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Abstract
Purpose  To test the hypothesis that optical coherence tomography (OCT) choroidal hypertransmission width (CHW) is a 
prognostic biomarker in idiopathic macular hole (MH) surgery
Methods  Retrospective cohort study of consecutive patients undergoing successful pars plana vitrectomy for idiopathic 
MH. We collected demographic, clinical, and OCT variables at the preoperative and last available visits. Two investigators 
assessed the following OCT parameters: MH minimum diameter, base diameter, CHW, ellipsoid zone, and external limit-
ing membrane status (absent vs. present). Delta CHW was calculated as the difference between CHW and MH minimum 
diameter. Linear models were used to investigate factors associated with postoperative best-corrected visual acuity (BCVA) 
and BCVA change.
Results  Thirty-six eyes (36 patients) with a median (interquartile range (IQR)) follow-up of 9 (8–11) months were included. 
The median BCVA (IQR) improved from 0.75 (1–0.6) logMAR preoperatively to 0.2 (0.6–0.1) logMAR at the last visit (p < 
0.001). Preoperative MH minimum diameter (for a 10-μm increase, estimate (standard error (SE)): 0.009 (0.003) logMAR, 
p = 0.003), base diameter (for a 10-μm increase, 0.003 (0.001) logMAR, p = 0.032), CHW (for a 10-μm increase, 0.008 
(0.002) logMAR, p < 0.001), and delta CHW (for a 10-μm increase, 0.013 (0.005) logMAR, p = 0.009) were significantly 
associated with postoperative BCVA. The proportion of variance explained was the highest for MH CHW (R2 0.35), followed 
by minimum MH diameter (R2 0.24), delta CHW (R2 0.19), and MH base diameter (R2 0.14). None of the study variables 
was associated with delta BCVA.
Conclusion  Preoperative CHW is associated with postoperative visual acuity in patients undergoing successful idiopathic 
MH surgery and may be a useful OCT prognostic biomarker.
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Key messages

What is known:
Visual recovery can be uncertain following successful closure of a macular hole (MH).

What is new:

The MH size and photoreceptors integrity may predict the extent of functional recovery.

Choroidal hypertransmission width (CHW) may be an independent prognostic factor for postoperative visual 

acuity in successful idiopathic MH surgery.

CHW serves as a comprehensive index summarizing the size of the MH size and the extent of photoreceptor and 

retinal pigment epithelium dysfunction.

Introduction

Idiopathic full-thickness macular hole (MH) is an acquired 
macular disease characterized by a defect in the neuro-
sensory retina, resulting from tractional forces exerted by 
the inner limiting membrane (ILM) and vitreous. Clini-
cal examination, including dilated fundus examination, is 
of paramount importance in diagnosing MH. In the past 
two decades, optical coherence tomography (OCT) has 
emerged as a valuable tool in diagnosing, staging, and 
monitoring idiopathic MH.

Pars plana vitrectomy has become the treatment of 
choice for MH. Although modern surgical techniques 
have led to remarkably high anatomic success rates, func-
tional recovery may be uncertain, even after successful 
MH closure. There has been, therefore, interest in iden-
tifying factors that predict the extent of visual recovery 
in patients undergoing MH surgery. The size of the MH 
is a well-established predictive factor, and previous stud-
ies have shown that larger MHs have lower anatomical 
success rates and worse visual prognosis [1–5]. There are 
various methods to estimate MH size, but the minimum 
horizontal diameter is the most commonly used parameter 
because it is simple to measure, holds greater prognostic 
relevance than other metrics (i.e., base diameter), and is at 
the foundation of the current staging system [6, 7]. Still, 
there is considerable variability in visual recovery even 
among MHs of similar size due to the variable extent of 
photoreceptor damage [8].

The postoperative restoration of the ellipsoid zone 
(EZ) and external limiting membrane (ELM) are estab-
lished markers to determine the degree of visual recov-
ery [9–11]. Several studies have evaluated associations 
between preoperative EZ-ELM status and postoperative 
visual acuity with controversial results [12–15]. Assessing 

the integrity of outer retinal hyperreflective bands pre-
operatively may be arduous due to the distorted macular 
anatomy at the hole margins [8]. Furthermore, EZ-ELM 
defects tend to become progressively smaller or even be 
completely restored after successful MH closure, suggest-
ing that abnormalities in outer retinal bands may, to some 
extent, reflect retinal disorganization rather than irrevers-
ible photoreceptor damage [9, 15]. Consequently, other 
biomarkers acting as surrogate measures of photoreceptor 
integrity have been investigated to better predict postop-
erative visual outcomes [8].

Recently, choroidal hypertransmission has gained pop-
ularity as a prognostic biomarker in age-related macular 
degeneration (AMD) [16, 17]. Choroidal hypertransmis-
sion occurs due to increased light penetrance into the 
choroid. In AMD, this is believed to be caused by the loss 
of highly scattering retinal pigment epithelium (RPE) 
melanin granules and, in more advanced stages, the loss 
of RPE itself [17]. Choroidal hypertransmission may also 
be found in other conditions. Vance and colleagues [18] 
observed transient hypertransmission defects in the acute 
stages of multifocal choroiditis (MFC), suggesting that 
these may occur due to photoreceptors and RPE impair-
ment by subretinal inflammatory material. Palmieri et al. 
[19] found choroidal hypertransmission in highly myopic 
eyes with outer lamellar MH, with hypertransmission 
areas matching areas of EZ loss. Mehta et al. [20] investi-
gated choroidal hypertransmission in patients undergoing 
MH surgery and found that choroidal hypertransmission 
width (CHW) was correlated with postoperative visual 
acuity.

In our observations, choroidal hypertransmission in 
patients with MH often extends far beyond the margins of 
the hole, and we believe that the choroidal hypertransmis-
sion width (CHW) may be a surrogate measure for the status 
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of photoreceptors. This study aims to test the hypothesis that 
CHW, as measured with OCT, is a biomarker associated 
with visual outcomes after idiopathic MH surgery.

Materials and methods

In this single-center retrospective cohort study, we evaluated 
consecutive patients who underwent a 25G standard three-
port pars plana vitrectomy (PPV) for idiopathic MH between 
2019 and 2021 at the Azienda Ospedaliero-Universitaria 
Maggiore della Carità, Novara, Italy. This study adhered 
to the tenets of the Declaration of Helsinki and received 
approval from our hospital institutional ethics commit-
tee. Written informed consent was obtained from all study 
participants.

Inclusion criteria were the presence of an idiopathic MH 
of any size successfully treated with pars plana vitrectomy 
and a minimum follow-up of 6 months. Successful treatment 
was defined as postoperative MH closure as evaluated with 
dilated fundus examination and OCT. The exclusion crite-
ria were (1) impending MH (stage 1); (2) traumatic MH; 

(3) MH persisting after surgery; (4) an axial length greater 
than 26.5 mm; (5) the presence of a posterior staphyloma; 
(6) patients who underwent ILM peeling using the inverted 
flap technique; and (7) patients with a history of past ocu-
lar surgery, except for uncomplicated phacoemulsification. 
Patients with diabetes mellitus or a history of other ocular 
and systemic conditions potentially influencing anatomical 
and visual functions were also excluded. In cases where both 
eyes of a patient were eligible, only the first operated eye was 
included in the study.

Being a retrospective study, the investigations and fol-
low-up times were predetermined but were conducted at the 
discretion of the treating surgeons. Overall, the following 
examinations were performed at the baseline preoperative 
visit: best-corrected visual acuity (BCVA) on Snellen charts, 
anterior segment slit-lamp examination, dilated fundus 
examination, SD-OCT of the macula (Spectralis HRA-OCT; 
Heidelberg Engineering GmbH, Heidelberg, Germany), and 
optical biometry (Zeiss IOL Master, Zeiss, Jena, Germany). 
At postoperative visits, patients underwent BCVA, anterior 
and posterior segment slit-lamp examinations, and SD-OCT 
imaging.

Fig. 1   Spectral domain optical coherence tomography (SD-OCT) in 
three patients undergoing macular hole (MH) surgery. The left col-
umn shows preoperative measurements made on SD-OCT scans: MH 
minimum diameter (MD) was determined as the minimum distance 
between hole margins; choroidal hypertransmission width (CHW) 
was measured at the hyperreflective line corresponding to the retinal 
pigment epithelium (RPE). Delta CHW was calculated as the differ-

ence between CHW and MD. The central column shows magnified 
details of both preoperative EZ-ELM status at the MH margins and 
CHW (white asterisk). The right column shows postoperative macu-
lar hole closure with interrupted EZ-ELM (white arrowhead). ELM, 
external limiting membrane; EZ, ellipsoid zone; RPE, retinal pigment 
epithelium
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Surgical technique

Two experienced vitreoretinal surgeons (SDC and MA) per-
formed all surgeries with a standardized technique. Three-
port 25G PPV was performed with the Stellaris Elite vit-
rectomy system (Bausch & Lomb, Laval, Canada). After 
inducing a posterior vitreous detachment (PVD) as needed, 
the surgeon performed epiretinal membrane (ERM) and 
inner limiting membrane (ILM) peeling using dedicated 
forceps and 0.2 mL of blue dye (Membrane-Blue; DORC, 
Zuidland, The Netherlands). ILM peeling was extended over 
an area of 2- to 3-disc diameters. Following the ERM/ILM 
peeling, a fluid/air exchange was performed with the aspi-
ration of residual fluid through the MH and then injected 
with 20% sulfur hexafluoride (SF6) as a tamponading agent. 
Patients were instructed to maintain a prone position for two 
days postoperatively. In the case of preoperative cataracts, 
phacoemulsification with intraocular lens implants was per-
formed simultaneously, based on surgeons’ and patients’ 
preferences.

Optical coherence tomography (OCT) parameters

The quality of OCT images was reviewed, and poor-quality 
images were excluded. For each patient, a single horizon-
tal 9-mm high-quality line scan (consisting of 100 aver-
aged frames) that displayed the greatest MH dimension was 
acquired to determine OCT parameters. Two investigators 
(MM and FF) independently measured the following param-
eters at the preoperative scans: MH minimum diameter, base 
diameter, and CHW (Fig. 1).

To enhance accuracy, acquired OCT scans were then 
analyzed with a zoom factor of 800% included in the cor-
responding software with a resolution of 3.87 μm/pixel 
axially and 11.1 μm/pixel laterally. Quantitative meas-
urements were obtained using the built-in caliper of the 
Spectralis OCT device software. The qualitative analysis 
included the EZ and ELM status, categorizing them as 
present or absent. MH stage was classified according to 
the International Vitreomacular Study group subclassi-
fication for MH [6].

Statistical analysis

The distributions and normality of all study variables were 
assessed using frequency histograms and quantile-quantile 
plots. Mean (±standard deviation (SD)) and median (inter-
quartile range (IQR)) were reported for normally and non-
normally distributed continuous variables; frequency and 
proportions were reported for non-continuous variables. 
Prior to statistical analysis, Snellen visual acuity values were 
converted to the logarithm of the minimum angle of resolu-
tion (logMAR) scale.

Relationships among minimum diameter, base diameter, 
and hypertransmission diameter were investigated with 
bivariate plots. Delta CHW was defined as the difference 
between MH minimum diameter and CHW, representing the 
retina segment with CHW extending over the MH aperture.

Linear regression models were used to evaluate demo-
graphic, clinical, and OCT preoperative factors associated 
with (i) postoperative BCVA at the last available follow-
up visit and (ii) BCVA change, defined as the difference 
between the last available follow-up visit and the preopera-
tive visit. The study covariates included preoperative age, 
gender, preoperative lens status (i.e., phakic vs. pseudopha-
kic), preoperative BCVA, MH stage, preoperative ELM and 
EZ status (present vs. absent), preoperative cysts at the MH 
margins, preoperative MH minimum diameter, base diame-
ter, CHW, delta CHW, and follow-up time. Relationships and 
degree of correlations among study covariates were visually 
inspected with hierarchical cluster analysis based on Spear-
man |rho| coefficient values (Supplementary Figure 1). Lin-
ear regression analysis was performed between each study 
covariate and dependent variable. Point estimates, standard 
errors (SEs), p-values, and R2 coefficients were reported.

Given the high correlation among MH minimum diame-
ter, base diameter, and CHW, simultaneous incorporation of 
these variables in multivariable analyses was not feasible, to 
avoid collinearity. Consequently, we performed separate uni-
variable models for each covariate. Collinearity is a known 
source of unstable regression estimates and large standard 
errors. We also ran linear regression models after standard-
izing all dependent and independent variables to evaluate 
which OCT parameters had the greatest impact on explain-
ing postoperative BCVA and BCVA change. Standardiza-
tion facilitates the comparison of the magnitude effect of 
different model covariates by putting them on the same scale 
(i.e., zero mean and unit SD). Also, we ran multivariable 
models containing both preoperative MH minimum diam-
eter and delta CHW to test the hypothesis that delta CHW 
is associated with visual acuity recovery while accounting 
for MH size. As we found that delta CHW was mildly corre-
lated with MH minimum diameter, we also ran multivariable 
models after normalizing delta CHW values to make them 
completely independent from the MH size. Normalization 
was performed by linearly regressing delta CHW against 
MH minimum diameter. The observed delta CHW values 
were then divided by their corresponding predicted values. 
Normalized delta CHW was uncorrelated to the minimum 
MH diameter (Supplementary Figure 2). Ultimately, a stand-
ardized multivariable model was run, which included other 
variables previously associated with postoperative visual 
acuity (i.e., preoperative BCVA, preoperative absence of EZ, 
and follow-up duration). In this model, all variables were 
standardized except for the categorical variable indicating 
the absence of EZ.
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To adjust for the uneven postoperative follow-up, follow-
up time was included as a model covariate along with the 
covariates of interest in all models. All the statistical analy-
ses were conducted using the open-source software R (R 
Foundation for Statistical Computing, Vienna, Austria). All 
tests were 2-tailed, and p-values ≤0.05 were considered sta-
tistically significant.

Results

Thirty-six eyes from 36 patients, with a median (interquartile 
range (IQR)) follow-up of 9 (8–11) months, were included 
in the study. Table 1 summarizes the demographic and oph-
thalmic data of the study participants. The median BCVA 
(IQR) improved from 0.80 (1–0.6) logMAR preoperatively 
to 0.2 (0.6–0.1) logMAR at the last available postoperative 
follow-up visit (p<0.001). Post-surgery, BCVA improved 
in 31 out of 36 eyes (86.1%), while it worsened in 1 eye 
(2.8%) and remained unchanged in 4 eyes (11.1%), respec-
tively. The mean (±SD) CHW, minimum MH diameter, and 
base diameters were 534.5 (±207.9) μm, 363.7 (±162.6) μm, 
and 961.0 (±354.1) μm, respectively. The CHW consistently 
exceeded the minimum MH diameter and was smaller than 
the base MH diameter (Fig. 2). Also, all three variables had 
a moderate to substantial linear relationship (Fig. 2).

Table 2 illustrates the results of univariable analysis for 
factors associated with postoperative BCVA, adjusting for 
follow-up time. Preoperative MH minimum diameter (for 
a 10-μm increase, estimate (SE): 0.009 (0.003) logMAR, 
p=0.003), MH base diameter (for a 10-μm increase, estimate 
(SE): 0.003 (0.001) logMAR, p=0.032), CHW (for a 10-μm 
increase, estimate (SE): 0.008 (0.002) logMAR, p<0.001), 
and delta CHW (for a 10-μm increase, estimate (SE): 0.013 
(0.005) logMAR, p=0.009) were the only factors signifi-
cantly associated with postoperative BCVA. CHW explained 
the highest proportion of variance (R2 0.35), followed by 
minimum MH diameter (R2 0.24), delta CHW (R2 0.19), 
and MH base diameter (R2 0.14). Upon variable standardi-
zation, CHW emerged as the factor with the greatest impact 
on postoperative BCVA (β (SE), 0.568 (0.137)), followed 
by minimum MH diameter (β (SE), 0.471 (0.147)), delta 
CHW (β (SE), 0.421 (0.152)), and base diameter (β (SE), 
0.360 (0.161)).

Table 1   Clinical and imaging characteristics of patients undergoing 
idiopathic macular hole surgery

*Based on the IVTS subclassification for MH
BCVA best-corrected visual acuity, ELM external limiting membrane, 
EZ ellipsoid zone, IQR interquartile range, IVTS international vitreo-
macular traction study group, MH macular hole, SD standard devia-
tion

Age, years, mean (±SD) 68.3 (±11.7)
Gender, male/female 15/21
Eye, right/left 17/19
Preoperative BCVA, logMAR, median (IQR) 0.80 (0.6–1)
Axial length, mm, mean (±SD) 23.8 (±1.0)
Lens status, no eyes (%)
  Phakic 27 (75%)
  Pseudophakic 19 (25%)
MH stage*
  II 2 (5.6%)
  III 3 (8.3%)
  IV 31 (86.1%)
OCT parameters
  MH minimum diameter, μm, mean (±SD) 363.7 (±162.6)
  MH base diameter, μm, mean (±SD) 961.0 (±354.1)
  Choroidal Hypertransmission width, μm, mean 

(±SD)
534.5 (±207.9)

  EZ absence, no eyes (%) 14 (38.9%)
  ELM absence, no eyes (%) 10 (27.8%)

Fig. 2   Bivariate plots of preoperative MH minimum diameter and 
CHW (left panel), CHW and base diameter (middle panel), and MH 
minimum diameter and base diameter (right panel). Solid red and 

dotted black lines indicate regression and equivalence lines, respec-
tively. CHW, choroidal hypertransmission width; MH, macular hole
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Figure 3 presents the results from the standardized mul-
tivariable model, which included both the MH minimum 
diameter and delta CHW. Preoperative minimum diam-
eter (β (SE), 0.398 (0.142); p = 0.008) and delta CHW 
(β (SE), 0.333 (0.142); p = 0.025) were significantly 
associated with final postoperative BCVA. Similar results 
were obtained with the use of normalized delta CHW in 
the multivariable model (Supplementary Figure 3). The 
results remained consistent even when preoperative BCVA 
and the preoperative absence of EZ were incorporated into 
the standardized multivariable model (Supplementary 
Table 1). None of the study variables was significantly 
associated with BCVA change in either the univariable 
(Table 2) or the multivariable models (Fig. 3, Supplemen-
tary Figure 3).

Discussion

This study investigated preoperative clinical and OCT-
derived factors associated with the visual outcome after 
successful MH closure. We found that MH minimum diam-
eter and delta CHW were associated with the postoperative 
visual prognosis.

Anticipating surgical outcomes in patients with MH is a 
significant aspect of retinal surgery. Preoperative MH size 
is an established predictive factor for postoperative visual 
results; our findings are in agreement with a multitude of 
studies showing that smaller MHs have a better prognosis 
[3, 4, 21]. There is no consensus on the best way to meas-
ure MH size, and various OCT metrics have been proposed 
to evaluate the MH linear dimension, area, volume, and 

Table 2   Univariable linear 
regression models for factors 
associated with postoperative 
BCVA and BCVA change

Estimates for continuous variables are intended for 1-unit increase unless specified otherwise. All models 
were adjusted for follow-up time to account for uneven follow-up
BCVA best-corrected visual acuity, CHW choroidal hypertransmission width, ELM external limiting mem-
brane, EZ ellipsoid zone, MH macular hole, SE standard error

Variable Postoperative BCVA BCVA change

Estimate (SE) p-value Estimate (SE) p-value

Age, per decade 0.033 (0.044) 0.45 −0.065 (0.089) 0.47
Male gender −0.118 (0.104) 0.26 −0.123 (0.213) 0.57
Baseline lens status (ref: pseudophakia) −0.025 (0.117) 0.83 −0.225 (0.234) 0.34
Preoperative BCVA, logMAR 0.155 (0.078) 0.054 N/A N/A
Follow-up time, months −0.039 (0.025) 0.14 −0.095 (0.052) 0.08
MH stage IV (ref: II and III) −0.006 (0.147) 0.97 −0.448 (0.287) 0.13
Preoperative ELM absence −0.063 (0.114) 0.59 0.071 (0.232) 0.76
Preoperative EZ absence −0.121 (0.106) 0.26 0.213 (0.216) 0.33
Preoperative cysts −0.019 (0.223) 0.93 0.206 (0.450) 0.65
Preoperative MH minimum diameter, per 10 μm 0.009 (0.003) 0.003 −0.006 (0.006) 0.34
Preoperative MH base diameter, per 10 μm 0.003 (0.001) 0.032 −0.006 (0.003) 0.06
Preoperative CHW, per 10 μm 0.008 (0.002) <0.001 −0.003 (0.005) 0.57
Preoperative delta CHW, per 10 μm 0.013 (0.005) 0.009 0.004 (0.011) 0.71

Fig. 3   Forest plot for factors 
associated with final BCVA 
(left panel) and BCVA change 
(right panel). Dots and bars 
indicate standardized point 
estimates and 95% confidence 
intervals, respectively. BCVA, 
best-corrected visual acuity; 
CI, confidence interval; CHW, 
choroidal hypertransmission 
width; MH, macular hole
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configuration [22–25]. In this study, we included two metrics 
to inform the MH size, specifically minimum and base diam-
eter. These metrics, which are straightforward to calculate 
and can be measured on single-line scans, are widely used 
in clinical practice and classification schemes [6]. We found 
that the MH minimum diameter was a stronger predictor of 
postoperative functional outcome than the base diameter, 
in agreement with previous studies [2]. In a retrospective 
cohort study, Roth and colleagues [2] evaluated multiple 
OCT-morphologic parameters and found that minimum lin-
ear diameter had the best correlations with MH closure and 
postoperative VA.

In this study, we investigated whether choroidal CHW 
has a prognostic role in patients undergoing MH surgery. 
Although choroidal hypertransmission has been described 
in a multitude of retinal conditions, such as AMD [16, 17], 
MFC [18], punctate inner choroidopathy (PIC) [26], multi-
ple evanescent white dot syndrome (MEWDS), and myopic 
traction maculopathy with outer lamellar MH [19, 27], this 
OCT biomarker has less well been characterized in idio-
pathic MH. Recently, Mehta and colleagues [20] observed a 
positive correlation between CHW and visual acuity. How-
ever, the study did not answer the question of whether CHW 
provided any extra value compared to minimum MH diam-
eter in prognosticating visual acuity recovery.

We found that CHW was associated with postoperative 
visual outcomes after successful MH surgery and affected 
postoperative visual recovery more than all other study vari-
ables, including MH minimum diameter. We believe that 
CHW in the setting of MH may have distinctive compo-
nents. Within the MH aperture, light penetration may be 
increased because of the absence and lateral displacement 
of the retinal tissue overlying the RPE. CHW and minimum 
diameter were highly correlated, with the former increasing 
as the latter increased. Hence, some of the ability of CHW to 
explain postoperative VA results may be related to the MH 
size itself. However, we found that choroidal CHW was con-
sistently larger than MH minimum diameter and extended 
beyond MH margins. We termed this the mismatch between 
CHW and MH diameter as delta CHW, and we hypothesize 
this may be a sign of photoreceptor dysfunction and damage, 
especially at the level of the EZ-ELM complex, as suggested 
by a recent study [8]. Neuroretinal detachment from the RPE 
layer leads to profound modifications to the RPE-photore-
ceptor interface [8, 28]. Photoreceptors undergo progressive 
structural damage, with debris shedding into the subretinal 
space and shortening, distortion, and vacuolation of outer 
segments up to the point where outer segments appear as 
empty sacks at the tip of cilium [29]. RPE cells lose their 
apical villi and the apical-basal polarization, protrude with 
their cytoplast in the subretinal space, and proliferate the 
RPE monolayer with multi-layered areas or protrusion 
into the subretinal space [28]. Macrophages, monocytes, 

and granulocytes migrate into the subretinal space, usually 
acellular [28]. Retinal reattachment following MH surgery 
involves the regeneration of cones’ outer segments, produc-
tion of the interphotoreceptor matrix, restoration of RPE 
polarization and villi, and restarted functional relationships 
among all these structures [28]. The restoration of macu-
lar anatomy following MH surgery may occur over many 
months [9, 30], and patients undergoing successful MH 
surgery may require up to 2 years to reach their full visual 
potential [31].

To test the hypothesis photoreceptor damage as measured 
by delta CHW may be a prognostic biomarker for postopera-
tive visual recovery, we also ran models with delta CHW. 
We found that delta CHW was associated with postoperative 
visual outcomes. Still, when delta CHW and MH minimum 
diameter were included in the same multivariable model, 
delta CHW impact was less prominent than MH minimum 
diameter. These findings suggest that both MH size and 
photoreceptor dysfunction, as measured by delta CHW, 
may inform the prognosis for patients undergoing MH sur-
gery, with the former having greater importance. We believe 
CHW may represent a more informative prognostic index 
than MH size because it includes information from both 
MH size and outer retina dysfunction. Furthermore, CHW 
quantification is straightforward and could be automated in 
future algorithms, [32] potentially accessible on commer-
cially available OCT machines soon.

Other variables previously linked to visual acuity recov-
ery were not confirmed in our study. Disruption of outer 
retinal hyperreflective bands, including EZ and ELM, have 
been related to visual outcomes in patients undergoing MH 
surgery [33] or suffering from many other retinal diseases, 
including diabetic macular edema [34], age-related macular 
degeneration [35], and retinal vein occlusion [36]. In our 
study, preoperative EZ and ELM status were not signifi-
cantly associated with postoperative BCVA values. Previ-
ous studies [3, 4, 21] have found that better preoperative 
visual acuity was associated with better postoperative visual 
results. However, our study did not corroborate this finding.

Other study limitations should be acknowledged. This 
study has a short follow-up time, with the majority of eyes 
having less than 1 year of observation. Previous research 
[31] indicates that visual acuity can continue to improve 
for up to 2 years after MH surgery. Therefore, the follow-
up duration in our study might not be sufficient to fully 
observe the complete recovery of visual acuity postopera-
tively. The study’s small sample size may have resulted in 
underpowered analyses. Readers are encouraged to evaluate 
the point estimates alongside their 95% CI to understand if 
a certain piece of analysis may be underpowered. A non-
significant covariate with wide 95% CIs spanning widely 
around an estimate of zero may indicate that a particular 
analysis is not powered enough to detect a true association; 
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on the other hand, a significant covariate with wide 95% 
CIs may indicate a true association but with uncertainty in 
its exact magnitude. The multivariable models showed lim-
ited ability to predict postoperative BCVA, explaining less 
than one-third of the total variance. This suggests that other, 
unaccounted-for variables might be influencing a significant 
portion of the visual recovery that remains unexplained. We 
did not include some variables of potential interest, such as 
symptom duration or other OCT-based parameters. Previ-
ous studies [3, 4, 21] have shown that MH duration prior to 
surgery is associated with the postoperative functional out-
come, with more recent MHs having better visual recovery. 
Other, more complex macular hole indices, reflecting MH 
area, volume, and configuration, have been described. Still, 
they are not commonly used in clinical practice, may be 
difficult to calculate, and did not unequivocally prove to be 
any better than more straightforward and clinician-friendly 
indices, such as minimum and base MH diameter [2, 37]. 
CHW is a bidimensional entity, but we only measured its 
linear diameter at the point where the macular hole dimen-
sion is the greatest; further research is needed to evaluate 
whether CHW area, linear diameter at other locations (e.g., 
MH margins), or hyperreflectivity intensity has better prog-
nostic value. As we only included patients with successful 
idiopathic MH surgery, the prognostic role of CHW may 
not be generalizable to eyes with MHs secondary to other 
conditions or where surgery was not successful. Similarly, 
since most of the eyes included in this study were classified 
as stage IV, the findings may not be broadly applicable to 
cases of less advanced MHs. We also excluded patients oper-
ated with the inverted flap technique, and results may not be 
generalizable to this technique.

In conclusion, this study provides evidence that OCT 
CHW is an independent prognostic factor associated with 
postoperative visual acuity in patients undergoing successful 
surgery for idiopathic MH surgery. Within a single index, 
CHW may summarize information regarding the MH size 
and degree of photoreceptors and RPE dysfunction. Further 
research is needed to validate this finding across diverse 
patient populations.
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