32].

Extracellular matrix synthesis

The adult human vitreous body consists of water (98%), 
structural proteins, mainly collagen and hyaluronan, and 
other ECM components like chondroitin sulfate [33, 34]. 
Historically, Schoeler, Virchow, and later Szirmai and Bal-
azs assumed that hyalocytes contribute to vitreous anabo-
lism, likely through hyaluronan production [34]. Already 
in 1960, Balazs noted an increased collagen concentration 
in vitreous of individuals aged 70–90 compared to younger 
groups, which was attributed to age-related vitreous gel 
volume decrease and a simultaneously stable collagen con-
tent [6]. Supporting this idea, the studies by Boneva et al. 
revealed an abundant expression of ECM components like 
COL5A1 and COL9A2 by hyalocytes of elderly individu-
als, suggesting that hyalocytes synthesize structural proteins 
throughout aging [10]. It is plausible that collagen synthe-
sis by hyalocytes, rather than concentration increase due to 
volume decrease, contributes to the observed elevated col-
lagen levels in the senescent vitreous, a notion supported by 
the presence of type II procollagen, a collagen precursor, in 
adult vitreous [33].

Unlike collagen, adult hyalocytes show relatively low 
expression of key factors responsible for hyaluronan syn-
thesis, as observed in Boneva et al.’s 2020 study [10]. Inter-
estingly, their research also highlighted increased RNA 
expression of versican and collagen type IX in aged hya-
locytes. These proteins, in conjunction with hyaluronan, 
fibulin-1, and fibulin-2, play essential roles in maintaining 
the molecular structure and transparency of the vitreous 

body [35]. Changes in versican and minor glycosaminogly-
cans levels have been suggested as factors contributing to 
the liquefaction of vitreous with age, e.g., by Kamei et al. 
[36], indicating a potential role of hyalocytes in this process. 
Moreover, mutations affecting the splicing of chondroitin 
sulfate-bearing domains in versican have been associated 
with conditions characterized by excessive vitreous lique-
faction, such as Wagner syndrome [37], further suggesting 
an involvement of hyalocytes in vitreoretinal dystrophies. In 
alignment with this notion, Boneva et al.’s research revealed 
that hyalocytes express high RNA levels of hyaluronidases, 
enzymes responsible for hyaluronan degradation, implicat-
ing their potential contribution to age-related liquefaction of 
the vitreous gel [10].

Surveillance of the vitreoretinal interface

Already in the nineteenth century, Iwanoff (1865) and 
Potiechin (1878) postulated that hyalocytes are able to move 
in an amoeboid manner [3, 38]. Consequently, Schwalbe 
classified hyalocytes in the group of the wandering cells 
(‘Wanderzellen’), a term, which at that time referred to 
circulating and migrating macrophages and lymphocytes 
[4]. Recently, Castanos et al. documented human hyalocyte 
movement in vivo via OCT imaging [39] and subsequently 
employed AOSLO to image and map this movement (Fig. 2). 
They elegantly examined key characteristics of macrophage-
like cells anterior to the inner limiting membrane (ILM) in 
healthy and diseased human eyes, which are likely to be 
hyalocytes. This was feasible in part because of the possibil-
ity to directly visualize these cells owing to their location 
anterior to the ILM. They found that human hyalocytes are 
distinctively distributed and have clear dynamic character-
istics. As such, hyalocytes constantly explore their local 
environment by extending and retracting their projections 
within the timeframe of a few minutes, which is consist-
ent with the hypotheses of Iwanoff and Potiechin proposed 
almost 150 years ago.

These current findings on cell motility are consistent 
with studies showing a high expression of the potassium 
channel KCNK13 (potassium channel, subfamily K, member 
13) and CX3CR1 (CX3C chemokine receptor 1) in human 
hyalocytes [10] (Fig. 3), known to be important for micro-
glia cell motility and immune surveillance [40]. In addi-
tion, hyalocytes were found to express membrane receptors 
that enable the cell to probe its environment, such as the 
adenosine A3 receptor, “sensing” ADP (adenosine diphos-
phate) released by, e.g., dying neurons and thus contribut-
ing to cell process extension [10]. Similar properties have 
been described for resting microglia in the brain and in the 
inner and outer plexiform layer of the retina [41]. Within 
minutes following acute injury, microglial processes con-
verge toward the site of damage, and after hours to days, the 
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reactive microglia retract their processes, form new motile 
protrusions, and transform into an amoeboid shape, thus 
migrating to the lesion. Chemotaxis of retinal microglia to 
sites of tissue damage, such as retinal neovascularization or 
retinal angiomatous proliferation [42], depends on activation 
of P2YR12 (purinergic receptor P2Y12) receptors on micro-
glia that bind ATP (adenosine triphosphate) or ADP released 
from neural cells [43]. Since hyalocytes express P2RY12 to a 
similar extent as human microglia [10], it is very likely that 
hyalocytes are capable of a similar reaction to tissue injury 
in disorders of the vitreoretinal interface, such as PDVR and 
PVR, where they migrate to sites of retinal inflammation or 
degeneration. This hypothesis would be in line with recent 
studies showing an increase of macrophage-like cells ante-
rior to the ILM in patients with PDVR and PVR, which at 
least in part may be assembled by migrating and/or prolifer-
ating hyalocytes [12, 44], however, possibly also infiltrating 
monocytes from blood.

Phagocytosis

Hyalocytes are capable of phagocytosis, the process of 
engulfing and removing cellular debris, foreign particles, 
and pathogens. Many decades ago, Hamburg proposed that 
hyalocytes play a role in clearing metabolic byproducts and 
maintaining the “hemato-ocular” barrier [45]. Their phago-
cytic capacity has been demonstrated both in vivo in rab-
bits and in vitro, confirming their affiliation with the mono-
nuclear phagocyte system [46, 47]. Upon detecting injury 
or dying cells, hyalocytes are likely to migrate toward the 
harmful entities and phagocytose them, akin to microglia 
cells in the central nervous system. Recent evidence reveals 
that hyalocytes express factors involved in phagocytosis, 
such as MERTK, CD74, and HLA-DRA, which codes for 
MHCII molecules [10] (Fig. 3), suggesting their potential 
contribution to erythrophagocytosis and clearance of vit-
reous hemorrhage in conditions like PDVR or anomalous 
posterior vitreous detachment with vitreous hemorrhage.

However, other studies imply that hyalocytes may be 
activated following phagocytosis and may consequently 
have detrimental effects that exacerbate proliferative vit-
reoretinal diseases. As early as 1959, Hamburg proposed 
that hyalocytes contribute to intraocular fibrosis, based upon 
the assumed potential of hyalocytes to transform into fibro-
blasts and observations of increased hyalocyte numbers in 
patients with Coats disease [45]. Additionally, hyalocytes 
have been implicated in PVR formation not only by prolifer-
ating themselves, but by recruiting glial cells from the retina, 
retinal pigment epithelium (RPE), and monocytes from the 
circulation [13, 48]. Furthermore, recent evidence highlights 
transdifferentiation of hyalocytes into alpha-smooth muscle 
actin (α-SMA)-positive cells in the course of PDVR and 
PVR, underscoring their potential role in scar formation at 
the vitreoretinal interface [12, 10].

Immunomodulation

Hyalocytes possess immunomodulatory properties and con-
tribute to the regulation of immune responses within the 
vitreous body (for a detailed review, see [14]). As members 
of the mononuclear phagocyte system (previously called 
the reticulo-endothelial system), they are likely to interact 
with other immune cells, such as T cells and B cells, and 
thus influence immune signaling and cytokine production. 
Hyalocytes play a significant role in phagocyting harmful 
agents, such as foreign substances or microorganisms, which 
is crucial for antigen presentation and for triggering an 
immune response. By expressing MHCII-related genes like 
HLA-DR, hyalocytes have the potential to present antigens 
to CD4-positive T-lymphocytes (Fig. 3), similarly to retinal 
microglia [49]. However, the specific impact of hyalocytes 
on the adaptive immune response and their ability to either 
induce or suppress T cell function remain topics of ongoing 
discussion. Recent research suggests that the immunosup-
pressive properties of hyalocytes outweigh their pro-inflam-
matory activity. This balance helps to limit damage in the 
eye, thereby preventing irreversible neurodegeneration and 
maintaining optimal clarity along the optical axis. Hyalo-
cytes further express cytokines, such as SPP1 and TNF and 
many others, which are small signaling molecules that regu-
late immune responses and mediate cellular communication 
[10]. This cytokine production is very likely to influence the 
local microenvironment and immune cell behavior within 
the vitreous body in both health and disease [14].

Immune privilege

Similar to the brain, the eye has long been recognized as 
an immune-privileged site [50]. This has historically been 
attributed to the absence of lymphatic drainage and the 
presence of blood-tissue barriers, leading to the concept of 

Fig. 2  Human hyalocytes imaging in vivo. Clinical optical coherence 
tomography (OCT) and adaptive optics scanning light ophthalmos-
copy (AOSLO) imaging of a 32-year-old male. A Color fundus photo. 
The black box indicates a region imaged using clinical OCT in B. B, 
C OCT reflectance and OCT angiography (OCTA) color overlays 
of the area within the black box in A. Spatial relationships between 
structures are visualized via clinical OCT color overlays of B the 
superficial retinal vascular network (red) and hyalocytes (green), and 
C hyalocytes (green) imaged anterior to the retinal nerve fiber bun-
dles (blue). D Higher magnification of the color overlay of the super-
ficial retinal vascular network (red) and hyalocytes (green) of the area 
within the white box in B. The white arrows indicate seven hyalo-
cytes. E Corresponding AOSLO image reveals the same hyalocytes 
(white arrows), imaged with better visibility of their cell somas and 
processes. Hyalocyte locations match between imaging modalities, 
but the cell size and shape appear different. Reproduced with permis-
sion from Wieghofer et al., Exp Rev Ophthalmol 2022 [9]

◂
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immunological ignorance, as proposed by Medawar [50]. 
Specifically, the notion of an immune deviation phenom-
enon emerged, defining an altered form of systemic immune 
response that occurs when antigens are introduced into privi-
leged sites [51]. In the case of the eye, this response was ini-
tially termed anterior chamber-associated immune deviation 
(ACAID) [51], later expanding to vitreous cavity-associated 
immune deviation (VCAID) [52], and nowadays semanti-
cally refined as vitreous body-associated immune deviation 
(VBAID) to accurately reflect the nature of vitreous as an 
organ and not a space [14].

While ACAID involves bone marrow-derived antigen-
presenting cells expressing F4/80 that convey ACAID-induc-
ing signals to the spleen [53], it is assumed that VBAID is at 

least partly mediated by antigen-presenting hyalocytes [14]. 
This hypothesis is based on Sonoda’s experiments, which 
demonstrated delayed immune responses upon antigen injec-
tion into the vitreous body [52]. Mice previously inoculated 
with antigens showed reduced ear swelling when chal-
lenged with antigen-pulsed peritoneal exudate cells in the 
ear pinnae, as compared to controls. These findings suggest 
that immune deviation can also be induced in the vitreous 
body, similar to the anterior chamber, leading to systemic 
tolerance. Since F4/80-positive hyalocytes are the main cell 
population found in the vitreous body, they were proposed 
as the antigen-presenting cells responsible for mediating 
VBAID. It has been suggested, but not yet convincingly 
proven, that antigens introduced into the vitreous body are 

Fig. 3  Functions of hyalocytes during development, adulthood, and 
disease. Hyalocytes exhibit a diversity of functions according to the 
developmental stage and health status: In the course of Wnt-mediated 
pre-programmed tissue-remodeling, hyalocytes play a role in the 
physiologic regression of the hyaloid vasculature during develop-
ment of the eye, essential for a clear optical axis. Furthermore, hya-
locytes might contribute hyaluronan and other structural molecules 
during formation of the secondary vitreous. Under steady-state post-
natal conditions, hyalocytes play a role in vitreous metabolism and 
homeostasis by producing extracellular matrix components, such as 
secreted phosphoprotein 1 (SPP1, osteopontin), different collagen 
types, and versican. As part of their surveillance function, hyalo-
cytes participate in phagocytosis, as evidenced by the expression of 
MERTK (MER proto-oncogene, tyrosine kinase) and CD74 (cluster 

of differentiation 74). Furthermore, hyalocytes are capable of scan-
ning their environment by extending and retracting their projections, 
in line with the surface expression of important cell motility markers, 
such as KCNK13 (potassium channel, subfamily K, member 13) and 
CX3CR1 (CX3C chemokine receptor 1). In the course of inflamma-
tion, hyalocytes abundantly express MHCII (major histocompatibil-
ity complex class II) molecules, participate in removal of debris, and 
present antigens to T cells, which themselves contribute to the chem-
otaxis of other immune cells by cytokine expression. In proliferative 
vitreoretinal diseases, hyalocytes can transdifferentiate into α-SMA 
(alpha smooth muscle actin)-positive myofibroblasts, capable of 
producing collagen and vimentin, and thus contribute to the fibrotic 
nature of these conditions, as well as induce pathologic membrane 
contraction. Reproduced with permission from Boneva et al. [14]



Graefe's Archive for Clinical and Experimental Ophthalmology 

captured by hyalocytes and transported through the blood-
stream to the spleen, where they stimulate natural killer T 
cells to produce immunosuppressive factors like IL-10 and 
TGF-β. This process may lead to the generation of antigen-
specific regulatory T cells, shaping the adaptive immune 
response [52], which may reduce excessive inflammation 
within the eye and maintain immune privilege. However, 
hyalocytes may not only exert indirect immunosuppressive 
effects but may also directly contribute to an immunosup-
pressive environment within the vitreous body to preserve 
vitreous transparency and visual function. Recent evidence 
indicates that hyalocytes express various factors associated 
with immune privilege in the eye, including alpha-melano-
cyte-stimulating hormone (α-MSH), cluster of differentia-
tion 86 (CD86), cluster of differentiation 46 (CD46), and 
TGF-β2, which can suppress inflammatory responses of T 
helper cells and induce regulatory T cells [10, 14]. However, 
further research is needed to fully understand the immuno-
suppressive mechanisms of hyalocytes in health and their 
potential pro-inflammatory properties in disease.

Transdifferentiation of hyalocytes

Cell transdifferentiation represents the conversion of a 
differentiated cell type into another cell type. Due to the 
activation of new genes, cells thereby lose their original 
biochemical and morphological properties and transition 
into a new cell type. As far back as 1959, Hamburg sug-
gested that hyalocytes might undergo a transformation into 
fibroblasts. He based this proposition on the observation of 
a higher concentration of hyalocytes in patients with Coats 
disease, specifically in cases of retrolental fibrosis [45]. 
This notion was later affirmed by in vitro studies showing 
that cultured hyalocytes overexpress α-SMA in response 
to TGF-β2. This was associated with a hypercontraction 
of collagen gels indicating a conversion of hyalocytes into 
myofibroblasts [54]. Recent evidence suggests that hya-
locytes have the potential to transform also in vivo into 
α-SMA-positive myofibroblasts in proliferative vitreoreti-
nal diseases. These myofibroblasts are capable of generat-
ing collagen and vimentin, thereby playing a role in the 
development of fibrosis associated with these conditions 
and contributing to the pathologic contraction of mem-
branes in human vitreoretinopathies [10, 55].

In summary, hyalocytes exert important functions in the 
developing and aging vitreous body such as synthesis and 
degradation of vitreous components, phagocytosis of cellu-
lar debris and pathogens, and antigen presentation. Within 
the immune-privileged site of the eye, hyalocytes may have 
both indirect immunosuppressive effects through the induc-
tion of systemic tolerance upon antigen inoculation in the 
vitreous body, and direct control over intraocular inflamma-
tion through the expression of various immunomodulatory 

factors. Nevertheless, pernicious effects of hyalocytes in the 
setting of excessive scarring are likely and are the subjects of 
current research. It is important to note that our understand-
ing of hyalocyte functions is still expanding, and ongoing 
research continues to uncover novel roles and nuances of 
their biology within the vitreous body.

The roles of hyalocytes in vitreoretinal 
diseases

Hyalocytes have been suggested to play a significant role 
in autoimmune diseases, uveitis, and in proliferative vitreo-
retinal diseases characterized by hypercellular membranes, 
such as macular pucker, PDVR, and post-retinal detachment 
PVR. Additionally, they may be involved in paucicellular 
vitreo-maculopathies like macular holes and vitreo-macu-
lar traction syndrome. The common underlying features of 
these diseases are assumed to be anomalous posterior vitre-
ous detachment and vitreoschisis (for a detailed review, see 
[13]). Before discussing in detail the role of hyalocytes in 
various vitreoretinal disease, it should be noted that the role 
of retinal microglia in vitreoretinal diseases is not addressed 
in this review (for a comprehensive review, see [56]) and that 
the distinct functions of retinal microglia from hyalocytes 
are still largely elusive. Preclinical evidence unequivocally 
illustrates the dynamic behavior of retinal microglia, which 
often leave their typical habitat in the plexiform layers to 
perform tasks such as phagocytosis of photoreceptors [57], 
or accumulate at the vitreoretinal interface in sites of reti-
nal neovascularization [58, 59]. Transcriptomic analyses of 
human samples obtained from enucleated eyes have revealed 
a remarkable degree of similarity between isolated hyalo-
cytes and retinal microglia, with approximately 97.8% of 
genes showing comparable expression levels in both cell 
populations. Despite this high degree of similarity, further 
analysis unveiled numerous genes that were significantly 
upregulated in hyalocytes as opposed to retinal microglia, 
which contribute to biological processes such as angiogen-
esis, chemotaxis, and leukocyte differentiation suggesting a 
distinct role for hyalocytes in specific vitreoretinal patholo-
gies [26]. While further studies are needed to fully evaluate 
the different roles of microglia and hyalocytes in various vit-
reoretinal diseases, we focus below on the current evidence 
on hyalocytes in vitreoretinal diseases.

Autoimmune diseases and uveitis

As innate immune cells, hyalocytes likely play a signifi-
cant role in modulating inflammatory diseases of the pos-
terior segment, including uveitis. Previous studies have 
postulated that hyalocytes may function as inhibitors of 
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intraocular inflammation within the context of ocular 
immune privilege [10, 14]. Under normal conditions, 
it is assumed that the immunosuppressive properties of 
hyalocytes outweigh their pro-inflammatory antigen-pre-
senting properties (see above) to maintain vitreous trans-
parency. However, in uveitis, this balance appears to be 
upset, resulting in local inflammation and accumulation of 
vitreous cells, leading to clinical manifestations of uvei-
tis, such as vitreous opacities, the visual phenomenon of 
floaters, and if severe, vision degrading myodesopsia [60]. 
Research using animal models such as endotoxin-induced 
murine uveitis and equine recurrent uveitis has demon-
strated an increase in MHCII-positive phagocytes (most 
likely hyalocytes), particularly on the apical processes of 
the ciliary body adjacent to the anterior vitreous cortex 
[61, 62]. In vivo imaging studies in mice with uveitis have 
shown an accumulation and subsequent disappearance of 
CD68-positive and Cx3cr1-positive tissue-resident mye-
loid cells, including retinal microglia and hyalocytes in 
the course of disease [63]. However, it remains unclear 
whether the observed increase in myeloid cell numbers is 
due to recruitment of blood-derived macrophages or clonal 
expansion of hyalocytes. In vitro studies have shown that 
tumor necrosis factor-alpha (TNF-α), an established 
cytokine involved in uveitis and mainly expressed by mac-
rophages, promotes hyalocyte proliferation, migration, and 
gel contraction [64]. Yet, the precise role of hyalocytes in 
uveitis is not well understood, and it can only be specu-
lated whether the clinically commonly observed obstruc-
tion of fundus details is due to proliferating hyalocytes, 
infiltrating blood-derived immune cells, and/or protein 
exudation from inflamed blood vessels. The options for 
direct analysis of hyalocytes in human uveitis are lim-
ited, as primary vitrectomy is not commonly employed 
for treatment. Therefore, new diagnostic methods such as 
vitreous biopsy prior to intravitreal drug injections [65] 
and adaptive optics imaging approaches are needed to 
elucidate whether hyalocytes tend to suppress the inflam-
matory response and reduce tissue damage, or rather pro-
mote inflammation. Given the close relationship between 
vitreous hyalocytes and retinal microglia and their mutual 
roles in autoimmune and neurodegenerative disorders, it 
is tempting to speculate about the existence of different 
subpopulations of these cells and their respective functions 
in diseases like multiple sclerosis, which may present with 
intermediate uveitis in the eye [66].

Age‑related macular degeneration

Age-related macular degeneration (AMD) is a progres-
sive chronic disease affecting the choroid, RPE, and neural 
retina. In its most aggressive form, known as neovascular 

AMD (nAMD), it is characterized by the infiltration of 
immune cells and myofibroblasts, and the accumulation of 
various extracellular matrix factors [67]. Previous research 
indicates a correlation between vitreo-macular adhesion 
and traction and an increased risk of choroidal neovascu-
larization (CNV) in AMD [68], as well as a lower occur-
rence of CNV in patients with complete posterior vitreous 
detachment (PVD) or following vitrectomy [69–71] sug-
gesting a potential role of vitreous and hyalocytes in the 
progression of this disease. Furthermore, eyes with exuda-
tive AMD and no PVD have a reduced responsiveness to 
anti-VEGF injections compared to those with PVD [72]. 
The mechanisms underlying these observations are poorly 
understood, but could involve a prevention of macular oxy-
genation and sequestration of pro-angiogenic cytokines 
by the attached posterior vitreous cortex, as well as pro-
inflammatory effects of anomalous PVD with persistent 
vitreo-macular traction. On a cellular and molecular level, 
recent extensive studies on the composition of neovascular 
complexes in humans have shed light on the involvement 
of inflammatory cells, including microglia and blood-
derived macrophages, in the formation of CNV [67]. 
Wieghofer and colleagues elegantly demonstrated that 
innate immune cells, such as retinal microglia and poten-
tially vitreous hyalocytes, are the predominant immune 
cells at sites of experimental CNV and that monocyte-
derived macrophages play a quantitatively lesser role 
in infiltration [25]. However, the role of innate immune 
cells, such as microglia and hyalocytes in AMD seems 
to be complex, as they most likely exert both beneficial 
and detrimental effects on disease progression. While they 
may be contributing to tissue damage and scarring through 
immune cell recruitment, they may also be promoting tis-
sue repair and eliciting anti-inflammatory responses [73, 
74]. However, the precise mechanisms by which the vitre-
ous influences nAMD progression remain unclear and the 
specific role of hyalocytes in AMD has not been exten-
sively studied. Yet, it is intriguing to speculate whether 
hyalocytes together with microglia might migrate to the 
neovascular complex and sustain an inflammatory stimulus 
that promotes neovascular development and/or persistence 
in AMD eyes with an attached posterior vitreous. Further 
research is needed to elucidate these mechanisms and the 
contribution of hyalocytes in AMD, both neovascular and 
dry.

Anomalous posterior vitreous detachment (APVD) 
and vitreoschisis (VS)

In young individuals, the vitreous body is a transparent gel 
consisting primarily of water (98%) along with structural mac-
romolecules (collagen and hyaluronan), and other important 
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components of the extracellular matrix [34]. However, with 
aging, myopia, and diabetes, vitreous undergoes fibrous liq-
uefaction and degeneration, causing destabilization of its 
structure. If there is a simultaneous weakening of the adhesion 
between the posterior vitreous and retina, the vitreous body can 
detach from the retina, resulting in an innocuous posterior vitre-
ous detachment (PVD) [75, 76]. In cases where there is exces-
sive fibrous liquefaction and degeneration within the vitreous 
body, coupled with insufficient weakening of vitreoretinal adhe-
sion, an anomalous PVD can occur [76]. This can lead to vari-
ous consequences depending on the location of the vitreoretinal 
separation and whether the outer vitreous layer (posterior vitre-
ous cortex), which is lamellar, remains intact (Fig. 4). Splitting 
between the layers of the posterior vitreous cortex, referred to 
as vitreoschisis, is particularly important in the pathophysiology 
of proliferative vitreo-retinopathies [77–79].

Anterior displacement of the posterior vitreous inanom-
alous PVD and vitreoschisis most likely leads to altered 
vitreoretinal homeostasis, initiating a complex cascade of 
cellular responses. If the vitreoschisis split is relatively ante-
rior, then many hyalocytes will be left attached to the retina. 
As a consequence, they will recruit immune cells from the 
bloodstream, glial cells from the retina and retinal pigment 
epithelial cells to the vitreoretinal interface, all of which can 
potentially cause and exacerbate proliferative vitreoretinal 
diseases. Although no direct evidence is yet available, it is 
very likely that hyalocytes act as sentinel of the vitreoretinal 
interface and mediate this cascade. Indirect evidence for this 
is the observation that hyalocytes express numerous sign-
aling molecules that can initiate cell recruitment [10, 26]. 
However, it is important to note that not all patients with 
vitreoschisis develop proliferative vitreoretinal disease. This 
may be due to a relatively posterior split in the posterior vitre-
ous cortex, leaving relatively few hyalocytes attached to the 
retina. Therefore, this hypothesized cascade of events appears 
to be highly individualized and dependent on factors such as 
the antero-posterior level and extent of cleavage, pre-existing 
vitreoretinal traction and breaks in the ILM, and possible 
disruption of the blood-retina barrier, although these remain 
so far unproven.

Hypercellular tractional vitreo‑retinopathies

Hyalocytes play a significant role in hypercellular, 
premacular membrane formation, contributing greatly 
to the development of macular pucker (MPK), prolifera-
tive vitreo-retinopathy, and proliferative diabetic vitreo-
retinopathy. On the other hand, paucicellular premacular 
membranes contain primarily glial cells [80].

Macular pucker

Macular pucker (MPK) was first described by Iwanoff in 
1865 as a fibrocellular membrane with folds and striae 
in the inner retina [38], resulting in disturbances in the 
cytoarchitecture of the outer retina [81]. Although the 
term “epiretinal membrane” is often used to refer to this 
disease, it actually does not refer to the condition, but 
the membrane that causes MPK. Furthermore, the more 
accurate term for this membrane is “premacular membrane 
(PMM)” since this more precisely identifies the exact loca-
tion of the membrane causing MPK. Previously labeled 
as “idiopathic,” it is now understood that MPK is caused 
by vitreous pathology. Early theories on the develop-
ment of MPK focused solely on retinal factors and mostly 
disregarded the role of vitreous. Contemporary theories 
propose two main causes: breaks in the inner limiting 
membrane (ILM) leading to glial cell migration, and on 
the other hand anomalous PVD with vitreoschisis, which 
involves hyalocytes. PVD is present in 80–95% of MPK 
cases [82, 83], a significantly higher prevalence compared 
to the general population over the age of 50 [84]. The 
retinal break/glial cell theory suggests that microbreaks 
in the ILM due to PVD create pathways for glial cells 
to migrate and proliferate along the retinal surface [85]. 
These assumed retinal breaks have, however, so far not 
been documented on histologic examination. The hya-
locyte theory directly implicates a role of the vitreous, 
via anomalous PVD with vitreoschisis. Spectral-domain 
OCT studies have detected vitreoschisis in 42% of MPK 
eyes [48], with a higher prevalence likely to be reported in 
future studies using superior imaging technologies, such 
as swept-source OCT, since during surgery vitreoschisis 
was found in 80% of MPK eyes [86].

The level at which vitreoschisis occurs influences the 
pathology. If the posterior vitreous cortex splits more ante-
riorly, a greater number of hyalocytes will remain adherent 
to the macula within the premacular membrane, initiating 
the process of MPK formation by recruiting monocytes 
and glial cells (see above). Hyalocytes embedded in this 
vitreous layer have been observed within premacular mem-
branes excised from MPK patients [87] (Fig. 5). Addition-
ally, hyalocytes can transform into myofibroblasts, causing 
tangential membrane contraction and exerting centripetal 
(inward toward the fovea) forces on the retina, resulting in 
the characteristic irregular retinal contour seen in MPK.

The aforementioned pathological mechanism may also 
underlie lamellar hole-associated epiretinal proliferation 
(LHEP), as cellular ultrastructural analysis of surgically 
excised tissue revealed mainly fibroblasts and hyalocytes in 
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Fig. 4  Anomalous posterior vitreous detachment (APVD). The vari-
ous possible manifestations of APVD are demonstrated in this flow 
diagram. When gel liquefaction and weakening of vitreoretinal adhe-
sion occur concurrently, the vitreous body separates away from the 
retina without sequelae. If the gel liquefies without concurrent vitre-
oretinal dehiscence, there can be various untoward consequences. If 
separation of vitreous from the retina is full-thickness but topographi-
cally incomplete, different forms of partial PVD occur (right side of 
diagram): Posterior separation with persistent peripheral vitreoretinal 
attachment can induce retinal breaks and detachments. Peripheral 
vitreoretinal separation with persistent full-thickness attachment of 
vitreous to the retina posteriorly can induce traction upon the mac-
ula, where it promotes neovascular age-related macular degeneration 
(AMD), and optic disc, where it contributes to neovascularization and 
vitreous hemorrhage in ischemic retinopathies. If during PVD the 
posterior vitreous cortex splits (vitreoschisis), there can be different 

effects depending on the level of the split (left side of diagram): Vit-
reoschisis anterior to the level of the hyalocytes (see Fig.  5) leaves 
a relatively thick cellular membrane attached to the macula and/
or peripheral retina. In cases of retinal detachment, peripheral vitre-
oschisis leaves hyalocytes attached to the retina where they promote 
proliferative vitreo-retinopathy. Posteriorly, with separation from the 
optic disc (present in about 90% of cases) inward (centripetal) con-
traction of this premacular membrane induces macular pucker. If 
the split occurs at a level posterior to the hyalocytes (see Fig. 5), the 
remaining premacular membrane is relatively thin and hypocellular. 
Persistent vitreopapillary adhesion (VPA, present in 87.5% or more of 
cases) influences the vector of force in the tangential plane, resulting 
in outward (centrifugal) tangential traction (especially nasally) and 
inducing a macular hole. Some cases of macular hole may develop 
in the absence of vitreoschisis. Modified with permission from Sebag 
et al. [7]
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LHEP [88]. Although there are other theories for the devel-
opment of LHEP postulating a Müller cell-driven process in 
response to factors such as degenerative changes in the ret-
ina [89], a role for hyalocytes in the development of LHEP, 
whether primary or secondary reactive, is highly likely.

Currently, vitrectomy with membrane peeling is the 
established treatment for MPK, and visual outcomes depend 
on factors such as the presence of multiple areas of retinal 
contraction, macular edema, alterations in the photoreceptor 
layer at time of surgery, and the integrity of the inner seg-
ment/outer segment junction [77, 90]. Whether the prophy-
lactic induction of a complete PVD or the molecular modu-
lation of hyalocytes can be a viable therapeutic approach for 
the prevention of MPK in the future needs to be investigated 
in more detail.

Proliferative vitreo‑retinopathy

Proliferative vitreo-retinopathy (PVR) is a fibroproliferative 
disorder hallmarked by the formation of contractile, fibrocel-
lular membranes in, on, and/or beneath the retina, that can 
arise following rhegmatogenous retinal detachment (RRD), 
surgical procedures, or trauma. Surgical failure after RRD 
repair occurs in 10–15% of cases and is often attributed 
to the development of PVR in the peripheral fundus [91]. 
PVR is characterized by three stages: inflammation, cell 
proliferation, and extracellular matrix (ECM) remodeling. 
Early stages of the disease exhibit marked hypercellular-
ity, partly due to an anterior splitting of the vitreous cortex 

during anomalous PVD with vitreoschisis. The primary cell 
types involved in PVR include hyalocytes, retinal microglia, 
astrocytes, retinal Müller cells, RPE cells, and myofibro-
blasts [55, 92]. Since they reside in the posterior vitreous 
cortex, hyalocytes have been suggested to be particularly 
important in initiating and promoting PVR by modulating 
immune and inflammatory processes, triggering fibrosis, and 
undergoing transdifferentiation into myofibroblasts, which 
eventually leads to the formation of tractional fibrocellular 
membranes [13, 80, 93]. Later in the pathophysiology of 
PVR, other myeloid cells such as retinal microglia and infil-
trating blood-derived monocytes may also play a role. The 
final fibrotic stage is characterized by membrane maturation 
and tangential contraction that is centripetal, thus causing 
underlying retinal folds.

Several studies and extensive surgical experience under-
score the crucial role of vitreous in PVR, since the vitre-
ous cortex is a scaffold for fibrocellular proliferation and an 
active participant in ECM remodeling. Within this structure, 
there exists an abundance of profibrotic and inflammatory 
mediators capable of inducing ECM contraction via hyalo-
cytes [93, 94]. In similar fashion to the vitreo-macular inter-
face, the lamellar structure of the peripheral vitreous cortex 
predisposes to vitreoschisis (VS), an important initiating 
event in PVR [34, 76]. Resulting residual vitreous cortical 
remnants (VCR), serve as scaffolds for PVR development, 
particularly if VS causes splitting of the posterior vitreous 
cortex anteriorly, leaving many hyalocytes within the VCR. 
Histopathological analysis of PVR membranes supports the 
association between VCR and PVR, as both native collagen 
and newly formed ECM components are detected within 
[95]. Within PVR membranes, different areas exhibit dis-
tinct cell and ECM characteristics. Areas characterized by 
low cellularity with hyalocytes and abundant collagen, likely 
correspond to VCRs resulting from VS [96] (Fig. 6). Hyalo-
cytes play a critical role by recruiting circulating monocytes 
(see above), secreting profibrotic cytokines, inducing ECM 
synthesis, promoting myofibroblast differentiation, and driv-
ing ECM contraction [12, 93, 97]. Additionally, imaging 
mass cytometry demonstrated the presence of IBA1-positive 
myeloid cells (possibly vitreous hyalocytes and/or retinal 
microglia) co-expressing α-SMA in surgically excised pre-
retinal PVR membranes, suggesting a transdifferentiation 
of myeloid cells into myofibroblasts as a common feature in 
PVR formation [12].

Proliferative diabetic vitreo‑retinopathy

Diabetic retinopathy is the primary cause of severe vision 
loss in working-age adults and poses a significant medical 
and socio-economic challenge due to its increasing preva-
lence [98]. Proliferative diabetic vitreo-retinopathy (PDVR), 
an advanced stage of the disease, is characterized by poorly 

Fig. 5  Proposed hypothesis of the role of hyalocytes in premacular 
membrane and macular hole formation. Ultrastructure of vitreoschi-
sis. Human hyalocyte, as imaged by transmission electron micros-
copy, embedded in the collagen meshwork of the posterior vitreous 
cortex (original magnification × 11,670). Vitreoschsis anterior to the 
level of hyalocytes upon anomalous posterior vitreous detachment 
leaves a relatively thick, hypercellular membrane attached to the mac-
ula (dotted blue line). Inward (centripetal) contraction of this mem-
brane induces macular pucker. If the split occurs at a level posterior 
to the hyalocytes, the remaining premacular membrane is relatively 
thin and hypocellular (dotted red line). Outward (centrifugal) tan-
gential traction can induce a macular hole. Modified with permission 
from Sebag et al. [27]
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perfused retina and hypoxia triggering the release of pro-angi-
ogenic growth factors, leading to retinal and optic disc neovas-
cularization [99]. While intravitreal anti-vascular endothelial 
growth factor (VEGF) therapy effectively inhibits VEGF and 
is commonly used to treat diabetic macular edema and PDVR, 
some patients exhibit only a moderate or poor response to 
this approach [100]. In these patients, contractile vascular 
membranes may form at the vitreoretinal and vitreo-papil-
lary interface. Clinical OCT studies have recently revealed 
clustering of plumper cells (most likely hyalocytes) around 
neovascularization sites and altered VRI cell morphology in 
patients with PDVR [39, 44]. Immunohistochemical studies 
reveal that hyalocytes in these eyes are situated directly on the 
retinal surface or within the anterior-most vitreous collagen 
fibrils. Immune cell markers, such as CD45, CD64, and IBA1, 
have been detected in these cells [101, 102]. In a recent study, 
Boneva et al., found that retinal neovascular complexes in 
PDVR contain myeloid cells, partly double positive for IBA-1 
and α-SMA, indicating their likely identity as hyalocytes 
based on their proximity to preretinal PDVR membranes, but 
also their potential to transdifferentiate in myofibroblasts [10]. 
TGF-β, a cytokine known to induce α-SMA expression in 
myeloid cells and promote hyalocyte contraction [103], was 
significantly upregulated in human retinal neovascularization 
on the transcriptional level [10]. These findings suggest that 
TGF-β-mediated myofibroblast transdifferentiation of hyalo-
cytes plays a crucial role in the formation of contractile fibro-
vascular membranes in advanced PDVR.

Paucicellular tractional vitreo‑maculopathies

The term paucicellular tractional vitreo-maculopathies 
encompasses a group of macular pathologies characterized 
by vitreo-macular adhesion, and formation of fibrocellular 
membranes with relatively few cells. This group includes 
vitreo-macular traction syndrome (VMTS), macular holes, 
and myopic foveoschisis [13, 104]. In VMTS, age-related 
fibrous degeneration of the vitreous body along with simul-
taneous persistent adhesion of the posterior vitreous cortex 
to the ILM causes traction in an axial (anterior–posterior) 
direction. Cell clusters on the ILM mark the initial stage 
of pathologic membrane formation in VMTS [102, 105]. 
In studies using correlative light and electron microscopy, 
hyalocyte activation has been implicated in vitreo-macular 
traction development despite low cellularity [106, 107]. 
Additionally, transdifferentiation of hyalocytes into myofi-
broblasts was suggested to contribute to the composition of 
fibrocellular membranes [106, 108]. A further understanding 
of the cellular dynamics and molecular processes involved in 
paucicellular tractional vitreo-maculopathies and elucidation 
of the role of hyalocytes in their pathogenesis would provide 
insight into potential therapeutic strategies.

Therapeutic and preventive approaches 
for proliferative vitreo‑retinopathies

Despite increased understanding of the crucial roles played 
by various cells in proliferative vitreo-retinopathies, tar-
geted therapeutic strategies for preventing conditions such 
as macular pucker, PVR, vitreo-macular traction syndrome, 
and macular hole are currently lacking [109]. However, 
advanced surgical techniques with chromodissection [110] 
represent a potential solution for facilitating the complex 
and challenging maneuver of membrane dissection at the 
vitreoretinal interface by providing better visualization 
and minimizing surgical trauma to the underlying retinal 
nerve fibers. This approach aims to thoroughly excise the 
peripheral vitreous that remains attached to the ILM due 
to vitreoschisis, thereby eliminating any VCR containing 
hyalocytes and their stimulatory effects [79, 96, 111]. By 
removing the scaffold for cell migration, proliferation, and 
pathologic extracellular matrix synthesis and contraction, 
during the initial repair of retinal detachment, chromodissec-
tion has demonstrated improved surgical outcomes by reduc-
ing the risk of recurrent retinal detachment and premacular 
proliferation with PVR as well as macular pucker [79, 112, 
113]. For effective vitrectomy in primary and recurrent 
retinal detachment cases, van Overdam and colleagues rec-
ommend the complete removal of vitreous using targeted 
triamcinolone acetonide-assisted visualization and chromo-
dissection techniques, including vitreous shaving, indenta-
tion at the vitreous base, and detection and removal of VCR 
over the macula and peripheral retinal surface, particularly 
when other PVR risk factors are present [96, 111]. Although 
van Overdam and other independent research groups found 
that this technique reduced PVR [113–115], further stud-
ies by different groups and surgeons are needed to reliably 
assess the impact on PVR and RD recurrence. Moreover, it 
is important to note that the detection and removal of vit-
reous cortex remnants pose considerable challenges, often 
requiring substantial time and carrying the inherent risk of 
iatrogenic damage to retinal tissue. Consequently, there is 
a pressing need for advancements in both the detection and 
removal techniques of VCR, possibly employing adjuvant 
therapies such as pharmacologic vitreolysis [116]. Addi-
tionally, comprehensive studies are warranted to delineate 
patient demographics that would derive maximal benefit 
from VCR removal, as well as to ascertain the optimal extent 
of VCR removal necessary for clinical efficacy. Finally, the 
distribution of hyalocytes following vitrectomy is currently 
elusive. Theoretically, complete vitreous removal should 
eliminate all hyalocytes from the eye. Nonetheless, residual 
vitreous may persist despite meticulous vitrectomy, particu-
larly in the ciliary body region, renowned for its hyalocyte 
abundance and firm vitreoretinal adhesion. The potential for 
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Fig. 6  Proliferative vitreo-retinopathy (PVR). Intraoperative imag-
ing before (A) and after (B) peeling of a PVR membrane, extend-
ing from the superior arcade to the inferotemporal periphery. The 
dashed line indicates the area from where the membrane was excised. 
C Light microscopy of the PVR membrane stained with hematoxy-
lin and eosin. Different continuous membrane areas can be distin-

guished, representing different stages of PVR: paucicellular, lamel-
lar collagen-rich areas with hyalocytes, suggestive of VCR (1); areas 
with increased cellular infiltration by glial cells and pigmented cells 
(possibly hyalocytes with engulfed pigment or RPE cells)  (2); more 
fibrotic areas with low cellularity and myofibroblasts (3). Courtesy of 
and used with permission of Dr. Koen van Overdam



 Graefe's Archive for Clinical and Experimental Ophthalmology

hyalocytes to re-populate the retinal surface, and the possi-
ble mechanisms underlying this process, which may involve 
clonal expansion or migration of macrophages from the 
ciliary body and iris, akin to observations in murine retinal 
microglia following pharmaceutical depletion [117], remain 
an enigma awaiting future investigation.

Concluding remarks

Despite being the largest structure in the human eye, the vit-
reous body remains one of the least understood of all ocular 
tissues regarding its roles in both health and disease. Conse-
quently, there is limited knowledge about various aspects of 
vitreous physiology and how it maintains a stable microenvi-
ronment within the eye. One crucial function of vitreous is to 
ensure transparency in the optical axis, allowing unimpeded 
light transmission to the retina. The rigorous organization of 
vitreous macromolecules minimizes light scattering, although 
this changes with age and certain diseases. Transparency 
also necessitates a relatively cell-free environment, yet the 
presence of cells within the vitreous body has been a sub-
ject of controversy since their discovery almost two centuries 
ago. Based on the evidence presented, it can be reasonably 
concluded that hyalocytes are a distinct population of cells 
residing in the vitreous body, separate from retinal microglia, 
despite their many similarities. While hyalocytes are distrib-
uted throughout the vitreous body, those located within the 
posterior vitreous cortex anterior to the ILM of the retina 
may play a crucial role. These hyalocytes act as sentinel cells, 
guarding against any harmful conditions that threaten the pos-
terior segment and, indeed, the entire eye. Hyalocytes in the 
anterior vitreous and at the vitreous base may serve a similar 
function in relation to the ciliary body. The reactions of pos-
terior hyalocytes to trauma, infection, aging, neurodegenera-
tive disorders, and systemic diseases likely contribute to the 
pathophysiology of various posterior segment eye diseases.

As elucidated in this review, hyalocytes have signifi-
cant involvement in proliferative vitreoretinal pathologies, 
including uveitis, both hypercellular and paucicellular vit-
reo-retinopathies, and possibly AMD. Residing in the pos-
terior vitreous cortex, hyalocytes are early responders and 
likely play a significant role in disease progression by pro-
moting cell migration, proliferation, transdifferentiation, 
and exerting contractile effects on the retina. Advances 
in visualizing hyalocytes in diseased eyes in vivo will 
improve our understanding of their contribution to patho-
genesis. A deeper understanding of hyalocytes’ role(s) 
in early-stage proliferative disorders at the vitreoretinal 
interface could lead to novel treatment strategies, such 

as targeted therapies directed at these cells, thereby miti-
gating disease progression. Strategies aimed at imped-
ing anomalous PVD and vitreoschisis could mitigate the 
effects of hyalocytes in proliferative vitreo-retinopathies.

To date, knowledge of vitreous anatomy, anomalous 
posterior vitreous detachment, vitreoschisis, and the role 
of hyalocytes has already led to the emergence and imple-
mentation of preventive strategies via meticulous surgical 
removal of peripheral vitreous and hyalocytes in avoiding 
PVR. Successfully eliminating the involvement of vitre-
ous and hyalocytes in this disease serves as a model for 
other disease prevention. This could also be done by avert-
ing PVD. Alternatively, inducing a harmless PVD could 
prevent proliferative vitreoretinal diseases by eliminating 
hyalocyte involvement in pathogenesis. Exploring phar-
macologic vitreolysis to induce prophylactic PVD could 
be a valuable avenue for future research and development, 
aiming to achieve similar benefits without the need for 
a surgical intervention [9, 116]. Considering the eye as 
a window to the body, the interaction between the eye 
and the central nervous system is particularly intriguing. 
Therefore, investigating hyalocytes in the posterior vitre-
ous and their interaction with the neural retina could also 
provide insights into neurodegenerative disorders of the 
central nervous system.
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