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Abstract
Purpose  Advances in artificial intelligence (AI)-based named entity extraction (NER) have improved the ability to extract diagnostic 
entities from unstructured, narrative, free-text data in electronic health records. However, there is a lack of ready-to-use tools and 
workflows to encourage the use among clinicians who often lack experience and training in AI. We sought to demonstrate a case 
study for developing an automated registry of ophthalmic diseases accompanied by a ready-to-use low-code tool for clinicians.
Methods  We extracted deidentified electronic clinical records from a single centre’s adult outpatient ophthalmol-
ogy clinic from November 2019 to May 2022. We used a low-code annotation software tool (Prodigy) to annotate 
diagnoses and train a bespoke spaCy NER model to extract diagnoses and create an ophthalmic disease registry.
Results  A total of 123,194 diagnostic entities were extracted from 33,455 clinical records. After decapitalisation and removal 
of non-alphanumeric characters, there were 5070 distinct extracted diagnostic entities. The NER model achieved a precision 
of 0.8157, recall of 0.8099, and F score of 0.8128.
Conclusion  We presented a case study using low-code artificial intelligence-based NLP tools to produce an automated oph-
thalmic disease registry. The workflow created a NER model with a moderate overall ability to extract diagnoses from free-
text electronic clinical records. We have produced a ready-to-use tool for clinicians to implement this low-code workflow 
in their institutions and encourage the uptake of artificial intelligence methods for case finding in electronic health records.
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Key messages

What is known:

Artificial intelligence-based natural language processing has significantly advanced the ability to extract information
from clinical free-text.

Despite recent advances, implementation of these techniques for clinicians is limited by experience, training, and 
access to ready-to-use tools.

What is new:

Through a case study, we demonstrate the potential of artificial intelligence-based named entity recognition to
extract diagnostic entities from clinical free-text electronic health records to create an automated registry of
ophthalmic diseases.

This case study is accompanied by a low-code, ready-to-use tool to reproduce the registry in any institution.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00417-023-06190-2&domain=pdf
http://orcid.org/0000-0002-1110-3780
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Introduction

Artificial intelligence-based natural language processing 
(NLP) techniques have significantly improved the ability 
to extract information from free text [1]. This technology 
has important implications for improving the recording 
of diagnoses in electronic health records. Supplement-
ing manually coded diagnoses with those found in text 
improves patient cohort identification in studies involv-
ing the secondary use of electronic health records [2]. 
However, applying new and advanced artificial intelli-
gence methods for diagnostic named entity recognition 
(NER) requires expert knowledge of these techniques and 
the skills to implement them. These skills are unfamiliar 
to most clinicians and are a significant barrier to imple-
menting NLP in clinical and research workflows.

Artificial intelligence-based methods have advantages 
over the previous dictionary and rule-based techniques 
for clinical named entity recognition. Dictionary-based 
approaches such as the clinical Text Analysis and Knowl-
edge Extraction System (cTAKES) are early examples of 
NLP that provided good performance for NER with clinical 
text. The cTAKES algorithm implemented terminology-
agnostic dictionary look-up within a noun-phrase look-
up window [3]. However, dictionary-based approaches 
are limited by the uniqueness of biomedical vocabulary, 
including abbreviations [4–6], misspellings [7], variable 
representations of similar concepts [8], ambiguity [9], and 
variable representations of numbers in text [10]. Rule-
based approaches can often achieve high performance [11, 
12], but are practically limited by needing to be tailored 
to specific entities and texts, which restricts generalizabil-
ity, and are resource intensive requiring extensive expert 
knowledge and time to develop. Powerful feature-engi-
neered supervised machine learning methods such as con-
ditional random fields (CRF) and support vector machine 
algorithms further improved the performance of NER 
beyond dictionary and rule-based approaches, demonstrat-
ing the potential application of machine learning to natural 
language processing and increasing their use [13]. Deep 
learning methods, including neural networks, have shown 
additional increases in performance [14, 15]. In particular, 
recurrent neural networks have shown examples of supe-
rior performance to CRF for clinical text [1]. More recent 
advancements in transfer learning and transformer-based 
models have improved performance even further [15]. Arti-
ficial intelligence offers more generalisable approaches to 
disease identification without extensive clinician input.

Despite a general awareness of the uses of artificial 
intelligence, clinicians’ lack of artificial intelligence 
training and experience may present a barrier to imple-
menting such technology [16–18]. Education of clini-
cians regarding artificial intelligence and assistance 
with implementation is an emerging priority [19], given 
that clinicians will be a critical factor in adopting AI in 
healthcare. Developing artificial intelligence-based tools 
and workflows that are easy to use, production-ready, 
and low-code may assist in facilitating the introduction 
of artificial intelligence techniques into healthcare and 
research. There are few ready-to-use tools to apply to 
clinical text for diagnostic registry production using clin-
ical NER [15]. Thus, we sought to develop and demon-
strate the application of low-code artificial intelligence-
based NLP tools applied to electronic clinical records to 
build an automated registry of ophthalmic diseases.

Methods

We performed this study at the Royal Adelaide Hospital, 
Adelaide, Australia, with the approval of the institutional 
Human Research Ethics Committee, adhering to the tenants 
of the Declaration of Helsinki. We extracted deidentified 
free-text ophthalmology clinic records from the EHR sys-
tem for all adult outpatient ophthalmology clinics between 
November 2019 and May 2022. All notes were free text and 
written in English.

We performed dataset annotation and NER model train-
ing using a low-code annotation software tool (Prodigy, 
ExplosionAI GmbH, Berlin, Germany) [20]. Prodigy is 
an active learning-based annotation tool and integrates 
with the spaCy natural language processing learning 
library. The architecture of the spaCy model is not open 
source but is described as using sub-word features, Bloom 
embeddings, and a deep convolutional neural network with 
residual connections. The tool enables the annotation of 
diagnoses by highlighting text in a graphical user interface 
displayed in a web browser (Fig. 1) [21]. The tool uses 
simple, one-line text commands entered into the termi-
nal to execute tasks. These tasks are pre-scripted Python 
functions that initialise dataset annotation and train NER 
models. Figure 2 summarises the workflow.

Annotation was performed by a single qualified medical 
practitioner investigator with graduate ophthalmic expe-
rience (CM). Only ophthalmic diagnostic entities were 
annotated (Fig. 1). Non-ophthalmic diagnoses listed in 
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past medical history when this occurred were not anno-
tated. The spans of words containing the complete descrip-
tion of the diagnosis were annotated to ensure extractions 
were interpretable, non-ambiguous, and preserved a con-
textual window on either side of the diagnosis.

The annotation command tokenises the electronic clini-
cal records into words to prevent errors of partial selection 
when annotating. Using the graphical user interface, we 
annotated the first 1000 health records to create an initial 
dataset of annotations (Fig. 2).  We annotated only words 
relevant to the diagnosis, annotating multiple-word diag-
noses as a complete annotation. Using the initial annota-
tion dataset, we trained an initial NER model, which we 
subsequently used to provide suggested annotations in fur-
ther dataset annotation to increase annotation efficiency.

A further and larger annotation dataset was created by 
annotating a proportion of the remaining clinical records 

and correcting the suggestions made by the initial NER 
model. We included only new records not previously 
annotated to create this dataset. We calculated accuracy 
statistics at approximately 500 note intervals by training 
a model using increasing proportions (25%, 50%, 75%, 
100%) of the total annotations. Annotation of the clinical 
records continued until model accuracy showed minimal-
to-no further improvement within the last 25%, occurring 
at 1923 records.

Using the low-code tool, we trained a final NER 
model using both the initial and larger annotation data-
sets. The model evaluation metrics included precision, 
recall, and standard F score [22]. The model training 
command reserves a proportion of annotations to evalu-
ate the model and produce accuracy statistics after 
training. Therefore, creating a separate gold standard 
evaluation dataset is not required to evaluate the model’s 

Fig. 1   The graphical user 
interface for annotation dataset 
creation with example annota-
tions of diagnostic entities
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performance. We used 20% of the annotations to produce 
the precision, recall, and F score. Precision refers to the 
ratio of true positives to the sum of true and false posi-
tives (TP/TP + FP), and recall refers to the ratio of true 
positives to the sum of true positives and false negatives 
(TP/TP + FN). NER model errors were analysed by the 

proportion of complete false positives, complete false 
negatives, and right label with overlapping span, as pre-
sented by Nejadgholi et al. [23].

To extract the diagnostic entities, we used the spaCy 
(v3.1.4) library to load and run the model over the 
entire set of clinical records. After extraction, regular 

Fig. 2   Summary of the work-
flow to build the low-code 
automated ophthalmic disease 
registry
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expressions cleaned the entities to remove capitalisa-
tion and non-alphanumeric characters. In addition, we 
used the gensim (v4.1.2) library to calculate the term 
frequency-inverse document frequency (TF-IDF) for each 
entity-document pair to include for use in the registry. 
A binary weight was used for the term frequency and 
pivoted unique normalisation for document length nor-
malisation. We used a binary weight as only the appear-
ance of the entity in the document was relevant. Pivoted 
unique normalisation was used to counter bias intro-
duced by document length and align the probabilities 
of retrieval and relevance [24], given that clinical notes 
can vary in length.

  We manually mapped a proportion of extracted 
entities representing common terms to SNOMED-CT 
(International Edition, version 2021-07-31) terms and 
corresponding codes. The datasets, including the clinical 
records, extracted entities, and their mapped SNOMED-
CT terms, were imported into a free and open-source 
database management tool (Metabase, San Francisco, 
CA, USA) [25]. Datasets were joined via common data 
elements to produce a final registry containing patient 

medical record numbers, health records, extracted enti-
ties, and linked SNOMED-CT terms (Fig. 3).

We have condensed the steps for creating this regis-
try into a series of sequential batch files (text files that 
execute a sequence of commands) for simple reproduc-
tion in any institution. Users must supply their electronic 
records to build the registry using our pre-trained NER 
model. Alternatively, users can train an institution-spe-
cific NER model in place of this using a variety of the 
available low-code annotation tools [26]. The reproduc-
ible registry files are hosted on GitHub (https://​github.​
com/​OphRL/​AutoR​egist​ry) along with instructions.

Results

The model achieved an F score of 0.8128, precision 
(ratio of true positives to the sum of true positives and 
false positives) of 0.8157, and recall (ratio of true posi-
tives to the sum of true positives and false negatives) 
of 0.8099. The model was run over 33,455 notes, and a 

Fig. 3   Interface of the automated ophthalmic disease registry

https://github.com/OphRL/AutoRegistry
https://github.com/OphRL/AutoRegistry
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total of 123,194 named entities were extracted, 5070 of 
which were distinct (after decapitalisation and remov-
ing non-alphanumeric characters). The most frequently 
extracted diagnostic entities included ‘cataract’ (5.2%), 
followed by ‘ppv’ (3.0%), ‘erm’ (2.8%), ‘rd’ (2.3%), and 
‘pseudophakic’ (2.2%). The 20 most frequent extractions 
are presented in Table 1.

There were 159 type one (complete false positives), 
102 type two (complete false negatives), and 20 type 
five (right label, overlapping span) mismatches. Figure 4 
illustrates an example of a note containing correctly pre-
dicted diagnostic entities (yellow), false negatives (red), 
and false positives (green). The figure shows the correct 
labelling of ‘optic neuropathy’. However, the model did 
not predict the diagnostic entity ‘atypical optic neuritis’, 
resulting in a false negative. In addition, the model pre-
dicted the listed differential ‘GCA’ as a diagnostic entity 
which was recorded as a false positive.

Table 2 shows examples of lexical representations of 
cranial nerve palsies in the clinical records. The enti-
ties exemplify misspellings, abbreviations, acronyms, 
varying forms for the same concept, variable represen-
tation of numbers using words, and Arabic and Roman 
numerals.

Discussion

Using a low-code workflow, we trained a NER model with 
moderate precision (0.8157) and recall (0.8099) and over-
all performance (F score 0.8128) in extracting diagnoses 
from free-text clinical records. Most errors were due to false 
positives, followed closely by false negatives. Overlapping 
spans accounted for a small proportion (7.1%) of errors dur-
ing evaluation. A higher false positive rate is unlikely to 
impact the functioning of an automated registry, given that 

Table 1   Most frequent entities extracted from text (decapitalised and 
non-alphanumeric characters removed)

Extracted entity Number Proportion of 
total entities 
(%)

cataract 6419 5.2
ppv 3744 3.0
erm 3476 2.8
rd 2887 2.3
pseudophakic 2727 2.2
cataracts 2533 2.1
iol 2296 1.9
phaco 2240 1.8
cmo 1956 1.6
poag 1940 1.6
pdr 1918 1.6
vh 1893 1.5
glaucoma 1746 1.4
pvd 1592 1.3
trab 1385 1.1
avastin 1382 1.1
pterygium 1367 1.1
dmo 1284 1.0
cnvm 1256 1.0
prp 1204 1.0

Fig. 4   Example of clinical record with the NER model applied show-
ing correct predictions, false negatives, and false positives. Yellow: 
correctly predicted diagnostic entities. Red: false negatives. Green: 
false positives
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the aim is to detect all possible diagnoses present. How-
ever, false negatives are an area of potential improvement. 
The false positive pictured in Fig. 4 shows an example of a 
prediction that was incorrect due to its context rather than 
an incorrect diagnostic entity. Given that differential lists 
are a common occurrence, this may contribute to the higher 
false positive rate.

The complexities of clinical natural language are dem-
onstrated through examples of variable representations of 
cranial nerve palsies in free text (Table 2). These entity 
examples illustrate the presence of misspellings, abbrevia-
tions, acronyms, variable forms of similar concepts, and 
variable representations of numerical expressions in oph-
thalmic notes. Low-code NLP tools enable the rapid creation 
of a disease registry containing a broad range of diagnoses 
in free-text electronic clinical records without requiring 
extensive clinician input. We implemented this pipeline in 
a ready-to-use tool to implement this workflow in any insti-
tution to create a disease registry.

Low-code NLP tools aim to reduce the barriers to imple-
menting new and advanced artificial intelligence-based 
techniques for entity recognition in clinical and research 
workflows. We performed annotation using a user-friendly 
graphical interface, which was initialised using simple com-
mands in the terminal (the text-based interface which ena-
bles interaction with the computer’s files and directories). 
Given that annotated datasets are required for supervised 
learning techniques, an increasing number of annotation 
tools are now available to create these datasets efficiently 
[26]. Features such as annotation suggestions are impor-
tant, given that pre-annotation has previously been shown 
to improve annotation speed [27].

Rule-based approaches to extracting entities may perform 
well in task and domain-specific applications but are time-
consuming and task-specific and require significant domain 
expert input when compared. Previous applications of such 
techniques to disease registries have included the use of regu-
lar expressions (text pattern matching) [28], modified tools 
based on regular expressions [29], and NLP tools using pre-
trained models augmented with rule-based techniques [30, 31] 
[32]. Matching entities through regular expressions requires 
intimate knowledge of the representation of entities in clini-
cal text and pre-specification of the patterns to detect. This 
specification is time-consuming and inflexible. For example, 
designing regular expressions to detect all possible representa-
tions of cranial nerve palsies, as depicted in Table 2, is com-
plex. There have been significant advancements in artificial 
intelligence-based techniques for clinical NER, particularly 
with the introduction of transfer learning and transformer-
based models [15]. For example, Moquarrab et al. presented a 
novel deep learning-based technique to extract clinical entities 
from clinical notes in the i2b2 NLP challenge datasets [33]. 
The authors used a combination of techniques, including a 
convolutional neural network, bidirectional long short-term 
memory (Bi-LSTM), and conditional random fields with non-
complex embeddings. They achieved an F1 score of 93.57 and 
86.11 across the 2010 and 2012 i2b2 datasets, respectively, 
showing significant improvements above previous applica-
tions. For comparison, the combination of the Bi-LSTM 
model and bidirectional encoder representations from trans-
formers (BERT) embeddings achieved an F1 score of 90.25 
and 80.91 in the i2b2 2010 and 2012 datasets, respectively 
[34]. Other popular models for NER, such as the conditional 
random field, achieved an F1 score of 84.30 in the i2bs 2010 

Table 2   Examples of the various lexical representations of cranial nerve palsies in ophthalmic clinical records (decapitalised and non-alphanu-
meric characters removed)

Concept Entities

Cranial nerve palsy cn palsy, craneal nerve palsy, cranial nerve palsy
3rd cranial nerve palsy 3rd cn palsy, 3rd nerve palsy, cn iii microvascular palsy, cn iii palsy, cn3 palsy, cn3fourth palsy, cniii palsy, iii cn palsy, 

iii n palsy, iii nerve palsy, microvascular third nerve palsy, third nerve palsy, third nerve palsy suspect, total cn3 palsy
4th cranial nerve palsy cn 4 palsy, cn 4th palsy, cn iv palsy, cn3fourth palsy, cn4 palsy, cniv palsy, congenital cn4 palsy, forth nerve palsy, 

fourht nerve palsy, fourth n palsy, fourth nerve palsy, fourth nerve paresis, iv cn palsy, iv n palsy, iv nerve palsy, iv 
palsy

5th cranial nerve palsy cn v palsy, cn5 palsy, trigeminal nerve palsy
6th cranial nerve palsy 6th nerve palsy, 6th palsy, abducens nerve palsy, abducens palsy, acute cn vi palsy, cn 6 palsy, cn 6th palsy, cn vi palsy, 

cn6 new palsy, cn6 palsy, cnvi palsy, cranial nerve vi palsy, traumatic cn vi palsy, vi and vii palsy, vi cn, vi cn palsy, 
vi cranial nerve palsy, vi n palsy, vi n paresis, vi nerve palsy, vi nerve paresis, vi palsy, vith cnp, vith cranial nerve 
palsy, vith nerve palsy

7th cranial nerve palsy bell’s palsy, bells palsy, branch viin palsy, cn 7 palsy, cn vii, cn vii palsy, cnvii palsy, facial n palsy, facial nerve deficit, 
facial nerve palsies, facial nerve palsy, facial nerve paralysis, facial nerve static palsy, facial nerve weakness, facial 
palsy, facial vii palsy, parotid gland resection cn 7th palsy, total facial nerve palsy, vi and vii palsy, vii palsy, viith 
palsy
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dataset [35]. While it is difficult to perform comparisons 
across studies due to differences in pre-processing, dataset, 
and methodological differences, the benefits and improving 
performance of artificial intelligence-based techniques for 
clinical NER are promising for applications in automated reg-
istry production. However, few tools ready for implementation 
are currently available [15].

An ophthalmic disease registry could play an important 
role in identifying and monitoring rare diseases through 
electronic health records. It is estimated that 263–446 mil-
lion persons are affected by rare diseases globally at any 
time [36]. Despite the clear burden of rare diseases and 
the need for research, rare disease research is limited by 
recruitment and sample size issues [37]. Searching diag-
nostic codes for instances of rare diseases is restricted by 
underrepresentation in most common ontologies such as 
the International Classification of Diseases [38] [39]. Elec-
tronic health records have been used previously to identify 
rare diseases [40, 41]; however, approaches to detection 
relied on regular expressions [42, 43]. A NER registry 
approach eliminates the pre-specification of expressions 
and is not diagnosis-specific, allowing flexibility in the 
range of diseases to be monitored. DeLozier et al. previ-
ously developed a system to monitor rare diseases through 
electronic health records [43]. An email alert system was 
used to prompt investigators to review rare drug reactions 
in clinical notes to improve recruitment in prospective clin-
ical trials of drug-induced torsades de pointes and Stevens-
Johnson Syndrome and toxic epidermal necrolysis. The 
alert system increased the rate of recruitment and reduced 
the time to enrolment in the studies. Monitoring diseases 
in free-text fields via integration with alerting systems can 
improve the monitoring of rare diseases and reduce barriers 
to cohort identification for research.

Diagnoses in unstructured free-text fields of electronic 
health records supplement manually coded diagnoses. The 
median accuracy of diagnostic coding in discharge sum-
maries is 80.3% [44], but the coding of comorbidities in 
problem lists is often incomplete [45–48]. The lack of com-
pleteness results in poor sensitivity of diagnostic coding, 
despite achieving high specificity [45, 49–52]. Therefore, the 
absence of a diagnostic code does not necessarily reflect the 
absence of the disease. Coding accuracy is further affected 
by changes in the coding systems used [47], lack of suitably 
granular codes [53], incomplete coding in single centres due 
to data fragmentation across multiple sites [54], and length 
of time registered in an EHR [55]. Supplementing diagnostic 
coding with unstructured fields can improve this sensitivity 
[2, 56, 57]. This increased sensitivity has important implica-
tions for the case-finding ability of studies using electronic 
health records.

Our workflow has several limitations. The NER model 
extracts entities as they appear in text and is not integrated 

with a linking process to standard ontology. Therefore, 
linking terms to an ontology is considered a downstream 
task. However, building a database of diagnostic entities 
as they appear in the clinical records can inform further 
development of linking strategies or vocabulary data-
bases. Our model was trained and evaluated using clini-
cal records from a single institution. The model’s perfor-
mance, if evaluated using external notes, is likely to be 
lower. However, rapid dataset annotation using low-code 
NLP tools means any institution can create custom NER 
models. Furthermore, annotations were performed by a 
single annotator. Thus, the registry represents the annotat-
ing characteristics of a single annotator. Multiple annota-
tors may reduce this bias; however, annotators should be 
trained to follow annotation guidelines to ensure adequate 
inter-annotator agreement [57]. Lastly, all annotations 
were performed in English. Replication of the study find-
ings with non-English free text would be beneficial.

We demonstrated a workflow using low-code NLP 
tools to produce an ophthalmic disease registry, with an 
accompanying ready-to-use tool to reproduce the registry 
in any institution. Our NER model displayed a moderate 
overall ability to extract ophthalmic diagnoses from free-
text electronic clinical records. There is a further need for 
standard ophthalmic datasets for the evaluation of NER 
models and ready-to-use tools to encourage increased use 
of artificial intelligence for clinical NER tasks.
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