## CORRECTION



## Correction to: Classification of good visual acuity over time in patients with branch retinal vein occlusion with macular edema using support vector machine

Yoshitsugu Matsui<sup>1</sup> · Kazuya Imamura<sup>2</sup> · Mihiro Ooka<sup>2</sup> · Shinichiro Chujo<sup>1</sup> · Yoko Mase<sup>1</sup> · Hisashi Matsubara<sup>1</sup> · Hiroharu Kawanaka<sup>2</sup> · Mineo Kondo<sup>1</sup>

Published online: 17 January 2022

© Springer-Verlag GmbH Germany, part of Springer Nature 2022

Correction to: Graefe's Archive for Clinical and Experimental Ophthalmology https://doi.org/10.1007/s00417-021-05455-y

In the published version of this article, the Key messages details are incorrect.

The correct Key messages details are shown below:

## Key messages

- It is currently an unsolved problem to predict the specific clinical outcome of individual patients before continuing treatment for macular edema associated with BRVO.
- A classifier created with handcrafted features-based support vector machine (SVM) classified patients with BRVO
  into two groups, one with good visual outcomes and the other with poor visual outcomes.
- The accuracy of the classifier was 0.806.
- The patients' clinical information and the morphology of the outer retinal layer in OCT images within 2 degrees of the center of the macula at the first resolution of the ME were useful information for the classification of different prognosis of BCVA over time during continued anti-VEGF treatment.

This is being corrected in this publication.

**Publisher's note** Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original article can be found online at https://doi.org/10.1007/s00417-021-05455-y.

- ✓ Yoshitsugu Matsui footboyslim366@gmail.com
- Department of Ophthalmology, Mie University Graduate, School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
- Department of Electrical and Electronic Engineering, Mie University, Tsu, Mie, Japan

