Skip to main content

Advertisement

Log in

Cataract surgery astigmatism incisional management. Manual relaxing incision versus femtosecond laser-assisted arcuate keratotomy. A systematic review

  • Review Article
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

This systematic review aims to compare corneal astigmatism correction in cataract surgery through corneal relaxing incision, manually and femtosecond laser assisted.

Methods

The study was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement recommendations. We used PubMed, Scopus, and Web of Science (WOS) as databases from January 2010 to March 30, 2021. Patients with keratoconus, corneal ectasia, and a previous history of eye surgery were excluded because our aim was to analyze only healthy eyes.

Results

A total of 1025 eyes were evaluated from 946 patients (mean age was 68.90 ± 5.12) in manual incision group articles, while 1905 eyes of 1483 patients (mean age was 65.05 ± 4.57) were evaluated in femtosecond laser arcuate keratotomy (FLAK) articles. The mean uncorrected distance visual acuity (UDVA) was 0.19 ± 0.12 and 0.15 ± 0.05 logMAR for manual incision and FLAK articles, respectively (p = 0.39). The mean correction index (CI) was similar in both groups: 0.77 ± 0.18 in manual incision and 0.79 ± 0.17 in femtosecond laser assisted incision (p = 0.70). Refractive stability was found after 3 months and no serious complications were reported during the follow-up in any group.

Conclusion

Both techniques are safe and moderately effective in corneal astigmatism correction in cataract surgery. FLAK represents a more precise and predictable approach. However, since visual and refractive outcomes appear to be similar in both cases, the cost-benefit analysis is controversial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

References

  1. Arriola-Villalobos P, Burgos-Blasco B, Fernández-Vigo JI et al (2021) Biometry data and prevalence of corneal astigmatism in caucasian spanish candidates for cataract surgery. J Fr Ophtalmol 44:76–83. https://doi.org/10.1016/j.jfo.2020.03.025

    Article  CAS  PubMed  Google Scholar 

  2. Berdahl JP, Hardten DR, Kramer BA, Potvin R (2018) Effect of astigmatism on visual acuity after multifocal versus monofocal intraocular lens implantation. J Cataract Refract Surg 44:1192–1197. https://doi.org/10.1016/j.jcrs.2018.06.048

    Article  PubMed  Google Scholar 

  3. Mayer WJ, Kreutzer T, Dirisamer M et al (2017) Comparison of visual outcomes, alignment accuracy, and surgical time between 2 methods of corneal marking for toric intraocular lens implantation. J Cataract Refract Surg 43:1281–1286. https://doi.org/10.1016/j.jcrs.2017.07.030

    Article  PubMed  Google Scholar 

  4. Schallhorn SC, Hettinger KA, Pelouskova M et al (2021) Effect of residual astigmatism on uncorrected visual acuity and patient satisfaction in pseudophakic patients. J Cataract Refract Surg 47:991–998. https://doi.org/10.1097/j.jcrs.0000000000000560

    Article  PubMed  Google Scholar 

  5. Osher RH (1989) Paired transverse relaxing keratotomy: a combined technique for reducing astigmatism. J Cataract Refract Surg 15:32–37. https://doi.org/10.1016/S0886-3350(89)80137-3

    Article  CAS  PubMed  Google Scholar 

  6. Lake JC, Victor G, Clare G et al (2019) Toric intraocular lens versus limbal relaxing incisions for corneal astigmatism after phacoemulsification. Cochrane Database Syst Rev 2019. https://doi.org/10.1002/14651858.CD012801.pub2

  7. Ganekal S, Dorairaj S, Jhanji V (2011) Limbal relaxing incisions during phacoemulsification: 6-month results. J Cataract Refract Surg 37:2081–2082

    Article  Google Scholar 

  8. Ravikumar DK, Arthi MD, Rajakumari DR (2017) A study on efficacy of limbal relaxing incisions in correcting corneal astigmatism along with clear corneal phacoemulsification in a tertiary eye care centre in South India. Int J Med Res Rev 5:168–175. https://doi.org/10.17511/ijmrr.2017.i02.12

    Article  Google Scholar 

  9. Lever J, Dahan E (2000) Opposite clear corneal incisions to correct pre-existing astigmatism in cataract surgery. J Cataract Refract Surg 26:803–805. https://doi.org/10.1016/S0886-3350(00)00378-3

    Article  CAS  PubMed  Google Scholar 

  10. Peyman A, Rahimi B, Razmjoo H et al (2014) Corneal astigmatism change and wavefront aberration evaluation after cataract surgery: “Single” versus “paired opposite” clear corneal incisions. Adv Biomed Res 3:163. https://doi.org/10.4103/2277-9175.139126

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chiam PJ (2015) Effect of paired opposite clear corneal incisions on with-the-rule versus against-the-rule astigmatism. Cornea 34:901–905. https://doi.org/10.1097/ICO.0000000000000441

    Article  PubMed  Google Scholar 

  12. Al Mahmood AM, Al-Swailem SA, Behrens A (2014) Clear corneal incision in cataract surgery. Middle East Afr J Ophthalmol 21:25–31. https://doi.org/10.4103/0974-9233.124084

    Article  PubMed  PubMed Central  Google Scholar 

  13. Löffler F, Böhm M, Herzog M et al (2017) Tomographic analysis of anterior and posterior and total corneal refractive power changes after femtosecond laser–assisted keratotomy. Am J Ophthalmol 180:102–109. https://doi.org/10.1016/j.ajo.2017.05.015

    Article  PubMed  Google Scholar 

  14. Kolb CM, Shajari M, Mathys L et al (2020) Comparison of femtosecond laser-assisted cataract surgery and conventional cataract surgery: a meta-analysis and systematic review. J Cataract Refract Surg 46:1075–1085. https://doi.org/10.1097/j.jcrs.0000000000000228

    Article  PubMed  Google Scholar 

  15. Kanclerz P, Alio JL (2021) The benefits and drawbacks of femtosecond laser-assisted cataract surgery. Eur J Ophthalmol 31:1021–1030. https://doi.org/10.1177/1120672120922448

    Article  PubMed  Google Scholar 

  16. Ye Z, Li Z, He S (2017) A meta-analysis comparing postoperative complications and outcomes of femtosecond laser-assisted cataract surgery versus conventional phacoemulsification for cataract. J Ophthalmol 2017:1–7. https://doi.org/10.1155/2017/3849152

    Article  Google Scholar 

  17. Alió JL, Abdou AA, Soria F et al (2013) Femtosecond laser cataract incision morphology and corneal higher-order aberration analysis. J Refract Surg 29:590–595. https://doi.org/10.3928/1081597X-20130819-01

    Article  PubMed  Google Scholar 

  18. Berk TA, Schlenker MB, Campos-Möller X et al (2018) Visual and refractive outcomes in manual versus femtosecond laser–assisted cataract surgery: a single-center retrospective cohort analysis of 1838 eyes. Ophthalmology 125:1172–1180. https://doi.org/10.1016/j.ophtha.2018.01.028

    Article  PubMed  Google Scholar 

  19. Day AC, Burr JM, Bennett K et al (2021) Femtosecond laser-assisted cataract surgery compared with phacoemulsification: the FACT non-inferiority RCT. Health Technol Assess (Rockv) 25:a-94. https://doi.org/10.3310/HTA25060

    Article  Google Scholar 

  20. Liberati A, Altman DG, Tetzlaff J et al (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med 6:e1000100. https://doi.org/10.1371/journal.pmed.1000100

    Article  PubMed  PubMed Central  Google Scholar 

  21. National Institute of Health (2021) National Heart Lung and Blood Institute. Study Quality Assessment Tools. In: https://www.Nhlbi.Nih.Gov/Health-Topics/Study-Quality-Assessment-Tools

  22. Lim R, Borasio E, Ilari L (2014) Long-term stability of keratometric astigmatism after limbal relaxing incisions. J Cataract Refract Surg 40:1676–1681. https://doi.org/10.1016/j.jcrs.2014.01.045

    Article  PubMed  Google Scholar 

  23. Monaco G, Scialdone A (2015) Long-term outcomes of limbal relaxing incisions during cataract surgery: aberrometric analysis. Clin Ophthalmol 9:1581. https://doi.org/10.2147/OPTH.S89024

    Article  PubMed  PubMed Central  Google Scholar 

  24. Titiyal JS, Khatik M, Sharma N et al (2014) Toric intraocular lens implantation versus astigmatic keratotomy to correct astigmatism during phacoemulsification. J Cataract Refract Surg 40:741–747. https://doi.org/10.1016/j.jcrs.2013.10.036

    Article  PubMed  Google Scholar 

  25. Roberts TV, Sharwood P, Hodge C et al (2014) Comparison of toric intraocular lenses and arcuate corneal relaxing incisions to correct moderate to high astigmatism in cataract surgery. Asia-Pacific J Ophthalmol 3:9–16. https://doi.org/10.1097/apo.0b013e3182a0af21

    Article  Google Scholar 

  26. Fouda S, Kamiya K, Aizawa D, Shimizu K (2010) Limbal relaxing incision during cataract extraction versus photoastigmatic keratectomy after cataract extraction in controlling pre-existing corneal astigmatism. Graefe’s Arch Clin Exp Ophthalmol 248:1029–1035. https://doi.org/10.1007/s00417-009-1272-6

    Article  Google Scholar 

  27. Mohammad-Rabei H, Mohammad-Rabei E, Espandar G et al (2016) Three methods for correction of astigmatism during phacoemulsification. J Ophthalmic Vis Res 11:162–167. https://doi.org/10.4103/2008-322X.183924

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ouchi M, Kinoshita S (2010) Prospective randomized trial of limbal relaxing incisions combined with microincision cataract surgery. J Refract Surg 26:594–599. https://doi.org/10.3928/1081597X-20091015-01

    Article  PubMed  Google Scholar 

  29. Leon P, Pastore MR, Zanei A et al (2015) Correction of low corneal astigmatism in cataract surgery. Int J Ophthalmol 8:719–724. https://doi.org/10.3980/j.issn.2222-3959.2015.04.14

    Article  PubMed  PubMed Central  Google Scholar 

  30. Lam DKT, Chow VWS, Ye C et al (2016) Comparative evaluation of aspheric toric intraocular lens implantation and limbal relaxing incisions in eyes with cataracts and ≤3 dioptres of astigmatism. Br J Ophthalmol 100:258–262. https://doi.org/10.1136/bjophthalmol-2014-306587

    Article  PubMed  Google Scholar 

  31. Freitas GO, Boteon JE, Carvalho MJ, Pinto RMC (2014) Treatment of astigmatism during phacoemulsification. Arq Bras Oftalmol 77:40–46. https://doi.org/10.5935/0004-2749.20140011

    Article  PubMed  Google Scholar 

  32. Eliwa TF, Abdellatif MK, Hamza II (2016) Effect of limbal relaxing incisions on corneal aberrations. J Refract Surg 32:156–162. https://doi.org/10.3928/1081597X-20160121-02

    Article  PubMed  Google Scholar 

  33. Roberts HW, Wagh VK, Sullivan DL et al (2018) Refractive outcomes after limbal relaxing incisions or femtosecond laser arcuate keratotomy to manage corneal astigmatism at the time of cataract surgery. J Cataract Refract Surg 44:955–963. https://doi.org/10.1016/j.jcrs.2018.05.027

    Article  PubMed  Google Scholar 

  34. Stanojcic N, Roberts H, Wagh V et al (2020) A randomised, prospective study of ‘off-the-shelf’ use of toric intraocular lenses for cataract patients with pre-existing corneal astigmatism in the NHS. Eye 34:1809–1819. https://doi.org/10.1038/s41433-020-0919-8

    Article  PubMed  PubMed Central  Google Scholar 

  35. Maedel S, Hirnschall N, Chen YA, Findl O (2014) Rotational performance and corneal astigmatism correction during cataract surgery: Aspheric toric intraocular lens versus aspheric nontoric intraocular lens with opposite clear corneal incision. J Cataract Refract Surg 40:1355–1362. https://doi.org/10.1016/j.jcrs.2013.11.039

    Article  PubMed  Google Scholar 

  36. Nemeth G, Kolozsvari B, Berta A, Modis L (2014) Paired opposite clear corneal incision: Time-related changes of its effect and factors on which those changes depend. Eur J Ophthalmol 24:676–681. https://doi.org/10.5301/ejo.5000428

    Article  PubMed  Google Scholar 

  37. Miyata K, Miyai T, Minami K et al (2011) Limbal relaxing incisions using a reference point and corneal topography for intraoperative identification of the steepest meridian. J Refract Surg 27:339–344. https://doi.org/10.3928/1081597X-20101005-02

    Article  PubMed  Google Scholar 

  38. Ren Y, Fang X, Fang A et al (2019) Phacoemulsification With 3.0 and 2.0 mm Opposite Clear Corneal Incisions for Correction of Corneal Astigmatism. Cornea 38:1105–1110. https://doi.org/10.1097/ICO.0000000000001915

    Article  PubMed  Google Scholar 

  39. Wendelstein JA, Hoffmann PC, Mariacher S et al (2021) Precision and refractive predictability of a new nomogram for femtosecond laser-assisted corneal arcuate incisions. Acta Ophthalmol 99:e1297–e1306. https://doi.org/10.1111/aos.14837

    Article  PubMed  PubMed Central  Google Scholar 

  40. Schwarzenbacher L, Schartmüller D, Röggla V et al (2021) One-year results of arcuate keratotomy in patients with low to moderate corneal astigmatism using a low-pulse-energy femtosecond laser. Am J Ophthalmol 224:53–65. https://doi.org/10.1016/j.ajo.2020.11.018

    Article  PubMed  Google Scholar 

  41. Chen W, Ji M, Wu J et al (2020) Effect of femtosecond laser-assisted steepest-meridian clear corneal incisions on preexisting corneal regular astigmatism at the time of cataract surgery. Int J Ophthalmol 13:1895–1900. https://doi.org/10.18240/ijo.2020.12.08

    Article  PubMed  PubMed Central  Google Scholar 

  42. Lee JA, Song WK, Kim JY et al (2019) Femtosecond laser–assisted cataract surgery versus conventional phacoemulsification: Refractive and aberrometric outcomes with a diffractive multifocal intraocular lens. J Cataract Refract Surg 45:21–27. https://doi.org/10.1016/j.jcrs.2018.08.032

    Article  PubMed  Google Scholar 

  43. Yoo A, Yun S, Kim JY et al (2015) Femtosecond laser-assisted arcuate keratotomy versus toric IOL implantation for correcting astigmatism. J Refract Surg 31:574–578. https://doi.org/10.3928/1081597X-20150820-01

    Article  PubMed  Google Scholar 

  44. Day AC, Stevens JD (2016) Stability of keratometric astigmatism after non-penetrating femtosecond laser intrastromal astigmatic keratotomy performed during laser cataract surgery. J Refract Surg 32:152–155. https://doi.org/10.3928/1081597X-20160204-01

    Article  PubMed  Google Scholar 

  45. Baharozian CJ, Song C, Hatch KM, Talamo JH (2017) A novel nomogram for the treatment of astigmatism with femtosecond-laser arcuate incisions at the time of cataract surgery. Clin Ophthalmol 11:1841–1848. https://doi.org/10.2147/OPTH.S141255

    Article  PubMed  PubMed Central  Google Scholar 

  46. Blehm C, Potvin R (2017) Pseudophakic astigmatism reduction with femtosecond laser-assisted corneal arcuate incisions: A pilot study. Clin Ophthalmol 11:201–207. https://doi.org/10.2147/OPTH.S127279

    Article  PubMed  PubMed Central  Google Scholar 

  47. Byun YS, Kim S, Lazo MZ et al (2018) Astigmatic correction by intrastromal astigmatic keratotomy during femtosecond laser–assisted cataract surgery: Factors in outcomes. J Cataract Refract Surg 44:202–208. https://doi.org/10.1016/j.jcrs.2017.11.018

    Article  PubMed  Google Scholar 

  48. Visco DM, Bedi R, Packer M (2019) Femtosecond laser–assisted arcuate keratotomy at the time of cataract surgery for the management of preexisting astigmatism. J Cataract Refract Surg 45:1762–1769. https://doi.org/10.1016/j.jcrs.2019.08.002

    Article  PubMed  Google Scholar 

  49. Rani K, Grover A, Singh A et al (2020) Correction of preexisting astigmatism by penetrating arcuate keratotomy in femtosecond laser-assisted cataract surgery. Indian J Ophthalmol 68:1569–1572. https://doi.org/10.4103/ijo.IJO_2060_19

    Article  PubMed  PubMed Central  Google Scholar 

  50. Wortz G, Gupta PK, Goernert P et al (2020) Outcomes of femtosecond laser arcuate incisions in the treatment of low corneal astigmatism. Clin Ophthalmol 14:2229–2236. https://doi.org/10.2147/OPTH.S264370

    Article  PubMed  PubMed Central  Google Scholar 

  51. Rückl T, Dexl AK, Bachernegg A et al (2013) Femtosecond laser-assisted intrastromal arcuate keratotomy to reduce corneal astigmatism. J Cataract Refract Surg 39:528–538. https://doi.org/10.1016/j.jcrs.2012.10.043

    Article  PubMed  Google Scholar 

  52. Day AC, Stevens JD (2016) Predictors of femtosecond laser intrastromal astigmatic keratotomy efficacy for astigmatism management in cataract surgery. J Cataract Refract Surg 42:251–257. https://doi.org/10.1016/j.jcrs.2015.09.028

    Article  PubMed  Google Scholar 

  53. Day AC, Lau NM, Stevens JD (2016) Nonpenetrating femtosecond laser intrastromal astigmatic keratotomy in eyes having cataract surgery. J Cataract Refract Surg 42:102–109. https://doi.org/10.1016/j.jcrs.2015.07.045

    Article  PubMed  Google Scholar 

  54. Ganesh S, Brar S, Reddy Arra R (2020) Comparison of astigmatism correction between anterior penetrating and intrastromal arcuate incisions in eyes undergoing femtosecond laser-assisted cataract surgery. J Cataract Refract Surg 46:394–402. https://doi.org/10.1097/j.jcrs.0000000000000069

    Article  PubMed  Google Scholar 

  55. Lim CW, Somani S, Chiu HH et al (2020) Astigmatic outcomes of single, non-paired intrastromal limbal relaxing incisions during femtosecond laser-assisted cataract surgery based on a custom nomogram. Clin Ophthalmol 14:1059–1070. https://doi.org/10.2147/OPTH.S238016

    Article  PubMed  PubMed Central  Google Scholar 

  56. Moon SY, Chung HS, Lee JH et al (2021) Evaluation of astigmatic correction using vector analysis after combined femtosecond laser-assisted phacoemulsification and intrastromal arcuate keratotomy. J Ophthalmol 2021:1–8. https://doi.org/10.1155/2021/2860840

    Article  Google Scholar 

  57. Merriam JC, Zheng L, Merriam JE et al (2003) The effect of incisions for cataract on corneal curvature. Ophthalmology 110:1807–1813. https://doi.org/10.1016/S0161-6420(03)00537-2

    Article  PubMed  Google Scholar 

  58. Budak K, Yilmaz G, Aslan BS, Duman S (2001) Limbal relaxing incisions in congenital astigmatism: 6 month follow-up. J Cataract Refract Surg 27:715–719. https://doi.org/10.1016/S0886-3350(00)00687-8

    Article  CAS  PubMed  Google Scholar 

  59. Mingo-Botín D, Muñoz-Negrete FJ, Won Kim HR et al (2010) Comparison of toric intraocular lenses and peripheral corneal relaxing incisions to treat astigmatism during cataract surgery. J Cataract Refract Surg 36:1700–1708. https://doi.org/10.1016/j.jcrs.2010.04.043

    Article  PubMed  Google Scholar 

  60. Chan TCY, Cheng GPM, Wang Z et al (2015) Vector analysis of corneal astigmatism after combined femtosecond-assisted phacoemulsification and arcuate keratotomy. Am J Ophthalmol 160:250–255.e2. https://doi.org/10.1016/j.ajo.2015.05.004

    Article  PubMed  Google Scholar 

  61. Kaufmann C, Peter J, Ooi K et al (2005) Limbal relaxing incisions versus on-axis incisions to reduce corneal astigmatism at the time of cataract surgery. J Cataract Refract Surg 31:2261–2265. https://doi.org/10.1016/j.jcrs.2005.08.046

    Article  PubMed  Google Scholar 

  62. Muftuoglu O, Dao L, Cavanagh HD et al (2010) Limbal relaxing incisions at the time of apodized diffractive multifocal intraocular lens implantation to reduce astigmatism with or without subsequent laser in situ keratomileusis. J Cataract Refract Surg 36:456–464. https://doi.org/10.1016/j.jcrs.2009.10.037

    Article  PubMed  Google Scholar 

  63. Cooper BA, Holekamp NM, Bohigian G, Thompson PA (2003) Case-control study of endophthalmitis after cataract surgery comparing scleral tunnel and clear corneal wounds. Am J Ophthalmol 136:300–305. https://doi.org/10.1016/S0002-9394(03)00202-2

    Article  PubMed  Google Scholar 

  64. Kankariya VP, Diakonis VF, Kymionis GD, Yoo SH (2014) Anterior gas breakthrough during Femtosecond Intrastromal Astigmatic Keratotomy (FISK). J Refract Surg 30:511–513. https://doi.org/10.3928/1081597X-20140711-02

    Article  PubMed  Google Scholar 

  65. Chang JSM (2018) Femtosecond laser-assisted astigmatic keratotomy: a review. Eye Vis 5:6. https://doi.org/10.1186/s40662-018-0099-9

    Article  Google Scholar 

  66. Vickers LA, Gupta PK (2016) Femtosecond laser-assisted keratotomy. Curr Opin Ophthalmol 27:277–284. https://doi.org/10.1097/ICU.0000000000000267

    Article  PubMed  Google Scholar 

  67. Wu E (2011) Femtosecond-assisted astigmatic keratotomy. Int Ophthalmol Clin 51:77–85. https://doi.org/10.1097/IIO.0b013e31820f26cd

    Article  PubMed  Google Scholar 

  68. Dick HB, Schultz T, Gerste RD (2014) Lessons from a corneal perforation during femtosecond laser-assisted cataract surgery. J Cataract Refract Surg 40:2168–2169. https://doi.org/10.1016/j.jcrs.2014.10.018

    Article  PubMed  Google Scholar 

Download references

Funding

No funding was received for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José-María Sánchez-González.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González-Cruces, T., Cano-Ortiz, A., Sánchez-González, M.C. et al. Cataract surgery astigmatism incisional management. Manual relaxing incision versus femtosecond laser-assisted arcuate keratotomy. A systematic review. Graefes Arch Clin Exp Ophthalmol 260, 3437–3452 (2022). https://doi.org/10.1007/s00417-022-05728-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-022-05728-0

Keywords

Navigation